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Given a domain Ω of a complete Riemannian manifold M and define A to be the Laplacian with Neumann boundary condition on Ω. We prove that, under appropriate conditions, the corresponding heat kernel satisfies the Gaussian upper bound

Here d is the geodesic distance on M, V Ω (x, r) is the Riemannian volume of B(x, r) ∩ Ω, where B(x, r) is the geodesic ball of center x and radius r, and δ is a constant related to the doubling property of Ω.

As a consequence we obtain analyticity of the semigroup e -tA on L p (Ω) for all p ∈ [1, ∞) as well as a spectral multiplier result.

V Ω (x, √ t)V Ω (y, √ t) 1/2 e -c |x-y| 2 t , t > 0, x, y ∈ Ω, 1991

Introduction and main results

This short note is devoted to the Gaussian upper bound for the heat kernel of the Neumann Laplacian. Let us start with the Euclidean setting in which Ω is a bounded Lipschitz domain of R n . Let ∆ N be the Neumann Laplacian. It is well known that the corresponding heat kernel h(t, x, y) satisfies [START_REF] Boutayeb | A new approach to pointwise heat kernel upper bounds on doubling metric mesure spaces[END_REF] 0 ≤ h(t, x, y) ≤ Ct -n/2 e t e -c |x-y| 2 t , t > 0, x, y ∈ Ω.

One can replace the extra term e t by (1 + t) n/2 but the decay h(t, x, y) ≤ Ct -n/2 cannot hold for large t since e t∆N 1 = 1. We refer to the monographs [START_REF] Davies | Heat kernels and spectral theory[END_REF] or [START_REF] Ouhabaz | Analysis of heat equations on domains[END_REF] for more details. In applications, for example when applying the Gaussian bound to obtain spectral multiplier results one can apply [START_REF] Boutayeb | A new approach to pointwise heat kernel upper bounds on doubling metric mesure spaces[END_REF] to -∆ N + I (or ǫI for any ǫ > 0) and not to -∆ N . It is annoying to add the identity operator especially it is not clear how the functional calculus for -∆ N can be related to that of -∆ N + I. The same problem occurs for analyticity of the semigroup e t∆N on L p (Ω) for p ∈ [1, ∞). One obtains from (1) analyticity of the semigroup but not a bounded analytic semigroup. This boundedness (on sectors of the right half plane) is important in order to obtain appropriate estimates for the resolvent or for the time derivatives of the solution to the corresponding evolution equation on L p . In this note we will show in an elementary way how one can resolve this question. The idea is that (1) can be improved into a Gaussian upper bound of the type [START_REF] Choulli | Gaussian lower bound for the Neumann Green function of a general parabolic operator[END_REF] h(t, x, y) ≤ C

where V Ω (x, r) denotes the volume of Ω ∩ B(x, r) and B(x, r) is the open ball of center x and radius r. There is no extra factor in (2) and one can use this estimate in various applications of Gaussian bounds instead of (1).

We shall state most of the results for Lipschitz domains of general Riemannian manifolds.

Let (M, g) be a complete Riemannian manifold of dimension n without boundary. Let Ω be a subdomain of M with Lipschitz boundary Γ. That is, Γ can be described in an appropriate local coordinates by means of graphs of Lipschitz functions. Specifically, for any p ∈ Γ, there exist a local chart (U, ψ), ψ : U → R n with ψ(p) = 0, a Lipschitz function λ : R n-1 → R with λ(0) = 0 and ǫ > 0 such that

ψ(U ∩ Ω) = {(x ′ , λ(x ′ ) + t); 0 < t < ǫ, x ′ ∈ R n-1 , |x ′ | < ǫ}, ψ(U ∩ Γ) = {(x ′ , λ(x ′ )); x ′ ∈ R n-1 , |x ′ | < ǫ}.
We use in this text Einstein summation convention for repeated indices. We recall that, in local coordinates

x = (x 1 , . . . , x n ), g(x) = g ij dx i ⊗ dx j . If f ∈ C ∞ (M)
, the gradient of f is the vector field given by

∇f = g ij ∂f ∂x i ∂ ∂x j
and the Laplace-Beltrami operator is the operator acting as follows

∆f = |g| -1/2 ∂ ∂x i |g| 1/2 g ij ∂f ∂x j ,
where (g ij ) is the inverse of the metric g and |g| is the determinant of g.

