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Abstract: 

A metal matrix composite has been obtained by a novel synthesis route, reacting Al3Ti 

and graphite at 1000°C for about 1 min after ball-milling and compaction. The resulting 

composite is made of an aluminium matrix reinforced by nanometer sized TiC particles 

(average diameter 70 nm). The average TiC/Al ratio is 34.6 wt.% (22.3 vol.%). The 

microstructure consists of an intimate mixture of two domains, an unreinforced domain 

made of the Al solid solution with a low TiC reinforcement content, and a reinforced 

domain. This composite exhibits uncommon mechanical properties with regard to 

previous micrometer sized Al-TiC composites and to its high reinforcement volume 

fraction, with a Young’s modulus of ~110 GPa, an ultimate tensile strength of about 

500 MPa and a maximum elongation of 6%. 

 

 

Keywords (max. 4): Metal-matrix composites (A), particle-reinforcement (A), 
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1. Introduction 

 Thanks to their high specific modulus (E/) and yield stress (e/), Metal Matrix 

Composites (MMCs) have attracted attention from researchers and industry as being 

unique materials for high-tech applications such as in the aerospace and automotive 

sectors. Compared with those of lightweight alloys (Aluminium, Magnesium and 

Titanium alloys), the mechanical properties of MMCs, such as strength and stiffness, 

are improved by the use of ceramic reinforcement. Two types of MMC have been 

developed over the past few decades: fiber-reinforced MMCs that are anisotropic with 

excellent longitudinal mechanical properties, and particle-reinforced MMCs with 

isotropic properties [1,2]. Among the commonly used reinforcements (carbon(C), boron 

nitride (BN), silicon carbide (SiC), titanium carbide (TiC), aluminium oxide (Al2O3)), 

TiC has been recognized as one of the most important for metal matrix composite 

materials due to its excellent properties (such as high hardness and high temperature 

stability for example). Moreover, it has been demonstrated that if the removal of the 

native oxide layer of TiC is ensured, good wetting and thus good adhesion can occur at 

the interface with metals [3,4] because a significant part of the cohesion of this carbide 

is assured by metallic bonds [5]. 

There are two different routes for achieving an Al-TiC metal matrix composite, 

which have been intensively explored in the literature. The first is the liquid route, that 

consists in mixing TiC or Ti+C powder with an Al melt using different technological 

processes such as stir casting or flux-assisted casting [6-18]. The second is the powder 

metallurgy route, starting either from a mixture of elemental Al+Ti+C powders [19,21], 

a mixture of Al+TiC [22] or a mixture of intermetallic compounds such as titanium tri-

aluminide (Al3Ti) and aluminium carbide (Al4C3) [20,21]. In this last case, when the 

starting materials are different from Al and TiC, the synthesis route is called “reactive 
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synthesis” because Al and TiC are formed in situ from selected precursors. It is to be 

noted that intermediate routes have also been investigated, as for example with the 

reaction of carbonaceous gas with Ti dissolved in an Al melt [17,23-25] or the reaction 

of Al4C3 with Ti dissolved in an Al melt [18,20]. 

With regard to the mechanical properties of pure aluminium (E = 70 GPa, e0.2% 

= 70 MPa, UTS = 89 MPa, elongation = 33% [8]), it has been demonstrated that, 

whatever the process used, the Al-TiC composites produced have an improved Young’s 

modulus, ranging from 87 GPa (10 vol.% TiC, [26]) to 105 GPa (20 vol.%. TiC, [27]). 

Moreover, a quasi linear dependence of the Young’s modulus as a function of the 

volume fraction of TiC is observed. The strength properties evaluated by the proof 

stress (e0.2%) and the ultimate tensile strength (UTS) show a significant improvement 

compared with that of pure aluminium. UTS ranges from 109 MPa (10 vol.% TiC, [26]) 

to 239 MPa (20 vol.% TiC, [27]) and clearly depends on the volume fraction of TiC. 

