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Abstract

The importance of pedestrian detection in many applications has led to the develop-
ment of many algorithms. In this paper, we address the problem of combining the outputs
of several detectors. A pre-trained pedestrian detector is seen as a black box returning
a set of bounding boxes with associated scores. A calibration step is first conducted to
transform those scores into a probability measure. The bounding boxes are then grouped
into clusters and their scores are combined. Different combination strategies using the
theory of belief functions are proposed and compared to probabilistic ones. A combina-
tion rule based on triangular norms is used to deal with dependencies among detectors.
More than 30 state-of-the-art detectors were combined and tested on the Caltech Pedes-
trian Detection Benchmark. The best combination strategy outperforms the currently
best performing detector by 9% in terms of log-average miss rate.

1 Introduction

Object detection is one of the most important and challenging tasks in computer vision. More
and more sophisticated and efficient algorithms are proposed every year. Several benchmarks
have appeared in the past decade. The PASCAL VOC Challenge [17] is certainly the most
popular one. In the last VOC 2012 edition [18], the organizers built a super-classifier over
the seven methods that were submitted to the classification challenge. The scores returned by
the classifiers were concatenated into a single vector and a linear SVM was trained with it.
An increase of more than 10% in terms of average precision was reported for certain object
classes such as “bottle” or “pottedplant”. Performance losses were observed for five classes
out of twenty, but they remained relatively limited. One main drawback of such an approach
is the difficulty to include new methods as a whole new classifier needs to be trained every
time.

In this paper, we use this idea for pedestrian detection, which is the most studied case.
There exist many pedestrian datasets; INRIA [7], ETH [16], TUD-Brussels [44] and Caltech
Pedestrian Detection Benchmark [15] are among the most popular ones. The last one is the
largest. More than 30 state-of-the-art detectors were tested on it and their outputs are publicly
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# Algorithm Features Classifier Training
1 VI [40] Haar AdaBoost INRIA
2 ‘HOG' [7] HOG linear SVM INRIA
3 ‘HikSvm’ [25] HOG HIK SVM INRIA
4 ‘LatSvm-V1° [19] HOG latent SVM PASCAL
5 ‘LatSvm-V2' [19] HOG latent SVM INRIA
6 ‘MultiResC’ [32] HOG latent SVM Caltech
7 ‘MultiResC+2Ped” [29, 32] HOG latent SVM Caltech
8 ‘MT-DPM’ [45] HOG latent SVM Caltech
9 ‘MT-DPM+Context” [45] HOG latent SVM Caltech
10 ‘Poselnv’ [24] HOG AdaBoost INRIA
11 ‘MLS’ [27] HOG AdaBoost INRIA
12 ‘DBN-Isol [28] HOG DeepNet INRIA
13 ‘DBN-Mut” [30] HOG DeepNet INRIA/Caltech
14 ‘HOG-LBP’ [42] HOG+LBP linear SVM INRIA
15 ‘MOCO’ [6] HOG+LBP latent SVM Caltech 100
16 ‘pAUCBoost’ [31] HOG+COV pAUCBoost INRIA
17 ‘FtrMine’ [11] channels AdaBoost INRIA » 90 HEl Recasonable
18 | ‘ChnFus’[12] channels AdaBoost INRIA g 30 B Overall
19 ‘FPDW’ [13] channels AdaBoost INRIA =
20 ‘CrossTalk’ [14] channels AdaBoost INRIA 3 70
21 ‘Roerei’ [5] channels AdaBoost INRIA 6 60
22 ‘ACF’ [12] channels AdaBoost INRIA o
23 ‘ACF-Caltech’ [12] channels AdaBoost Caltech “5 50
24 ‘ACF+SDU [33] channels AdaBoost Caltech ° 40
25 ‘MultiFtr’ [43] multiple AdaBoost INRIA o0
26 ‘MultiFtr+CSS” [41] multiple linear SVM TUD-Motion 2 30
27 ‘MultiFtr+Motion’ [41] multiple linear SVM TUD-Motion [5) 20
28 ‘MF+Motion+2Ped’ [29, 41] multiple linear SVM TUD-Motion 8
29 ‘FeatSynth’ [2] multiple linear SVM INRIA Q“j 10
30 ‘AFS’ [23] multiple linear SVM INRIA 0
31 ‘AFS+Geo’ [23] multiple linear SVM INRIA
2 | e muliple | PLS+QDA INRIA 1510 15 20 25 30 All
33 | “Shapelet’ [36] gradients AdaBoost INRIA Minimum number of fired detectors
34 “ConvNet’ [38] pixels DeepNet INRIA
(a) (b)

Figure 1: (a) List of algorithms evaluated on the Caltech Pedestrian Benchmark. (b) Percent-
age of detected pedestrians by at least k € {1,5,...,34} detectors at 1 FPPL The detections
were done on the Caltech-Test dataset with the “Reasonable” and “Overall” scenarios.

available. Moreover, the high diversity of the evaluated methods makes their combination an
ever more interesting issue. Figure 1 (a) lists the detectors evaluated on the Caltech dataset.