Let µ be the Riemannian measure induced by the metric g. That is

dµ = |g| 1/2 dx 1 . . . dx n .
We set L 2 (Ω) = L 2 (Ω, dµ). Let H 1 (Ω) be the closure of C ∞ 0 (Ω) with respect to the norm

f H 1 (Ω) = Ω f (x) 2 dµ(x) + Ω |∇f (x)| 2 dµ(x) 1/2
.

Here |∇f | 2 = ∇f, ∇f , where ∇f, ∇g = g ij ∂f ∂x i ∂g ∂x j .
We consider on L 2 (Ω) × L 2 (Ω) the unbounded bilinear form

a(f, g) = Ω ∇f, ∇g dµ(x) with domain D(a) = H 1 (Ω).
Since Γ is Lipschitz, the unit conormal ν ∈ T * M is defined a.e. with respect to the surface measure dσ.

Let ∂ ν f = ∇f, ν = g ij ν i ∂f ∂xj and H ∆ (Ω) = {f ∈ L 2 (Ω); ∆f ∈ L 2 (Ω)}.
We recall the Green's formula

Ω ∇f, ∇g dµ = - Ω ∆f gdµ + Γ ∂ ν f gdσ, f ∈ C ∞ 0 (Ω), g ∈ H 1 (Ω).
In light of this formula, we define ∂ ν f , f ∈ H ∆ (Ω), as an element of H -1/2 (Γ), the dual space of H 1/2 (Γ), by the following formula

(∂ ν f, g) 1/2 := Ω ∆f gdµ + Ω ∇f, ∇g dµ, g ∈ H 1 (Ω).
Here (•, •) 1/2 is the duality pairing between H 1/2 (Γ) and H -1/2 (Γ). We define the operator Au = -∆u with domain

D(A) = {u ∈ H ∆ (Ω); ∂ ν u = 0}.
Then it is straightforward to see that A is the operator associated to the form a.

Let d be the geodesic distance and B(x, r) be the geodesic ball with respect to d of center x ∈ M and radius r > 0, and set V (x, r) = µ(B(x, r)).

We assume in what follows that M satisfies the volume doubling (abbreviated to V D in the sequel) property: there exists C > 0 so that

V (x, 2r) ≤ CV (x, r), x ∈ M, r > 0.
We shall assume that the heat kernel p(t, x, y) of the Laplacian on M satisfies the Gaussian upper bound

(3) p(t, x, y) ≤ C V (x, √ t)V (y, √ t) 1/2 e -c d 2 (x,y) t , t > 0, x, y ∈ M
in which C and c are positive constants.

A typical example of a manifold which satisfies both properties is a manifold with non negative Ricci curvature. The volume doubling property is then an immediate consequence of Gromov-Bishop theorem. The Gaussian upper bound can be found in [START_REF] Li | On the parabolic kernel of the Schrödinger operator[END_REF].

We define

V Ω by V Ω (x, r) = µ (B(x, r) ∩ Ω) , r > 0, x ∈ Ω.
The main assumption on Ω is the following variant of the V D property: there exist two constants K > 0 and δ > 0 so that (4)

V Ω (x, s) ≤ K s r δ V Ω (x, r), 0 < r ≤ s, x ∈ Ω.
Note that this doubling property holds for all bounded Lipschitz domains of R n (with δ = n). We shall discuss this in Section 3.

Most of the results we will refer to are valid for metric measure space with Borel measure. In our case this metric measure space is nothing else but (Ω, d, µ). Here, we keep the notations d and µ for the distance and measure induced on Ω by d on M and µ on M. Now we state our main results which we formulate in following theorem and the subsequent corollaries.