According to the literature review, precise control of the Al-TiC interface is the 

first key parameter [28] to achieve improved mechanical properties. In the best case, the 

Al-TiC interface is abrupt at the atomic scale [29]. However, this can only be obtained 

after a crucial control of the synthesis parameters. Among the main difficulties that can 

be encountered to produce Al-TiC composites with a strong interface one can cite (i) the 

presence of oxygen coming either from oxidized starting powder particles (matrix or 

reinforcement) or from the atmosphere and (ii) the formation of secondary phases at the 

interface, such as Al4C3 or Al3Ti. Even though this may lead to an increase in 

mechanical properties [27,29,30], the presence of Al4C3 is detrimental with regard to the 

corrosion resistance of the composite [12]. Finally, clustering of particles was also 

commonly observed as a major source of weak points in the microstructure of the 

composite, where failure will propagate preferentially [12,15,17,26,31-33]. This 

clustering phenomenon is emphasized when the particle volume fraction increases and 
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is associated with a decrease in the maximum elongation: from 25% (10 vol.% TiC, 

[26]) to 7% (20 vol.% TiC, [27]).  

 

 

As a consequence, the development of particulate-reinforced Al matrix 

composites with high mechanical strength and without any detrimental degradation of 

the damage tolerance properties (toughness, elongation) is still a key point to improve 

their properties and extend the number of their possible applications. 

In this paper we report the microstructure and mechanical properties of a MMC 

Al-TiC composite with nanometer-sized TiC reinforcement obtained by a novel 

“reactive synthesis” route of ball-milled Al3Ti+C+Al. The study is focused on the 

characterization of the composite obtained and on the correlation between its 

mechanical properties and the observed microstructure. 

 

2. Materials and methods 

2.1 Material synthesis  

Al-TiC metal matrix composite was prepared using Al3Ti (Goodfellow, 99.5% 

purity) and graphite powders (Carbone Lorraine, 99% purity). In addition, aluminium 

(Goodfellow, 99.9% purity) was added and the proportions of Al3Ti, Al and graphite 

were chosen to obtain a final Al-TiC composite with 22 vol.%TiC. The powders were 

ball milled using a horizontal attritor (CM01, Zoz GmbH). The milling atmosphere was 

helium. The very reactive ball-milled powders were discharged in a purified argon 

glove box (Jacomex) to prevent oxidation. In order to prepare the bulk material, the as-

milled powders were introduced into a mold, which was outgassed and then sealed into 

the glove box. Hydrostatic pressure (0.2 GPa) was then applied to the rod. After 

removing the mold, the green compact was heated for a few minutes at 1000°C in a 
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protective atmosphere leading to the formation of the Al-TiC nanocomposite. 

According to Viala et al., the reaction between precursor materials occurs above 812°C 

and leads to the formation of liquid Al and solid TiC: 

Al3Ti + C <-> 3Al + TiC 

It should be emphasized that this reaction is highly exothermic with a H of reaction 

that is about -101.7 kJ/mol at 1300°C [34]. Finally, a fully dense material was obtained 

by means of a hot extrusion process using a 13 kbar vertical hydraulic press. The Al-

TiC rod was loaded in a copper can (outer diameter 43mm) which was then pre-heated 

at 500°C for 30 minutes before being extruded into a bar at a speed of 25 mm/s with a 

section reduction ratio of 8:1. Copper was then removed by machining. More details 

about Al-TiC MMC synthesis can be found elsewhere [35]. 

 

2.2. Material characterization 

The TiC powder was extracted from the Al-TiC composite by selective acid 

dissolution of Al using a HCl solution (18.5 vol.%), washed following six cycles of 

settling and permuted water rinsing and finally collected after drying. The powder 

recovered after dissolution of the composite is called “residual material” in the 

following. 

