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Abstract. This work introduces a novel motion descriptor that enables hu-

man activity classification in video-surveillance applications. The method starts 

by computing a dense optical flow, providing instantaneous velocity infor-

mation for every pixel. The obtained flow is then characterized by a per-frame-

orientation histogram, weighted by the norm, with orientations quantized to 32 

principal directions. Finally, a set of global characteristics is determined from 

the temporal series obtained from each histogram bin, forming a descriptor vec-

tor. The method was evaluated using a 192-dimensional descriptor with the 

classical Weizmann action dataset, obtaining an average accuracy of 95 %. For 

more complex surveillance scenarios, the method was assessed with the VISOR 

dataset, achieving a 96.7 % of accuracy in a classification task performed using 

a Support Vector Machine (SVM) classifier. 

Keywords: video surveillance, motion analysis, dense optical flow, histogram 

of orientations. 

1 Introduction 

Classification of human actions is a very challenging task in different video applica-

tions such as surveillance, image understanding, video retrieval and human computer 

interaction [1, 2]. Such task aims to automatically categorize activities in a video and 

determine which kind of movement is going on. The problem is complex because of 

the multiple variation sources that may deteriorate the method performance, such as 

the particular recording settings or the inter-personal differences, particularly im-

portant in video surveillance, case in which illumination and occlusion are uncon-

trolled.  

Many methods have been proposed, coarsely grouped into two categories: (1) the 

silhouette based methods, and (2) the global motion descriptors (GMDs). The silhou-

ette based methods aim to interpret the temporal variation of the human shape during 

a specific activity. They extract the most relevant silhouette shape variations that may 

represent a specific activity [7, 8]. These approaches achieve high performance in 

data sets recorded with static camera and simple background, since they need an accu-

rate silhouette segmentation, but they are limited in scenarios with complex back-

ground, illumination changes, noise, and obviously, moving camera. 



 

On the other hand, the GMDs are commonly used in surveillance applications to de-

tect abnormal movements or to characterize human activities by computing relevant 

features that highlight and summarize motion. For example, 3d spatio temporal Haar 

features have been proposed to build volumetric descriptors in pedestrian applications 

[6]. GMDs are also frequently based on the apparent motion field (optical flow), fully 

justified because it is relatively independent of the visual appearance. For instance, 

Ikizler et al [3] used histograms of orientations of (block-based) optical flow com-

bined with contour orientations. This method can distinguish simple periodic actions 

but its temporal integration is too limited to address more complex activities. Guang-

yu et al [5] use dense optical flow and histogram descriptors but their representation 

based on human-centric spatial pattern variations limits their approach to specific 

applications. Chaudhry et al [4] proposed histograms of oriented optical Flow 

(HOOF) to describe human activities. Our descriptor for instantaneous velocity field 

is very close from the HOOF descriptor, with significant differences that will be high-

lighted later, and the temporal part of their descriptor is based on time series of 

HOOFs, which is very different from our approach.    

The main contribution of this work is a motion descriptor which is both entirely 

based on dense optical flow information and usable for recognition of actions or 

events occurring in surveillance video sequences. The instantaneous movement in-

formation, represented by the optical flow field at every frame, is summarized by 

orientation histograms, weighted by the norm of the velocity. The temporal sequence 

of orientation histograms is characterized at every histogram bin as some temporal 

statistics computed during the sequence. The resultant motion descriptor achieves a 

compact human activity description, which is used as the input of a SVM binary clas-

sifier. Evaluation is performed with the Weizmann [8] dataset, from which 10 natural 

actions are picked, and also with the ViSOR video-surveillance dataset [9], from 

which 5 different activities are used. This paper is organized as follows: Section 2 

introduces the proposed descriptor, section 3 demonstrates the effectiveness of the 

method and the last section concludes with a discussion and possible future works. 