Theorem 1.1. (1) -A generates a symmetric Markov semigroup e -tA with kernel h ∈ C ∞ ((0, ∞) × Ω × Ω).
(2) Suppose that M satisfies V D and (3) and Ω satisfies the V D property (4) and diam (Ω) < ∞. Then h has the following Gaussian upper bound

h(t, x, y) ≤ C V Ω (x, √ t)V Ω (y, √ t) 1/2 1 + d 2 (x, y) 4t δ e -d 2 (x,y) 4t , t > 0, x, y ∈ Ω. Since ρ ∈ [0, ∞) → (1 + ρ) δ e -ρ/2 is bounded function, an immediate consequence of Theorem 1.1 is
Corollary 1. Suppose that M satisfies V D and (3) and Ω satisfies the V D property (4) and diam (Ω) < ∞. Then

h(t, x, y) ≤ C V Ω (x, √ t)V Ω (y, √ t) 1/2 e -d 2 (x,y) 8t , t > 0, x, y ∈ Ω.
We note that for unbounded domains, Gaussian upper bounds for the Neumann heat kernel are proved in [START_REF] Gyrya | Neumann and Dirichlet heat kernels in inner uniform domains[END_REF]. Theorem 1.1 [START_REF] Choulli | Gaussian lower bound for the Neumann Green function of a general parabolic operator[END_REF] or its corollary has several consequences. Corollary 2. Suppose that M satisfies V D and (3) and Ω satisfies the V D property (4) and diam (Ω) < ∞. Then (1) the semigroup e -tA extends to a bounded holomorphic semigroup on C + on L p (Ω, µ) for all p ∈ [1, ∞), (2) the spectrum of A, viewed as an operator acting on

L p (Ω), p ∈ [1, ∞), is independent of p.
Assertion ( 1) is a consequence of Corollary 1 combined with [17, Corollary 7.5, page 202]. It was originally proved in [START_REF] Ouhabaz | Gaussian estimates and holomorphy of semigroups[END_REF]. Assertion (2) follows from a result in [START_REF] Davies | L p spectral independence and L 1 analyticity[END_REF] which asserts that a Gaussian upper bound implies p-independence of the spectrum. See also [START_REF] Ouhabaz | Analysis of heat equations on domains[END_REF]Theorem 7.10,page 206] for the general form needed here.

Let (E λ ) be the spectral resolution of the non negative self-adjoint operator A. We recall that for any bounded Borel function f : [0, ∞) → C, the operator f (A) is defined by

f (A) = ∞ 0 f (λ)dE λ .
An operator T on the measure space (Ω, µ) is said of weak type (1, 1) if 

T L 1 (Ω)→L 1 w (Ω) := sup{λµ({x ∈ Ω; |T ϕ(x)| > λ}); λ > 0, ϕ L 1 (Ω) = 1} < ∞. In light of [7,
(Ω) < ∞. Let s > δ/2, where δ is as in (4), ϕ ∈ C ∞ 0 ((0, ∞)) non identically equal to zero and f : [0, ∞) → C a Borel function satisfying sup t>0 ϕ(•)f (t•) W s,∞ < ∞.
Then f (A) is of weak type (1, 1) and bounded on L p (Ω) for any p ∈ (1, ∞). Additionally,

f (A) L 1 (Ω)→L 1 w (Ω) ≤ C s sup t>0 ϕ(•)f (t•) W s,∞ + |f (0)| .
A particular case of this corollary concerns the imaginary powers of A. Precisely, A ir , r ∈ R, extends to a bounded operator on L p (Ω), p ∈ (1, ∞), and, for any ǫ > 0, there is a constant C ǫ > 0 so that (5)

A ir B(L p (Ω)) ≤ C ǫ (1 + |r|) δ|1/2-1/p|+ǫ . Indeed, an application of the previous corollary with f (λ) = λ ir shows that

A ir L 1 (Ω)→L 1 w (Ω) ≤ C ǫ (1 + |r|) δ/2+ǫ .
On the other hand, the standard functional calculus for self-adjoint operators gives [START_REF] Davies | Heat kernels and spectral theory[END_REF] follows by interpolation. We refer to [17, Corollary 7.24, page 239] for more details. Proof. (a) We recall that if u ∈ H 1 (Ω), then u + , u -∈ H 1 (Ω) and ∇|u| = ∇u + + ∇u -. Hence a(|u|, |u|) = a(u, u), u ∈ H 1 (Ω). In light of [5, Theorem 1.3.2, page 12], we deduce that e -tA is positivity preserving.