For phase identification, high quality X-ray powder diffraction data were 

collected at room temperature with a Panalytical MPD Pro diffractometer, in the 

parafocusing Bragg-Brentano geometry, using Cu K1-2 radiations (average = 1.54187 

Å). The diffraction patterns were collected over the angular range 20-94 °(2) with a 

counting time of 200 s.step
-1

 and a step size of 0.008 °(2). Phase identification in 

Figure 1 refers to the following ICDD data: Al (00-004-0787), TiC (00-032-1383), 

Al2O3 (00-046-1212), Al4C3 (00-035-0799), Al3Ti (00-037-1449). 

For microstructure, particle shape, particle size distribution and fracture surface 
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observations, scanning electron microscopy was carried out using a SEM FEI Quanta 

250 FEG equipped with both a secondary electron detector and a backscattered electron 

detector (10 keV, 8x10
-6

 mbar, working distance 5 mm). For the phase composition, a 

working distance of 10 mm, an accelerating voltage of 10 keV and a counting time of 

30 s were selected as standard operating parameters to analyze Al, Ti, C and O by EDS. 

The EDS measurements were subtracted for background and the quantitative analysis 

was deduced from the electronic standard after PAP corrections. 

The foils for TEM were ground on a diamond grinder to a thickness of about 10 

m and then thinned by the standard ion beam thinning method. TEM observations 

were performed using a JEOL 3010 microscope. 

Image analysis was carried out using AnalySIS Software (Soft Imaging System 

Gmbh, www.soft-imaging.net). The particle size distribution is the result of more than 

2000 diameter measurements in order to improve the statistic. The size of the particles 

for the TEM observations was described using Feret’s statistical diameter [36]. The 

biggest dimension of the particle, associated with Feret’s diameter, was measured as 

well as the smallest, leading to two particle size distributions for TEM image analysis. 

The phase proportion and the fraction of TiC particles were determined by threshold 

analysis of the SEM observations and the results given as a percentage of surface area. 

Al-TiC composite density was determined by using an AccuPyc 1330 

pycnometer from MicroMeritics (http://www.micromeritics.com). Three sets of 10 

measurements each were carried out on the MMC powder. On average, the MMC has a 

density of 3.178±0.002 g.cm
-3

. This value has been used in this work to calculate the 

volume fraction of reinforcement. 

 

2.3. Mechanical testing 

Tensile testing was performed on metal matrix composite specimens machined 

http://www.micromeritics.com/
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from the composite bulk after heat treatment and extrusion (normalized cylindrical 

shape, 3 mm diameter, length of the reduced section = 19 mm). The crosshead motion 

was fixed at 2 mm.min
-1

 and the specimen elongation was measured using an 

extensometer (gauge length = 15 mm). The Young’s modulus, proof stress (e0.2%), 

ultimate tensile strength (UTS) and maximum elongation were deduced from the 

mechanical tests. 

3. Results and Discussion 

 

3.1. Analytical characterizations of the Al-TiC composite 

3.1.1. Phase identification 

Figure 1 presents the XRD pattern obtained from the as-formed Al-TiC 

composite. Aluminium and titanium carbide are clearly identified as the main phases of 

the composite. Al3Ti, Al4C3 and Al2O3 are also observed as secondary phases. 

 

Figure 1. XRD pattern of the Al-TiC composite. 

 

3.1.2. Microstructure 
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As illustrated on a representative view of the Al-TiC composite microstructure 

(Figure 2), two main domains are identified. First, the darker grey domain in Figure 2 

that mainly consists in the Al-rich solid solution with only few TiC particles and that 

will therefore be referred to as the “unreinforced domain” in the following. Second, 

some discontinuous lighter grey areas, with a typical size of 35µm, are characterized by 

a high volume fraction of TiC particles embedded in the Al matrix. These areas will be 

considered in the following as “reinforced domains”. 

 

Figure 2. Representative view of Al-TiC composite microstructure (x1000). Phase 

identification was performed by EDS measurements. 

 

Figures 3.a and b present high magnification SEM observations of the two different 

domains. Figure 3.a confirms the very low content of TiC particles in the unreinforced 

domain, estimated at ~ 8% from image analysis. In contrast, in the reinforced domain, 

the fraction of TiC particles was estimated at ~ 82% from image analysis of Figure 3.b. 

