

M. Hinaje, R. Linares, K. Berger O. Béthoux, G. Krebs, B. Davat

Melika.Hinaje@univ-lorraine.fr

4-5 juin 2014

Caractérisation de défauts par mesures de champ

- Objectifs
- $\circ~$ Principe de fonctionnement d'une pile à combustible à $\rm H_2$
- Exemple de dysfonctionnement
- Etude de faisabilité à travers un modèle 3D
- Banc test et expérimentation
- Travaux à venir

Objectifs

 Un défaut sur la pile a des répercussions sur le système complet (pile + auxiliaires)
 => baisse de performance et arrêt du processus

Besoin de déterminer et localiser le défaut

Indicateur de l'état de santé de la pile :

Distribution de densité de courant peut être mesurée de manière non intrusive via le champ magnétique

Principe de fonctionnement

✓ Surface active ⇒ I_{pile} (consommation de gaz proportionnelle)
 ✓ Nb de cellules ⇒ V_{pile} (consommation de gaz proportionnelle à N×I_{pile})

Assemblage d'une monocellule

AME – (imperméable aux gaz et isolant électronique)

Exemple de dysfonctionnement

Caractéristiques de la pile

Pile à co	PEM	
Nombre	23	
Nombre défectue	de cellule use	1
Localisa	milieu	
Section		100 cm ²
Densité maximur	de courant n	0.5A/cm ²
Pression	des gaz	1 atm
Tempéra pile	ture de la	55°C

Tension de cellule inférieure à la tension seuil

Plusieurs facteurs peuvent être à l'origine d'une inversion de tension sur la pile notamment :

- son noyage,
- son assèchement,
- une sous alimentation en gaz.
- une membrane percée
- une dégradation de la couche catalytique

Résultats expérimentaux

Densité de courant/ A.cm-2

Photographie de l'AME; a) Point chaud sur la couche de diffusion; b) Visualisation du trou de la couche de diffusion au microscope (Leica); c) depôt de fibres de carbone sur la plaque distributrice de gaz côté anode.

Tout comme pour une cellule saine, établir un modèle impédance de la cellule défectueuse.

Etude de faisabilité à travers un modèle 3D

Paramètres	Valeur	
Surface active	100 cm ² (10 X 10)	
Epaisseur GDL anode	380 µm	
Epaisseur GDL cathode	380 µm	
Epaisseur membrane	100 µm	
Epaisseur couche de réaction anodique	50 µm	
Epaisseur couche de réaction cathodique	50 µm	
Porosité de la GDL	0.4	
Porosité de la couche de réaction	0.3	
Hauteur du canal anodique et cathodique	1mm	
Profondeur du canal anodique et cathodique	1 mm	
Hauteur de la dent (récup tension courant)	0.9 mm	
Conductivité de la couche de diffusion	220 S/m	
Conductivité de la membrane	10 S/m	

Domaine d'étude (en bleu, les canaux cathodiques acheminent l'air humide)

Modélisation locale 3D stationnaire

Transport de masse et de charge (monophasé et isotherme)

	_				
Conditions opréatoires	Valeurs		Conditions	Équations nilotant le système :	
Température de la pile	60 °C		initialoc		
Débit total d'hydrogène (sur les 52	624 mL/min		Initiales	✓ De Nernst : potentiel réversible	Thermody-
canaux)			Conditions	✓ De Conservation :	namique
Débit total d'air	1.56 L/min	en b		• De la masse	et
Fraction massique H ₂	0.743	ni Tile	frontières	Des espèces Du moment	propriétés
Fraction massique d'O ₂	0.228	odè Chi	Inditieres	• De l'énergie	de
Fraction massique d' H ₂ O	0.023	it A	Equation	✓ De Transport :	transport
Vitesse H ₂ entrant à l'anode	0.2 m/s	élec	d'état	• De la masse	
Vitesse air entrant à la cathode	0.5 m/s	<u> </u>		Du moment De l'énergie	LOIS
Profondeur du canal	1 mm		Données	✓ Chimiques :	empiriques
Hauteur de la dent	0.9 mm		cinétiques	Mécanisme et taux de réaction	
(récup tension courant)					J
Conductivité de la couche de diffusion	220 S/m			Propriétés des matériaux	
Conductivité de la membrane	10 S/m			et caractéristiques géométriques	
Viscosité de l'H2	1.19 10 ⁻⁵ Pa/s	₩		· · · · · · · · · · · · · · · · · · ·	
Viscosité air	2.46 10 ⁻⁵ Pa/s	e e		Équations pilotant le système :	
Coefficient de diffusion effectif H ₂ - H ₂ O	1.055 10 ⁻⁴ m ² /s	atiq	Conditions	 ✓ De Laplace : notentiel réversible 	
Coefficient de diffusion effectif N ₂ - O ₂	2.751 10 ⁻⁵ m ² /s	dèle osta	aux 🕨	\checkmark De Conservation :	
Coefficient de diffusion effectif N ₂ - H ₂ O	2.951 10-5	Mo.	frontières	• De la densité de courant	
Coefficient de diffusion effectif O ₂ - H ₂ O	3.233 10-5	ag a		 Du flux magnétique 	
		Ι É Ι		LJ	

Résolution

EDP couplées

- ➢ 8 domaines (Canaux, GDL, CL, membrane, air)
- ➤ 7 espèces
- ➢ Différentes échelles du µm au cm

Par éléments finis

- Difficultés de maillage
- > Choix des éléments quadri-angles degré 1, extrusion au 3D
- Nombre d'éléments : 250 000 éléments
 - (accent mis sur l'AME)

Transport de masse et de charge (monophasé et isotherme)

Densité de courant cellule saine (0,6V)

Norme de B à 1cm de la surface de la pile jusqu'à la pile sans défaut

Induction magnétique tangentielle pour ($v_{cell} = 0.6V - i_{cell} = 24.5A$) avec formation d'un bouchon dans un <u>canal cathodique</u>

Induction magnétique tangentielle pour $(v_{cell} = 0.6V - i_{cell} = 24.5A)$ avec formation d'un bouchon dans un <u>canal anodique</u>

Dégradation de la couche de réaction cathodique

Conductivité de l'électrolyte réduite l'électrolyte réduite

Norme de B à la surface de la pile avec et sans défaut (couche de réaction cathodique)

Principaux résultats

Modèle 3D d'une pile à l'échelle
Induction magnétique très faible pour quelques dizaines d'ampère, (quelques mG)
Défaut à l'anode ne semble pas déterminant du moins sur B.

******Défaut à la cathode influence B mais valeurs faibles*

➢ Sonde précise au mG et stable en température (Tpile =60°C)

Travailler à fort courant

Banc test et expérimentation

Montage en cours sur un stack de 16 cellules
<u>Difficultés :</u>

 Assurer le blindage Electrovannes, débimètres peuvent parasiter la mesure.

Mise en place d'une cage de Faraday

 Positionnement de la sonde magnétique Mesure de la composante tangentielle du champ Reproductibilité de la mesure

Banc test et expérimentation

Travaux à venir

✤ Influence d'une sous alimentation en gaz, du noyage, de l'assèchement sur B.

Localiser la ou les cellules qui présentent le premier signe de faiblesse

Vérifier de manière qualitative les résultats obtenus par simulation.

 Mesure de B suite à différentes sollicitations de la pile
 Combiner EIS et mesure de B : dégager une signature spécifique à certaines altérations du cœur de pile

≻...