A ir B(L 2 (Ω)) ≤ 1. Therefore,
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(b) If 0 ≤ u ∈ H 1 (Ω), then one can check in a straightforward manner that u ∧ 1 = min(u, 1) ∈ H 1 (Ω) and

∇(u ∧ 1) = ∇u in [u > 1], 0 in [u ≤ 1].
Therefore e -tA is a contraction semigroup on L p (Ω) for all 1 ≤ p ≤ ∞ by [5, Theorem 1.3.3, page 14].

This proposition says that e -tA is a symmetric Markov semigroup.

We have for any integer k,

A k e -tA = +∞ 0 λ k e -tλ dE λ .

Therefore, e -tA f ∈ D(A), for all f ∈ L 2 (Ω) and t > 0.

On the other hand, we get from the usual interior elliptic regularity

k∈N D(A k ) ⊂ C ∞ (Ω).
Hence, x → e -tA f (x) belongs to C ∞ (Ω) for any fixed t > 0. But, t → e -tA f is analytic on (0, ∞) with values in the Hilbert space

D(A k ). Consequently, (t, x) → e -tA f (x) is in C ∞ ((0, ∞) × Ω).
From now on, the scalar product of L 2 (Ω) will be denoted by (•, •) 2,Ω and the norm of

L p (Ω), 1 ≤ p ≤ ∞, by • p,Ω . The norm of L p (M) is simply denoted by • p , 1 ≤ p ≤ ∞.
We fix t > 0. Using that λ → λ k e -tλ attains its maximum value at λ = k/t, we obtain from ( 6) for f ∈ L 2 (Ω)

A k e -tA f 2 2,Ω = ∞ 0 [λ k e -λt ] 2 d E λ f 2 2,Ω (7) 
≤ sup λ>0 [λ k e -λt ] 2 ∞ 0 d E λ f 2 2,Ω ≤ k t 2k e -2k f 2 2,Ω .
Again by the interior elliptic regularity, D(A k ) is continuously embedded in C(Ω) when k is sufficiently large. This and ( 7) entails: for any ω ⋐ Ω, there exists C = C(Ω, ω, k) so that ( 8) sup

ω |e -tA f | ≤ C t k 2 f 2,Ω .
In particular, for any fixed x ∈ Ω and t > 0, the (linear) mapping f → e -tA f (x) is continuous. We can then apply the Riesz representation theorem to deduce that there exists ℓ(t, x) ∈ L 2 (Ω) so that

e -tA f (x) = (ℓ(t, x), f ) 2,Ω , x ∈ Ω, t > 0. Therefore, (t, x) → ℓ(t, x) ∈ L 2 (Ω) is weakly C ∞ on (0, ∞) × Ω and hence norm C ∞ by [4, Section 1.5]. Let h(t, x, y) = (ℓ(t/2, x), ℓ(t/2, y)). Then h ∈ C ∞ ((0, ∞) × Ω × Ω) and e -tA f, g 2,Ω = e -t 2 A f, e -t 2 A g 2,Ω = Ω Ω h(t, x, y)f (x)g(y)dµ(x)dµ(y), f, g ∈ C ∞ 0 (Ω).
By the density of C ∞ 0 (Ω) in L 2 (Ω), we derive from the last identity that

e -tA f (x) = Ω h(t, x, y)f (x)dµ(x), t > 0, x ∈ Ω, f ∈ L 2 (Ω).
(2) We start with the following proposition.

Proposition 2. e -tA satisfies the Davies-Caffney (abbreviated to DG in the sequel) property. That is, for

any t > 0, U 1 , U 2 open subsets of Ω, f ∈ L 2 (U 1 , dµ) and g ∈ L 2 (U 2 , dµ), (e -tA f, g) 2,Ω ≤ e -r 2 4t f 2,Ω g 2,Ω .
Here

r = dist(U 1 , U 2 ) = inf x∈U1, y∈U2
d(x, y).

Proof. We omit the proof which is similar to that of [3, Theorem 3.3, page 515].