It is interesting to note that despite the high volume fraction of TiC in this domain, the 

TiC particles are still individualized and separated by thin veins of Al solid solution, i.e. 
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no clustering was evidenced by SEM observations. 

 

 

Figure 3. a) High magnification view of the unreinforced domain (x30000). b) High 

magnification view of the reinforced domain (x60000). 

 

 

In addition, the secondary phases Al3Ti, Al4C3, C and Al2O3 detected by XRD 

(Figure 1) were also observed in the composite section (Figure 2). Faceted Al2O3 

crystals of ~ 2 micron average size are homogeneously distributed in the composite 
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section. Al4C3 crystals are well faceted whereas graphite has a jagged appearance. Only 

a few crystals of Al3Ti were observed in the composite section.  

 

The proportion of the different domains and secondary phases (percentage of 

surface covered by the phases) was estimated by threshold image analysis of Figure 2. 

On average, the Al-TiC composite microstructure consists of 28.2% of unreinforced 

domain and 68.4% of reinforced domain. Al2O3 and Al4C3-graphite secondary phases 

are in minor proportions with 2.3% and 1.1% respectively. 

Figure 4 shows the microstructure of the reinforced domains observed by TEM. 

The particles, of sub-micrometer size, are individualized and surrounded by Al solid 

solution, i.e. no particle clustering was evidenced by TEM observations. The particles 

are well faceted, with shapes varying from squares to triangles, pentagons or hexagons. 

These 2D shape observations are characteristic of a 3D cubic shape, in accordance with 

the NaCl type crystal structure of TiC. In addition, there is no apparent intermediate 

phase formed at the interface between the Al matrix and the TiC particles. TiC particles 

are also localized at the Al solid solution grain boundaries in both the reinforced and 

unreinforced domains. Due to the high volume fraction of TiC particles in the reinforced 

domain, a refinement of Al solid solution grain size was observed. 
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Figure 4. TEM image of Al-TiC composite reinforced domain. 

Based on these observations, a scenario can be proposed to explain the formation 

of the composite microstructure. In a first step, the pure Al powder used for dilution 

melts at about 660°C. Then, liquid Al acts as a getter for oxygen present in the powder 

compact leading to the formation of the large facetted single crystals of alumina, 

nucleated from the melt, that are observed as secondary phases in the microstructure. 

Next, when the temperature exceeds 812°C, Al3Ti and C strongly reacts to form liquid 

Al and TiC corresponding to the observed reinforced domains. Considering the high 

value of the enthalpy of reaction (-101.7 kJ/mol at 1300°C), one can consider a nearly 

self-heated synthesis reaction and therefore a high reaction rate. The faceted shape of 

TiC crystals observed on TEM micrograph can be explained by the formation of these 

particles from a nucleation/growth mechanism in the Al liquid phase produced by the 

interaction between Al3Ti and graphite. Finally, the presence of Al4C3, graphite and 

Al3Ti as secondary phases can be explained by the short heat treatment time that can 

lead locally to an uncompleted reaction. Detailed discussion on the mechanism of 
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chemical reaction leading to formation of the Al-TiC composite will be the subject of 

another publication. 

 

3.2. Analytical characterizations of the TiC particles 

In order to characterize the reinforcement in the composite, three specimens 

were dissolved in hydrochloric acid and the residual material, containing the TiC 

particles, was collected and analyzed. Table 1 reports the mass of composite dissolved 

and the mass of residual material recovered for the three specimens. 