2 The Proposed Approach 

The method is summarized on Figure 1. It starts by computing a dense optical flow 

using the local jet feature space approach [10]. The dense optical flow allows to seg-

ment the region with more coherent motion in a RoI. A motion orientation histogram 

is then calculated, using typically 32 directions. Every direction count is weighted by 

the norm of the flow vector, so an important motion direction can be due to many 

vectors or to vectors with large norms. Finally, the motion descriptor groups up the 

characteristics of each direction by simple statistics on the temporal series, whose 

purpose is to capture the motion nature. 

 



 

Fig. 1. General framework of the proposed method. First row: calculation of a dense optical 

flow. Second row: Orientation histograms representing the instantaneous velocities for every 

frame. Finally on the right, it is shown the descriptor made of temporal statistics of every histo-

gram bin. 

2.1 Optical Flow estimation using Local Jet Features. 

Several optical flow algorithms can be used within our method. They need to be dense 

and globally consistent, but not necessarily error-free, nor particularly accurate in 

terms of localization. In our implementation, we used the optical flow estimation 

based on the nearest neighbor search in the local jet feature space, proposed in [10]. It 

consists in projecting every pixel to a feature space composed of spatial derivatives of 

different orders and computed at several scales (the local jet): 𝑓𝑖𝑗
𝜎 = 𝑓 ∗

𝜕𝑖+𝑗𝐺𝜎

𝜕𝑥𝑖𝜕𝑦𝑗 , where 

𝜎, the standard deviation of the 2𝑑 Gaussian function 𝐺𝜎  represents the scale, and 

𝑖 + 𝑗 the order of derivation. For each frame 𝑡 and every pixel 𝑥, the apparent velocity 

vector 𝑽𝑡(𝑥) is estimated by searching the pixel associated to the nearest neighbor in 

the space of local jet vectors calculated at frame 𝑡 − 1. The interest of this method is 

to provide a dense optical flow field without explicit spatial regularization, and an 

implicit multi-scale estimation by using a descriptor of moderate dimension for which 

the Euclidean distance is naturally related to visual similarity. In our experiments, we 

used 5 scales, with  𝜎𝑛+1 = 2 𝜎𝑛 , and derivatives up to order 1, resulting in a de-

scriptor vector of dimension 15. 

2.2 Motion RoI segmentation 

The dense optical flow can be used for a coarse spatial segmentation of potential hu-

man actions at each frame. First a binary morphological closing operation is per-

formed on pixels whose velocity norm is above a certain threshold, to connect close 

motion regions. The resulting connected components may also be grouped according 

to a distance criterion, and the bounding boxes of the remaining connected compo-

nents form the motion RoIs. We use this simple segmentation to eliminate noisy 

measurements outside the moving character (Single actions are considered in these 

experiments). 



2.3 Velocity Orientations Histogram 

The next step consists in coding the distribution of instantaneous motion orientations. 

For a non-zero flow vector  𝑽, let  𝜙(𝑽) denotes its quantized orientation. Based on 

the HOG descriptor [11], we compute the motion orientation histogram of each frame 

as the relative occurrence of flow vectors within a given orientation, weighted by the 

vector norm:  

 𝐻𝑡(𝜔) =
∑ ‖𝑽𝑡(𝑥)‖

{𝑥; 𝜙(𝑽𝑡(𝑥))=𝝎}

∑ ‖𝑽𝑡(𝑥)‖{𝑥; ‖𝑽𝑡(𝑥)‖>0}

 

where 𝜔 𝜖 {𝜔𝑜 … 𝜔𝑁−1}. 𝜔𝑁 the number of orientations was set to 32 in our experi-

ments. This part of our descriptor, dealing with instantaneous velocity information, is 

almost identical to the HOOF descriptor of Chaudhry et al [4], except that the HOOF 

descriptor is invariant under vertical symmetry, i.e. it does not distinguish the left 

from the right directions. This property makes the HOOF descriptor independent to 

the main direction of transverse motions, but it also reduces its representation power, 

missing some crucial motion information, like antagonist motions of the limbs. For 

this reason, we chose to differentiate every direction of the plane, the invariance w.r.t. 

the global motion direction being addressed at the classification level. 

