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Abstract

This article deals with a mean-field model. We consider a large number
of particles interacting through their empirical law. We know that there
is a unique invariant probability for this diffusion. We look at functional
inequalities. In particular, we briefly show that the diffusion satisfies a
Poincaré inequality. Then, we establish a so-called WJ-inequality, which
is independent from the number of particles.
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1 Introduction

1.1 Model
First, we consider a sequence (Xi

0)i≥1 of independent and identically distributed
random variables with common law µ0 on Rd. We also consider a sequence of
independent Brownian motions (Bi)i≥1 on Rd. These Brownian motions are
assumed to be independent from the previously introduced random variables.
∗Partially supported by NCN grant 2012/07/B/ST1/03356.
†Université Jean Monnet, Saint-Étienne and Institut Camille Jordan,Lyon
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The system of interacting particles that we look at evolves in the landscape
of a potential V . This potential is denoted as the confining potential. Its effect
is roughly speaking to locate the particles in a compact of Rd. We assume
that the confining potential V is convex at infinity but non-globally convex.
However, we assume that the Hessian of V is minorated: ∇2V ≥ −θId, where
θ is a positive constant.

We now introduce the so-called interacting potential F . We do not assume
that it is either convex or not convex. However, the following inequality is
required: ∇2F ≥ −αId.

The precise assumptions are given subsequently. We consider the system of
interacting particles{

Xi,N
t = Xi

0 + σBit −
∫ t
0
∇V

(
Xi,N
s

)
ds−

∫ t
0

1
N

∑N
j=1∇F

(
Xi,N
s −Xj,N

s

)
ds

1 ≤ i ≤ N
.

(1)
Here, N is large.

This system of N particles in Rd may be seen as one particle in RdN . Indeed,
let us introduce:

XNt :=
(
X1,N
t , · · · , XN,N

t

)
∈ RdN .

Thus, the diffusion X is a simple diffusion evolving in the landscape of a potential
of RdN :

XNt = XN0 + σBt −N
∫ t

0

∇ΥN
(
XNs

)
ds ,

with B :=
(
B1, · · · , BN

)
and where the potential ΥN is defined as follows

ΥN (X1, · · · , XN ) :=
1

N

N∑
i=1

V (Xi) +
1

2N2

N∑
i=1

N∑
j=1

F (Xi −Xj) . (2)

This model has a natural application in the financial markets in which there
is a huge number of agents who act in function of the global behaviour of the
system. We can also think at the system of exchanges between banks, a classical
result being the importance of the interaction in the probability of bankrupt.

With some other hypotheses, these equations are used as a model for the
growth of cerebral tumors. Indeed, each of the cells tries to be alone for devel-
opping itself.

Mean-field system of particles are also used in social interaction, [CDPS10].
They also appeared quite naturally in the study of stochastic partial differential
equation, see [CX10].

1.2 Well-known results
1.2.1 Existence

Basically, we assume the following hypotheses

• The potential V is convex at infinity. In fact, we even have: ∇2V (∞) =∞.
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• In the neighbourhood of infinity, the confining potential behaves like a
polynomial function: 〈∇V (x);x〉 = ||x||2m + o

(
||x||2m

)
at infinity, where

m ∈ N.

• In the neighbourhood of infinity, the interacting potential behaves like a
polynomial function: 〈∇F (x);x〉 = ||x||2n + o

(
||x||2n

)
at infinity, where

n ∈ N.

Then, we consider the maximal degree by putting q := max {m;n}. Thus, if the
initial law admits a moment of order 2q that is to say if∫

Rd
||x||2qµ0(dx) <∞ ,

there exists a unique solution to Equation (1). We denote by
(
XNt

)
t≥0 this

diffusion solution. Let us remark that the existence of a solution does not
depend on the number N of particles.

1.2.2 Invariant probability

There is a unique invariant probability µσ,N on RdN for Diffusion (1):

µσ,N (dX ) := Z−1σ,N exp

{
−2N

σ2
ΥN (X )

}
dX ,

where the potential ΥN is defined in (2).
This potential has sense when N goes to infinity. Indeed, it represents the

energy associated to the probability 1
N

∑N
i=1 δXi .

We can observe that there is an N in factor so that the invariant probability
and the long-time behavior does depend on N .