 

 

 

 

 

 

Table 1. Experimental parameters for the dissolution of the composite. 
   TiC Al2O3 Carbon 

 Mass of 

composite 

(mg) 

Mass of 

residual 

material 

(mg) 

%DRX Calculated 

mass of 

TiC (mg) 
a 

wt.%TiC 

in the 

composite 
b 

%DRX Calculated 

mass of 

Al2O3 

(mg) c 

wt.%Al2O3 

in the 

composite 
d 

%DRX Calculated 

mass of C 

(mg) e 

wt.%C in 

the 

composite f 

Sample 

1 

411.39 151.10 92.9 140.37 34.10 5.3 8.01 1.95 1.8 2.72 0.66 

Sample 

2 

760.08 283.84 92.9 263.69 34.69 5.3 15.04 1.98 1.8 5.11 0.67 

Sample 

3 

270.70 101.88 92.9 94.65 34.96 5.3 5.40 1.99 1.8 1.84 0.68 

Average - - - - 34.58 - - 1.97 - - 0.67 
a
 Mass of TiC =%TiC from XRD * Mass of residual material. 

b
 wt%TiC in the composite= Mass of TiC / Mass of composite. 

c
 Mass of Al2O3 =%Al2O3 from XRD * Mass of residual material. 

d
 wt% Al2O3 in the composite= Mass of Al2O3 / Mass of composite. 

e
 Mass of C =%C from XRD * Mass of residual material. 

f
 wt%C in the composite = Mass of C / Mass of composite. 

 

3.2.1. X-ray diffraction 

Through dissolution of the matrix it is possible to remove residual stress due to 
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the thermal expansion mismatch effect as the composite cools after heat treatment, 

improve the signal to noise ratio and reveal secondary phases present in small 

quantities. As illustrated in Figure 5, X-ray diffraction reveals the presence of TiC but 

also Al2O3 and graphite in the residual material. It should be noted that, in comparison 

with the Al-TiC composite XRD pattern (see Figure 1), Al, Al3Ti and Al4C3 were not 

observed because of their dissolution in hydrochloridric acid during extraction of the 

TiC particles. The evidence of graphite is correlated with the presence of Al3Ti in the 

composite (Figure 2) and seems to indicate that the reaction is not complete. In addition, 

phase quantification was carried out by Rietveld refinement (Rp = 7.81%, Rwp = 10.4%, 

Rexp = 8.54%, 
2
=1.71). The weight fractions of TiC, Al2O3 and C in the residual 

material were 92.9%, 5.3% and 1.8% respectively. 

 

Figure 5. XRD pattern and Rietveld refinement of the residual material. 

 

3.2.2. Volume fraction of TiC in the composite 

As evidenced by XRD, the residual material contained TiC, Al2O3 and C. The 
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mass of each phase in the residual material after dissolution of samples 1, 2 and 3 was 

calculated from the weight percentages determined by Rietveld refinement of the 

pattern presented in Figure 5 (Table 1). Thus, the weight fraction of C in the composite 

was calculated to be 0.67 wt.% and the average weight fraction of TiC particles in the 

composite was 34.6 wt.%. Given the density of TiC and the Al-TiC composite, the 

corresponding volume fraction of TiC was calculated to be 22.3 vol.%. The measured 

volume fraction of TiC is in very good agreement with the one expected based on the 

proportion of precursor materials (22 vol.%). 

 

 

 

 

3.2.3. TiC particle size distribution 

The particle size distribution (PSD) of the TiC particles was determined by 

image analysis on SEM and TEM micrographs. SEM observations were carried out on 

the residual material (solid powder) after dissolution of the Al-TiC composite in HCl, 

rinsing and drying of the particle suspension. The SEM particle size distribution (SEM-

PSD) is shown in Figure 6.a. TEM observations were carried out on Al-TiC composite 

thin foils using Feret’s statistical diameter [36] and the TEM particle size distributions 

(TEM-PSD) are illustrated in Figure 6.b. 
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Figure 6. Particle size distributions: a) from SEM observations of the residual material 

and, b) from TEM observations of thin Al-TiC composite foil according to Feret’s 

statistical analysis (black bars = maximum diameter, empty bars = minimum diameter). 