2.4 Motion descriptor 

Finally, a description vector is computed to capture the relevant motion features. For 

n frames, it consists in a set of temporal statistics computed from the time series of 

histogram bins 𝐻𝑡(𝜔), as follows: 

1. Maximum: 𝑀(𝜔) = {𝐻𝑡(𝜔)}{0≤𝑡<𝑛}
max       

2. Mean: 𝜇(𝜔) =  ∑
𝐻𝑡(𝜔)

𝑛{0≤𝑡<𝑛}  

3. Standard deviation: 𝜎(𝜔) =  √∑
𝐻𝑡

2(𝜔)

𝑛{0≤𝑡<𝑛} −  𝜇(𝜔)2  

We also split the sequence into 3 intervals of equal durations and compute the corre-

sponding means as follows: 

4. Mean Begin:   𝜇𝑏(𝜔) =  ∑
𝐻𝑡(𝜔)

𝑛 3⁄{0≤𝑡<𝑛
3}  

5. Mean Middle: 𝜇𝑚(𝜔) =  ∑
𝐻𝑡(𝜔)

𝑛 3⁄{𝑛
3≤𝑡<2𝑛

3 }  

6. Mean End:       𝜇𝑒(𝜔) =  ∑
𝐻𝑡(𝜔)

𝑛 3⁄{
2𝑛
3 ≤𝑡<𝑛}

 

Some examples of human activities and their associated motion descriptor in the two 

datasets are shown in Figure 2. For each motion descriptor, the blue and gray lines 

respectively represent the maximum and mean values. The red square, yellow triangle 

and green disk represent the mean values for the beginning, middle and end portion of 

the sequence respectively. For readability purposes, the standard deviation is not dis-

played here. It turns out from our experiments that the aspect of the descriptor is visi-

bly different for distinct human activities.  

 



(a )ViSOR dataset 

(b) Weizmann dataset 

Fig. 2. Example of motion descriptors for human activities 

2.5 SVM Classification 

Classification was performed using a bank of binary SVM classifiers. The SVM clas-

sifier has been successfully used in many pattern recognition problems given its ro-

bustness, applicable results and efficient time machine. In our approach, we use the  

one-against-one SVM multiclass classification [12], where given 𝑘  motion 

ses, 
𝑘(𝑘−1)

2
  classifiers are built and the best class is selected by a voting strategy. The 

SVM model was trained with a set of motion descriptors, extracted from hand labeled 

human activity sequences (see next section). The Radial Basis Function (RBF) kernel 

was used [13].  



3 Evaluation and Results 

Our approach was evaluated in two datasets: The Weizmann dataset [14] that it is 

commonly used for human action recognition and the VISOR dataset [9], which is a 

real world surveillance dataset. Performance on each dataset was assessed using a 

leave-one-out cross validation scheme, each time selecting a different single action 

sequence, as described in the literature by previous human action approaches [15, 16].  

A first evaluation was done over the Weizmann dataset [14]. This dataset is composed 

of 9 subjects and 10 actions recorded in 93 sequences. The classes of actions are 

“run”, “walk”, “skip”, “jumping-jack” (jack), “jump-forward-on-two-legs” (jump), 

“jump-in-place-on-two-legs” (pjump), “gallop-sideway” (side), “wave-two-hands” 

(wav2), “wave-one-hand”(wav1) and “bend”. The corresponding confusion matrix for 

the Weizmann dataset is shown in Table 1. Our approach achieves a 95 % of accura-

cy, which is comparable to results reported in the literature.  

 

Category bend jack jump pjump run side skip walk wav1 wav2 

bend 100 0 0 0 0 0 0 0 0 0 

jack 0 100 0 0 0 0 0 0 0 0 

jump 0 0 100 0 0 0 0 0 0 0 

pjump 0 0 0 89 0 0 11 0 0 0 

run 0 0 0 0 80 0 20 0 0 0 

side 0 0 0 0 0 100 0 0 0 0 

skip 0 0 0 0 0 20 80 0 0 0 

walk 0 0 0 0 0 0 0 100 0 0 

wav1 0 0 0 0 0 0 0 0 100 0 

wav2 0 0 0 0 0 0 0 0 0 100 

Table 1. Confusion matrix for the Weizmann dataset. Every row represents a ground truth 

category, while every column represents a predicted category. 