We now observe that Ω has the 1-extension property (see for instance [START_REF] Mitrea | Traces of differential forms on Lipschitz domains, the boundary De Rham complex, and Hodge decompositions[END_REF]Theorem C]). In other words, there exists

E ∈ B(H 1 (Ω), H 1 (M)) satisfying (Eu) |Ω = u, u ∈ H 1 (Ω).
On the other hand, since M has the volume doubling property and the Gaussian bound (3), it follows from [1, Theorem 1.2.1] that the following Gagliado-Nirenberg type inequality holds: for 2 < q ≤ +∞, there exists a constant C > 0 so that

(9) f V 1 2 -1 q (•, r) q ≤ C f 2 + r |∇f | 2 2 , r > 0, f ∈ C ∞ 0 (M).
In light of (9) and using that

V Ω (•, r) ≤ V (•, r) in Ω, we obtain for r > 0, f ∈ H 1 (Ω) and fixed 2 < q ≤ ∞, f V 1 2 -1 q Ω (•, r) q,Ω ≤ f V 1 2 -1 q (•, r) q,Ω ≤ (Ef )V 1/2-1/q q ≤ C ( Ef 2 + r |∇(Ef )| 2 ) ≤ C E ((1 + r) f 2,Ω + r |∇f | 2,Ω ) .
Here E is the norm of E in B(H 1 (Ω), H 1 (M)). Hence [START_REF] Grigor'yan | Gaussian upper bounds for the heat kernel on arbitrary manifolds[END_REF] f V Ω (•, r)

1 2 -1 q q,Ω ≤ C ( f 2,Ω + r |∇f | 2,Ω ) , r > 0, f ∈ H 1 (Ω),
where we used the fact that V Ω (•, r) = V Ω (•, r 0 ) = µ(Ω), for all r ≥ r 0 = diam (Ω).

We then apply [1, Theorem 1.2.1] to derive that h possesses a diagonal upper bound. In other words, there exists a constant C > 0 so that [START_REF] Hebey | Sobolev spaces on Riemannian manifolds[END_REF] h(t, x, y) ≤ C

V

Ω (x, √ t)V Ω (x, √ t) 1/2 , t > 0, x, y ∈ Ω.
Since e -tA has the DG property by Proposition 2 we get, from [3, Corollary 5.4, page 524],

h(t, x, y) ≤ eC V Ω (x, √ t)V Ω (y, √ t) 1/2 1 + d 2 (x, y) 4t δ e -d 2 (x,y) 4t , t > 0, x, y ∈ Ω.
The proof is then complete.

Domains with volume doubling property

Flat case. It is known that any bounded Lipschitz domain of R n satisfies the volume doubling property. We discuss this again here. We consider R n equipped with its euclidean metric g = (δ ij ). Let

C (y, ξ, ǫ) = {z ∈ R n ; (z -y) • ξ ≥ (cos ǫ)|z -y|, 0 < |y -z| < ǫ},
where y ∈ R n , ξ ∈ S n-1 and 0 < ǫ. That is, C(y, ξ, ǫ) is the cone, of dimension ǫ, with vertex y, aperture ǫ and directed by ξ.

We say that Ω has the ǫ-cone property if for any x ∈ Γ, there exists ξ x ∈ S n-1 so that, for all y ∈ Ω ∩ B(x, ǫ), C (y, ξ x , ǫ) ⊂ Ω.

Let Ω be a bounded Lipschitz domain of R n . Then, by [START_REF] Henrot | Variation et optimisation de formes[END_REF]Theorem 2.4.7,page 53], Ω has the ǫ-cone property, for some ǫ > 0. This implies that there exist c 0 > 0 and ρ > 0 so that [START_REF] Henrot | Variation et optimisation de formes[END_REF] V Ω (x, r) = |B(x, r) ∩ Ω| ≥ c 0 r n , x ∈ Ω, 0 < r ≤ ρ.

An immediate consequence is that Ω (equipped with its euclidean metric) satisfies the volume doubling property. Indeed, let r 0 = diam (Ω) and 0 < r ≤ s. Then ( 12) entails [START_REF] Kloeckner | A refinement of Günther's candle inequality[END_REF] V

Ω (x, s) ≤ c 1 s n = c 1 s r n r n ≤ c 1 c 0 s r n V Ω (x, r), 0 < r ≤ ρ,
where c 1 = |B(0, 1)|. Also, when ρ < r 0 ,

V Ω (x, s) ≤ c 1 c 0 s ρ n V Ω (x, ρ) ≤ c 1 c 0 r 0 ρ n s r n V Ω (x, r), ρ < r ≤ r 0 . (14) 
Finally, it is obvious that

(15) V Ω (x, s) = |Ω| = V Ω (x, r 0 ) ≤ s r n V Ω (x, r), r > r 0 .
Estimates ( 13), ( 14) and ( 15) show the volume doubling property.