 

Convolution of the particle size distributions obtained by the two different 

characterization techniques leads to two main conclusions: i) the average particle size 

was estimated to be 70 nm, ii) the particles have a narrow size distribution, 88% of them 

being between 40 and 120 nm in diameter. Again, this narrow distribution with 

nanometer-size particles has to be related to the in-situ formation of TiC particles by 

reactive synthesis. In fact, according to the mechanism of reaction observed by Viala et 

al. on Al3Ti/C diffusion couples [37], the first step of the chemical interaction between 

Al3Ti and C leads to the formation of an Al liquid layer. Next, the reaction proceeds by 

diffusion of Ti through this liquid phase from the Al3Ti crystals to the graphite phase. 

As a consequence, TiC particles nucleate from a saturated liquid melt at low 
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temperature and the heat treatment being sufficiently short to avoid a significant growth, 

most of the particles have the same size leading to the narrow distribution presented in 

Figure 6. 

 

3.3. Mechanical properties of the Al-TiC composite 

The mechanical properties of the Al-TiC composite, following tensile tests 

performed on three specimens, are summarized in Table 2 and the values of the 

maximum elongation is reported in Figure 7 (solid squares). 

Table 2. Mechanical properties of the Al-TiC composite 

 Young’s 

modulus 

(GPa) 

e0.2% 
a
 

(MPa) 

UTS 
b
 

(MPa) 

Elongation 
c
 

(%) 

Failure 

Energy, K* 

(J.cm
-3

) 

T1 106 442 481 5.8 26.8 

T2 106 456 498 5.9 28.1 

T3 106 455 493 6.4 30.3 

Average 106 451 491 6.0 28.4 

Std. Dev.
d
 - 7.8 8.7 0.3 1.8 

Error (%) 
e
 - 2 2 5 6 

a
 e0.2% = proof stress 

b
 UTS=ultimate tensile strength 

c
 Maximum plastic elongation determined with the extensometer 

d
 Std. Dev. = Standard deviation 

e
 Error = ((Std.Dev.)/Average)*100 
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Figure 7. Maximum elongation as a function of the volume fraction of TiC. The dashed 

line illustrates the decrease in maximum elongation as a function of vol.%TiC. The 

result of the present work (solid square) was not considered in plotting the dashed line. 

 

On average, the new Al-TiC composite presents a Young’s modulus of 106 GPa and a 

maximum elongation of 6.0%. The influence of the TiC particles is clearly 

demonstrated by comparison with the mechanical properties of pure Al (E = 70 GPa, 

e0.2% = 70 MPa, UTS = 89 MPa, elongation = 33% [8]). In addition, the Young’s 

modulus of the present Al-TiC composite is close to the upper limit calculated from the 

Hashin-Shtrikman model [38,39], respectively 106 and 105 GPa. This might suggest 

that the in situ reactive synthesis of TiC particles leads to strong interfacial bonding and 

the attendant load transfer. This is in good accordance with the abrupt interface 

observed by TEM (Figure 4.a). 

In addition, there is a huge increase in e0.2% and UTS, associated with a decrease in 

maximum elongation, in comparison with pure Al. According to Figure 7, extrapolation 

of data from the literature (dashed line) suggests that a composite with 22 vol.% of 

reinforcing particles should have a brittle behavior with an elongation nearly equal to 0. 
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Therefore, the experimental elongation of 6% obtained in the present study should be 

highlighted (Table 2 and solid square on Figure 7). 

Regarding the Ultimate Tensile Strength measured on the composite (UTS = 491 MPa, 

Table 2), a 105% increase is observed compared with the best UTS measured in the 

literature (239 MPa for 20 vol.%TiC [27]). 

In the case of a metal matrix composite, it is quite common to observe that the 

expected increase in mechanical strength is accompanied by an unwanted decrease in 

elongation (Figure 7), characterizing a transition toward a brittle behavior. To illustrate 

the compromise between strength properties and ductility, an Ashby map with failure 

energy as a function of tensile strength is commonly used. In the present study the 

failure energy, K*, is calculated using eq. 1. 

Eq.1    K*=((e0.2% +UTS)*Max_elong)/2. 