A second test was carried out with a dataset for human action recognition from a real 

world surveillance system (ViSOR: the Video Surveillance Online Repository) [9], 

which has been less used in the literature, but is more representative for video-

surveillance applications. This dataset is composed of 150 videos, captured with a 

stationary camera, showing 5 different human activities: walking, running, getting 

into a car, leaving an object and people shaking hands, four of them shown in Figure 

2. The high variability of this dataset is challenging: each activity is performed by 

several actors with different appearance, the background scene is usually different, 

and the motion direction, starting and halting points locations may be different for 

every video sequence. Evaluation was performed with 32 directions, corresponding to 

a descriptor dimension of 192, and obtaining an averaged accuracy of 96.7 %.  Re-

sults obtained are shown in the confusion matrix (Table 2, top).  



 

 

Category get car leave object walk run hand 

shake 

get car 100 0 0 0 0 

leave object 0 95 0 0 5 

walk 0 0 92 8 0 

run 3.57 0 0 96.43 0 

hand shake 0 0 0 0 100 

 

Action Accuracy Sensitivity specificity PPV NPV 

get car 98 100 94.9 96.6 100 

Leave object 97 95 100 100 93 

walk 95 91.7 100 100 88.9 

run 94 96.4 90.4 92 95.6 

hand shake 97 100 92.2 95.2 100 

Average 96.2 96.6 95.5 96.8 95.5 

Table 2.  Top: Confusion matrix. Row: ground truth / Column: predicted category. For exam-

ple, row 4 means that out of all the “run” sequences, 96.43 % were classified correctly, and 

3.57% were classified as “get into a car”. Bottom: Statistical indices measured for each catego-

ry. 

The performance was also evaluated in terms of classical statistical indices (Table 2, 

bottom). Let TP, TN, FP and FN be the number of true positive, true negative, false 

positive and false negative, respectively, associated to each label. The accuracy is  

𝐴𝑐𝑐 =
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
 , the Sensitivity is  𝑆𝑒𝑛 =

𝑇𝑃

𝑇𝑃+𝐹𝑁
, the specificity is 𝑆𝑝𝑒𝑐 =

𝑇𝑁

𝑇𝑁+𝐹𝑃
, 

the Positive Predictive Value is 𝑃𝑃𝑉 =
𝑇𝑃

𝑇𝑁+𝐹𝑃
 and the Negative Predictive Value is 

𝑁𝑃𝑉 =
𝑇𝑁

𝑇𝑁+𝐹𝑁
 . The obtained results demonstrate both good performance and a sig-

nificant degree of confidence, using a very compact action descriptor of dimension 

192. Our approach was also tested on the KTH dataset [14] but the results were sig-

nificantly worse, with accuracy around 90 %. This is mainly due to a limitation of the 

local jet based dense optical flow, which needs enough scale levels to be effective and 

then provides poor results when the resolution is too low. 

4        Conclusions and Perspectives 

A novel motion descriptor for activity classification in surveillance datasets was pro-

posed. A dense optical flow is computed and globally characterized by per-frame-

orientation histograms. Then a global descriptor is obtained using temporal statistics 

of the histogram bins. Such descriptor of 192 characteristics to represent a video se-

quence was plugged into a bank of SVM binary classifiers, obtaining an average ac-



curacy of 96.7 % in a real world surveillance dataset (ViSOR). For the classical hu-

man action dataset (Weizmann) our approach achieves a 95 % of accuracy.  

A great advantage of the presented approach is that it can be used in sequences cap-

tured with a mobile camera. Future work includes evaluation on more complex sce-

narios. We also plan to adapt this method to perform on line action recognition sys-

tem, by coupling it with an algorithm able to segment the video in space × time box-

es containing coherent motion.  
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