1.2.3 Long-time behavior

Thanks to Bakry, Barthe, Cattiaux and Guillin, see [BBCG08], the measure
µσ,N satisfies a Poincaré inequality:

Varµσ,N (f) ≤ 1

Cσ(N)

∫
RdN
||∇f ||2 dµσ,N

for any f which is a smooth function from RdN to R. This inequality is equiv-
alent to the convergence inequality∣∣∣∣PNt f − Eµσ,N (f)

∣∣∣∣2
2
≤ exp

{
− 2

Cσ(N)
t

}
Varµσ,N (f) ,

where we have put PNt f(x) := Ex
{
f
(
XNt

)}
.

Let us point out that the constant Cσ(N) which intervenes in the inequality
does not have any reason to be independent from the number of particles, that
is to say from the dimension of the space in which evolves the solution XN .
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1.2.4 Hydrodynamical limit

Intuitively, (Xi,N
t )t≥0 behaves like the diffusion (X

i

t)t≥0 when N is large. Here,
the diffusion X

i
is defined by the equation:

X
i

t = Xi
0 + σBit −

∫ t

0

∇V
(
X
i

s

)
ds−

∫ t

0

∇F ∗ µs
(
X
i

s

)
ds

with µs := P
X

1
s
. Indeed, we can observe that the influence of the particle j

on the particle 1 becomes small when N is large. So, roughly speaking, the
particles of the interacting system of particles become independent. However,
Equation (1) can be written as follows

Xi,N
t = Xi

0 + σBit −
∫ t

0

∇V
(
Xi,N
s

)
ds−

∫ t

0

∇F ∗ µNs
(
Xi,N
s

)
ds ,

with µNs := 1
N

∑N
j=1 δXj,Ns . If the particles become independent, the measure

µNs converges to µs which explains why the particles Xi,N intuitively are closed
to X

i
.

We now assume E
{
||X1

0 ||8q
2
}
<∞ that is to say∫

Rd
||x||8q

2

µ0(dx) <∞ ,

where we remind the reader that q is the maximum of the degrees of V and F .
Under this assumption, we have a so-called propagation of chaos:

sup
t∈[0;T ]

E
{∣∣∣∣∣∣Xi,N

t −Xi
t

∣∣∣∣∣∣2} −→ 0

for any T > 0.
See [Mél96, Szn91, McK67, McK66, BRTV98, BAZ99] for review on propa-

gation of chaos.

1.3 Aim of the article
In this paper, we aim to show that there is a rate of convergence of the diffusion
XN to the unique invariant probability and that this rate of convergence is
uniform with respect to the number of particles.

1.4 Outline of the article
First, we present the hypotheses of the article. In the next section, we justify
why the diffusion satisfies a Poincaré inequality. Then, we give some classical
results on this inequality and we discuss about an eventual uniform Poincaré
inequality. In section three, we present the framework of the paper. Finally, in
a last section, we give the main result and its proof.
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1.5 Assumptions
Let us present the assumptions of the paper.

(A-1) V is a smooth function on Rd.

(A-2) V is convex at infinity: for any λ > 0, there exists Rλ > 0 such that
∇2V (x) > λId for any ||x|| ≥ Rλ.

(A-3) There exists a convex nonnegative function V0 such that ∇2V0(0) = 0
and V (x) = V0(x)− θ

2 ||x||
2, with θ > 0.

(A-4) There exist m ∈ N∗ and C > 0 such that ||∇V (x)|| ≤ C
(
1 + ||x||2m−1

)
for all x ∈ Rd.

(A-5) It holds |V (x)| ≤ c‖x‖2 for ‖x‖ ≤ 1, in particular, V (0) = 0.

(A-6) F (x) = G(||x||) − α
2 ||x||

2, where G is a polynomial and even function
with degree equal to deg(G) =: 2n ≥ 2 and G(0) = 0. Here, α is not
necessarily positive.

(A-7)
∫
Rd ‖x‖

8q2µ0(dx) <∞ with q := max{m;n}.

(A-8) The entropy of the probability measure is finite. In other words, µ0 is
absolutely continuous with respect to the Lebesgue measure and we have∫
Rd u0(x) log(u0(x))dx <∞ where u0 is the density of µ0.