Figure 8 presents the literature results in terms of compromise between strength and 

failure energy. From these, it appears that the failure energy decreases while the volume 

fraction of TiC reinforcement in the composite (dashed line, Figure 8) increases. 

However, in comparison with Satyaprasad’s composite [27], which has the closest TiC 

volume fraction to the composite of the present study, the failure energy is here 

increased by ~100%. In addition, the upper right corner of this Ashby map (hatched area 

on Figure 8) represents the ideal target for the development of MMCs with optimized 

properties, i.e. high strength properties without any damage tolerance decrease. As 

illustrated, the mechanical properties of the Al-TiC composite obtained by the present 

reactive synthesis process fall into this area, meaning that despite the high volume 

fraction of TiC reinforcement (22.3 vol.%), the composite offers a good compromise 

between strength properties and damage tolerance. Thus, to the authors’ knowledge, no 

other Al-TiC composite described in the literature has such high and interesting 

mechanical properties. 
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Figure 8. Estimated mechanical toughness, identified with the failure energy calculated 

as K*=((e0.2%+UTS)*Max_elong)/2, as a function of the ultimate tensile strength. The 

volume fractions of TiC reinforcement in the composites are indicated in brackets. 

 

In order to understand the uncommon mechanical behavior of this composite and 

especially its high elongation and failure energy, fractography was performed on the 

tensile test specimens (Figure 9). Two main points are highlighted. First, Figure 9.a 

reveals the presence of dimples containing the TiC particles, which indicates a mainly 

ductile mode of failure of the Al-TiC composite. It should be noted that the ductile 

mode of failure has been observed in previous literature studies with lower volume 

fractions of TiC (5-15 vol.%TiC [39]). Second, no evidence of particle clustering was 

observed on the fracture surface of the composite. 
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Figure 9. Tensile fracture surface of the Al-TiC composite. a) General view (x400). b) 

Details of dimples containing TiC particles (x30000). 

 

Regarding the high volume fraction of TiC in the present composite (22.3 

vol.%TiC), the absence of particle clustering and the evidence of a ductile mode of 

failure must be emphasized and related to the uncommon maximum elongation of 6% 

observed in the mechanical characterization. This uncommon association of mechanical 

properties might be explained by the microstructure induced by the reactive synthesis. 

This microstructure is characterized by the absence of weak points coming either from 

clustering of theses particles or from defaults (failure initiation) of TiC particles induced 

by the high energy milling step. As a consequence, the absence of weak area in the 

microstructure allows the plasticity of the Al-matrix and therefore the high failure 

energy value that is reported in Figure 8. 
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Conclusion 

This paper reports on the microstructure and mechanical properties of an Al-TiC 

composite obtained by reactive synthesis. Nanosized TiC reinforcements were 

synthesized in-situ via the chemical reaction of ball-milled compacted Al3Ti and C 

powder mixture during heat treatment of about 1 min at 1000°C. The average weight 

fraction of TiC reinforcement in the composite is 34.6 wt.% (22.3 vol.%) with an 

average TiC particle size of 70 nm. The microstructure consists of an intimate mixture 

of two main domains: an unreinforced percolating matrix, consisting of the Al solid 

solution with a very low TiC reinforcement content (~8%), and reinforced domains, 

with a high content of TiC particles (up to 80%) embedded in the Al solid solution. The 

residual presence of Al3Ti and C is also detected. However, compared to data in the 

literature, this composite presents uncommon and promising mechanical properties for a 

high volume fraction of TiC (22.3 vol.%), with a Young’s modulus of 106 GPa, e0.2% 

of 450 MPa, UTS of 490 MPa and maximum elongation of 6%. This compromise 

between strength and ductility, despite the high particle volume fraction, is associated 

with the absence of particle clustering, even in the reinforced domains. The remarkable 

properties of the present Al-TiC composite and particularly the homogeneous size and 

dispersion of the reinforcing particles are attributed to the original reactive synthesis 

route that is characterized by a high nucleation rate of the TiC particles in liquid 

aluminium. 
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