Manifold with sectional curvature bounded from above. Let T x M be the tangent space at x ∈ M, S x ⊂ T x M the unit tangent sphere and SM the unit tangent bundle. Let Φ t be the geodesic flow with phase space SM. That is, for any t ≥ 0,

Φ t : SM → SM : (x, ξ) ∈ SM → Φ t (x, ξ) = (γ x,ξ (t), γx,ξ (t)) .
Here γ x,ξ : [0, ∞) → M is the unit speed geodesic starting at x with tangent unit vector ξ and γx,ξ (t) is the unit tangent vector to γ x,ξ at γ x,ξ (t) in the forward t direction. If (x, ξ) ∈ SM, we denote by r(x, ξ) the distance from x to the cutlocus in the direction of ξ: r(x, ξ) = inf{t > 0; d(x, Φ t (x, ξ)) < t}.

We fix δ ∈ (0, 1] and r > 0. Following [START_REF] Saloff-Coste | Pseudo-Poincaré inequalities and applications to Sobolev inequalities, Around the research of Vladimir Maz[END_REF], a (δ, r)-cone at x ∈ M is the set of the form C (x, ω x , r) = {y = γ x,ξ (s); ξ ∈ ω x , 0 ≤ s < r},

where ω x is a subset of S x so that r < r(x, ξ) for all ξ ∈ ω x and |ω x | ≥ δ (here |ω x | is the volume of ω x with respect to the normalized measure on the sphere S x ). A domain D which contains a (δ, r)-cone at x for any x ∈ D is said to satisfy the interior (δ, r)-cone condition.

Let

s κ (r) =        sin( √ κr √ κ n-1 if κ > 0, r n-1 if κ = 0, sinh( √ -κr √ -κ n-1 if κ < 0.
We assume that the sectional curvature of M is bounded above by a constant κ, κ ∈ R, and Ω satisfies the interior (δ, r)-cone condition. Let J(x, ξ, t) be the density of the volume element in geodesic coordinates around x. That is dV (y) = J(x, ξ, t)d Sx dt, y = γ x,ξ (t), t < r(x, ξ). By an extension of Günther's comparison theorem (see for instance [START_REF] Kloeckner | A refinement of Günther's candle inequality[END_REF]), J satisfies the following uniform lower bound J(x, ξ, t) ≥ s κ (t). Consequently, for some r 0 > 0, [START_REF] Ouhabaz | Gaussian estimates and holomorphy of semigroups[END_REF] V Ω (x, r) ≥ V (C (x, ω x , r)) ≥ c 0 r n , x ∈ Ω, 0 < r ≤ r 0 ,

We proceed similarly to the flat case to prove the following lemma.

Lemma 3.1. Assume that M has sectional curvature bounded from above and satisfies following volume growth condition V (x, r) ≤ c 1 r n , 0 < r ≤ r 1 , for some constants c 1 and r 1 . If Ω is of finite diameter and satisfies the (δ, r)-cone condition, then V Ω is doubling.

  Theorem 1.3, page 450 and Remark 1, page 451], another consequence of Corollary 1 is Corollary 3. Suppose that M satisfies V D and (3) and Ω satisfies the V D property (4) and diam

Proof of Theorem 1 . 1 . ( 1 )

 111 We first recall that -A generates on L 2 (Ω) an analytic semigroup e -tA . Note that e -tA = +∞ 0 e -tλ dE λ , t ≥ 0. Proposition 1. (a) e -tA is positivity preserving. (b) e -tA is a contraction on L p (Ω) = L p (Ω, dµ) for all 1 ≤ p ≤ ∞ and t ≥ 0.

M.O. was partially supported by the ANR project HAB, ANR-12-BS01-0013-02.