2 Preliminaries
We begin by looking at Poincaré inequality for our model. Let us remind the
reader that the invariant probability µσ,N is of the form e−U . According to
[BBCG08], it satisfies a Poincaré inequality under simple hypotheses. Indeed:

Proposition 2.1. Let k be a positive integer. Let µ(dx) := e−U(x)dx be a
probability measure on Rk. We assume that the potential U is C2 and bounded
from below. If there exist α > 0 and R ≥ 0 such that for |x| ≥ R,

〈x;∇U(x)〉 ≥ α|x| ,

then µ satisfies a Poincaré inequality with constant

4
(
1 +

(
exp

[
1
2 (αR+ 1− k)

]
+ 1
)
κR
)(

α− k−1
R

)2
for any R such that α − k−1

R > 0. Here, κR is the Poincaré constant of µ
restricted to the ball B (0;R).

The proof is omitted, see [BBCG08]. The global idea is the following. We
can apply Theorem 1.4 in [BBCG08]. Indeed, we consider a sequence of smooth
functions Wn which satisfies
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• Wn(x) = exp
{

1
2

(
α− k−1

R

)
|x|
}
for |x| ≥ R.

• Wn(x) = exp
{

1
2

(
αR+ 1− k − 1

n2

)}
for |x| ≤ R− 1

n .

Consequently, we have the inequality

∆Wn(x)− 〈∇Wn(x);∇U(x)〉

≤ − 1

4

(
α− k − 1

R

)2

+

(
exp

{
1

2

(
αR+ 1− k − 1

n2

)}
+ 1

)
1B(0;R)(x) .

We may apply this proposition to our model under the set of assumptions
(A-1)–(A-7).

We now give two classical results about functional inequalities.

Proposition 2.2. Let µ be a probability measure on Rk and U be a bounded
function from Rk to R. We define the measure ν – the perturbation of µ by U
– as follows

dν :=
eU

Z
dµ with Z :=

∫
eUdµ .

If µ satisfies a Poincaré inequality with constant C then ν satisfies a Poincaré

inequality with constant C exp

{
sup
Rk

U − inf
Rk
U

}
.

Proof. Let f be any smooth function. For a =
∫
Rk f(y)dµ(y) we have:∫

Rk
(f(x)− a)

2
dν(x)

=
1

Z

∫
Rk

(f(x)− a)
2
eU(x)dµ(x)

≤ 1

Z
exp

{
sup
Rk

U

}∫
Rk

(f(x)− a)
2
dµ(x)

≤ 1

Z
exp

{
sup
Rk

U

}∫
Rk
||∇f(x)||2 dµ(x)

≤ exp

{
sup
Rk

U

}∫
Rk
||∇f(x)||2 e−U(x)dν(x)

≤ exp

{
sup
Rk

U − inf
Rk
U

}∫
Rk
||∇f(x)||2 dν(x) .

As Varν(f) is the infimum of∫
Rk

(f(x)− a)
2
dν(x)

as a ∈ Rk, this achieves the proof.

The other well-known result is the tensorization one. We present it in R2

without any loss of generality.
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Proposition 2.3. Let µ1 and µ2 be two probability measures on R. We assume
that both probability measures µ1 and µ2 satisfies a Poincaré inequality with
constant C. Then, the probability measure on R2, µ1 ⊗ µ2, satisfies a Poincaré
inequality with constant C.

Proof. For any smooth function from R2 to R, one can easily prove the inequality

Varµ1⊗µ2
(f) ≤ Eµ1⊗µ2

(Varµ1
(f)) + Eµ1⊗µ2

(Varµ2
(f)) ,

where the notation Varµ1 (respectively Varµ2) means that the first (respectively
the second) variable is the only one to be affected by the integration. Indeed,
this inequality is equivalent to

Eµ1⊗µ2
(f2)− Eµ1⊗µ2

[
(Eµ1

(f))
2
]
− Eµ1⊗µ2

[
(Eµ2

(f))
2
]

+ (Eµ1⊗µ2
(f))

2 ≥ 0 ,

which can also be written as follows

Eµ1⊗µ2

[
(f − Eµ1(f)− Eµ2(f) + Eµ1⊗µ2(f))

2
]
≥ 0 .

However, Poincaré inequality implies

Varµ1
(f) ≤ C

∫
R
|∇f |2 dµ1

and
Varµ2(f) ≤ C

∫
R
|∇f |2 dµ2 ,

which achieves the proof.

We proceed in a similar way for the tensorization of k measures on R.
In the model that we consider we have a Poincaré inequality. However, the

constant may depend on the dimension.

The constant which appears in Proposition 2.1 does depend on the dimension:

4
(
1 +

(
exp

[
1
2 (αR+ 1− k)

]
+ 1
)
κR
)(

α− k−1
R

)2 .

Indeed, R has to be such that α > k−1
R which means R > k−1

α . Consequently,
the constant is more than

4
(

1 + 2κ k−1
R

)
(
α− k−1

R

)2 .

However, we can remark lim
R→∞

κR = +∞.
By using tensorization result, we prove easily that the measure

exp

{
− 2

σ2

N∑
k=1

V (xk)

}
dx1 · · · dxN

7



satisfies a Poincaré inequality with a constant which does not depend on the di-
mension N . If we assume that F is bounded, we can use the perturbation result
to prove that the measure exp

{
− 2
σ2NΥN (x1, · · · , xN )

}
dx1 · · · dxN satisfies a

Poincaré inequality. However, the constant just obtained does depend on the
dimension.

Let us remark that we can write

NΥN (x1, · · · , xN ) =

N∑
k=1

(
V (xk) + F ∗ ηX (xk)

)
,

with ηX := 1
N

∑N
k=1 δxk . However, we can not use the tensorization result. In-

tuitively, the propagation of chaos means that the particles become independent
so that we have a Poincaré inequality with a constant which does not depend
on the dimension.

In the following, we deal with WJ-inequality to get inequality independent
from the dimension.

3 Framework
Let us give the framework (definitions and basic propositions) of the current
work. We begin by introducing the Wasserstein distance.

Definition 3.1. For any probability measures on Rd, µ and ν, the Wasserstein
distance between µ and ν is

W2 (µ ; ν) :=

√
inf E

{
||X − Y ||2

}
,

where the infimum is taken over the random variables X and Y with law µ and
ν respectively.

The Wasserstein distance can be characterized in the following way, thanks
to Brenier’s theorem, see [Bre91].

Proposition 3.2. Let µ and ν be two probability measures on Rd. If µ is
absolutely continuous with respect to the Lebesgue measure, there exists a convex
function τ from Rd to R such that the following equality occurs for every bounded
test function g: ∫

Rd
g(x)ν(dx) =

∫
Rd
g (∇τ(x))µ(dx) .

Then, we write
ν = ∇τ#µ ,

and we have the following equality

W2 (µ ; ν) =

√∫
Rd
||x−∇τ(x)||2 µ(dx) .
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The key-idea of the paper is a so-called WJV,F -inequality. Let us present
the expression that we denote by JV,F (ν | µ) if µ is absolutely continuous with
respect to the Lebesgue measure:

JV,F (ν | µ) := JV,0 (ν | µ)

+
1

2

∫∫
R2d

〈∇F (ξ(x, y))−∇F (x− y) ; ξ(x, y)− (x− y)〉µ(dx)µ(dy) ,

with ξ(x, y) := ∇τ(x)−∇τ(y) and

JV,0 (ν | µ) :=
σ2

2

∫
Rd

(
∆τ(x) + ∆τ∗ (∇τ(x))− 2d

)
µ(dx)

+

∫
Rd
〈∇V (∇τ(x))−∇V (x) ; ∇τ(x)− x〉µ(dx) ,

where τ∗ denotes the Legendre transform of τ . Here, we have ν = ∇τ#µ. We
now present the transportation inequality, already used in [AGS08, BGG12,
BGG13, SvR05], on which the article is based.

Definition 3.3. Let µ be a probability measure on Rd absolutely continuous
with respect to the Lebesgue measure and C > 0. We say that µ satisfies a
WJV,F (C)-inequality if the inequality

CW2
2 (ν ; µ) ≤ JV,F (ν | µ)

holds for any probability measure ν on Rd.

In the following, we aim to establish WJ-inequality for the invariant proba-
bility µσ,N of Diffusion (1). It is well known that µσ,N is absolutely continuous
with respect to the Lebesgue measure. Consequently, we can apply Brenier’s
theorem. So, theWJV,F -inequality reduces to an inequality on the convex func-
tions τ from Rd to R.

4 Main results
We here use the result from [BGG12]. We know that WJV,0-inequality holds
with some constant Cσ,N . Therefore WJV,F -inequality holds with the constant
Cσ,N − (α+ θ):

Proposition 4.1. Under the assumptions (A-1)–(A-7), a WJV,F inequality
holds for the measure µσ,N with the constant Cσ,N − (α+ θ), where

Cσ,N := max
R>0

Cσ(N,R)

and

Cσ(N,R) := min

{
K(R)

3
;

σ2

72R2
e−

2
σ2
S(R);

K(R)

3

3dN − 2dN

2dN
e

2
σ2

(I(R)−S(R))

}
,

(3)
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with

K(R) := inf
‖χ‖≥R

N∇2ΥN
0 (χ), (4)

I(R) := inf
‖χ‖≤2R

NΥN (χ), (5)

S(R) := sup
‖χ‖≤3R

NΥN (χ). (6)

In definition of K(R), the infimum is understood as the smallest eigenvalue of
N∇2ΥN

0 (χ). Furthermore, ΥN
0 is defined as follows

NΥN
0 (χ) :=

N∑
i=1

V0(χi) +
1

2N

N∑
i=1

N∑
j=1

G(||χi − χj ||) .

The proof is omitted and consists in following carefully [BGG12].
However, nothing ensures us a priori that Cσ,N − (α + θ) is positive. This

is the aim of next theorem:

Theorem 4.2. There exists σ̂c such that Cσ,N > α+ θ for any N if σ ≥ σ̂c.

Proof. We will use Proposition 4.1 and notation introduced therein. From (A2)
and (A3),

∇2NΥN
0 (χ) ≥ (12α+ 12θ + 12)Id, if ‖χ‖ ≥ R := R12α+11θ+12.

Therefore
K(R)

3
≥ 4(α+ θ + 1). (7)

From (A4) and (A5) it follows that

|V (x)| ≤ C
(
‖x‖+

‖x‖2m

2m

)
, x ∈ Rd,

which together with (A5) implies that

|V (x)| ≤ c
(
‖x‖2 + ‖x‖2m

)
, x ∈ Rd. (8)

On the other hand, from (A6), F (x) = G(‖x‖) − α
2 ‖x‖

2 =
∑n
k=1 b2k‖x‖2k for

some b2k ∈ R. This and (8) give

NΥN (χ) =

N∑
i=1

V (χi) + 1
2N

N∑
i=1

N∑
j=1

F (χi − χj)

≤ c
N∑
i=1

(
‖χi‖2 + ‖χi‖2m

)
+ 1

2N

N∑
i=1

N∑
j=1

n∑
k=1

b2k‖χi − χj‖2k. (9)
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We continue using elementary inequality |a− b|2k ≤ 22k−1(|a|2k + |b|2k)

NΥN (χ) ≤ c
N∑
i=1

(
‖χi‖2 + ‖χi‖2m

)
+

n∑
k=1

b2k22k−1
N∑
i=1

‖χi‖2k

≤ c
(
9R2 + 9mR2m

)
+

n∑
k=1

b2k22k−19kR2k ≤ c′R2q, if ‖χ‖ ≤ 3R,

here q = max{m,n} and the constant c′ depends only on V and F . Thus

S(R) ≤ c′R2q. (10)

Finally, to estimate I(R), we use (A3) and (A6). For ‖χ‖ ≤ 2R,

NΥN (χ) ≥ − θ2
N∑
i=1

‖χi‖2 − α
4N

N∑
i=1

N∑
j=1

‖χi − χj‖2

≥ −2θR2 − α
4N

N∑
i=1

N∑
j=1

2
(
‖χi‖2 + ‖χj‖2

)
≥ −(2θ + 4α)R2,

hence
I(R) ≥ −(2θ + 4α)R2. (11)

We are ready to estimate Cσ(N,R). The first term in the minimum on the right
hand side of (3) is greater than 4(α+θ+1), see (7). The second term is greater
than

σ2

72R2
e−

2
σ2
c′R2q

,

see (10), which in turn is larger than α+ θ + 1 for σ large enough. Finally, the
third term in the minimum in (3) is greater than

4(α+ θ + 1)
1

2
e

2
σ2

(−(2θ+4α)R2−c′R2q) ≥ α+ θ + 1,

for large σ. To summarise, Cσ(N,R) ≥ α+ θ + 1 and, consequently,

Cσ,N ≥ α+ θ + 1

for every N ∈ N and for large σ.

Consequently, if σ is large enough, WJV,F -inequality holds with a constant
which does not depend on the dimension.
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