Diversity, and thus potential complementarity of the detectors exist because of mainly
three reasons. The first one is related to the features used to represent pedestrians. Haar-
like features [40], shapelets [36], shape context [26] and histogram of oriented gradient
(HOG) [7] features are commonly used. The last one is the most popular and almost all
detectors use it in some forms. Wojek and Schiele [43] concatenated all the previously men-
tioned features and trained a new model outperforming all individual ones. Other features
such as local binary pattern (LBP) [42] or motion features [41] were also considered in addi-
tion to HOG. However, even though the HOG feature is used in those methods, it is not guar-
anteed that a pedestrian detected by the original ‘HOG’ detector [7] would still be detected
by the other methods. Nevertheless, the use of multiple types of features as in [12, 13, 33]
or features learned in very large spaces [2, 11] have led to significant improvements.

The second source of diversity comes from the classifier. Linear SVM and AdaBoost
are often considered. The use of latent variables in SVM has been popularized by Felzen-
szwalb et al. [19] for part-based approaches. Non-linear SVM [25], Partial Least Squares
analysis [37] or boosting optimizing directly the area under the ROC curve [31] were also
used. More recently, deep learning was also considered [28, 30, 38]. Finally, the choice of
the training data, if not the same for all detectors, is an additional source of diversity.

Different forms of detectors combination can be found in the literature. The use of multi-
ple sensors in robotics has often led to the combination of several detectors. The easiest way
is to use a first weak detector to gather a set of regions of interest, which are then more deeply
analyzed by a more efficient one. The ‘FeatSynth’ [2] algorithm actually only processes the
detections returned by ‘FtrMine’ [11]. Some works make use of other object detectors such
as cars [45] or 2-pedestrians detectors [29]. Recently, Denoeux et al. [10] applied an optimal
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object association algorithm to combine the outputs of two object detectors in polynomial
time. However, the optimal association problem with more than two detectors is NP-hard.

To figure out the potential gain from combining multiple detectors, we show in Fig. 1 (b)
some detection statistics for the Caltech dataset. We can see that, at one False Positive Per
Image (FPPI), more than 95% of the pedestrians in the “Reasonable” scenario were detected
by at least one detector. The “Reasonable” scenario corresponds to pedestrians over 50 pixels
tall and with an occlusion rate lower than 35%. As a comparison, the currently best perform-
ing algorithm (‘ACF+SDt’ [33]) has a recall rate of about 80% at 1 FPPI. Similarly, in the
“Overall” scenario where all the pedestrians were considered, about 60% of the pedestrians
were detected by at least one detector. The ‘MT-DPM+Context’ [45] algorithm, which out-
performs ‘ACF+SDt’ in this scenario, hardly reached a 40% recall rate. The potential gain
of combining in a proper way all those detectors is thus fairly significant.

In this paper, we propose a combination framework that models the outputs of the de-
tectors with the theory of belief functions and combines them with a pre-defined rule. A
pedestrian detector is seen as a black box that only outputs a set of bounding boxes (BB)
with associated scores. In Sec. 2 we propose a new way to associate the BBs returned by
multiple detectors; we then show how the scores are calibrated and combined from a prob-
abilistic point of view. In Sec. 3 we present different combination strategies using belief
functions. Finally, in Sec. 4 we compare the different combination methods using the Cal-
tech dataset.

2 Combination of pedestrian detectors

The outputs of most pedestrian detectors are given as bounding boxes. To each of them is
associated a score representing the confidence of the detector. The range of those scores
depends on the features and the classifier used for detection. Figure 2 shows some detection
results from three algorithms, applied to one particular image frame. The ‘VI’ algorithm
gives pretty poor results with a very high false detection rate. Even worse, the BBs with the
highest scores are actually false positives. The ‘HOG’ algorithm gives relatively good results
with few false positives. It can be noticed that the two detected pedestrians in the foreground
have very low scores. The ‘ACF+SDt’ algorithm is the one with the highest recall rate. Even
though it returns more false positives than ‘HOG’, most of the true positives have a higher
score than the false negatives. It is, however, interesting to notice that on the particular image
shown in Figure 2, the only pedestrian missed by ‘ACF+SDt’ was actually detected by both
the ‘VJ* and ‘HOG’ algorithms. The aims of combining the algorithms are thus to obtain a
higher overall recall rate and to increase the confidence in the pedestrians that are detected
by multiple detectors. For this purpose, two main issues have to be solved. First of all, it is
necessary to appropriately associate the BBs returned by the detectors. The scores from the
different algorithms have then to be made comparable and combined.

2.1 Clustering of bounding boxes

In a sliding windows approach, a single pedestrian is often detected at several nearby posi-
tions and scales. A non-maximal suppression (NMS) step is often needed in order to select
only one BB per pedestrian. In our context, the same issue occurs but instead of having
multiple detections from a single detector they are returned by several ones. As reported


Citation
Citation
{Park, Zitnick, Ramanan, and Dollár} 2013

Citation
Citation
{Yan, Zhang, Lei, Liao, and Li} 2013


4 XU ET AL.: EVIDENTIAL COMBINATION OF PEDESTRIAN DETECTORS
il h

(a) “VJ’ [40] (b) ‘HOG’ [7] (c) ‘ACF+SDt’ [33]
Figure 2: Pedestrian detection results from three algorithms. The colour of the bounding
boxes represents the score. Solid boxes are true positives and doted boxes are false positives.
The red arrow points to a pedestrian detected by both ‘VJ* and ‘HOG’ but not ‘ACF+SDt’.

by Dollér et al. [15], there exist two dominant NMS approaches: mean shift mode estima-
tion [7] and pairwise maximum suppression [19]. For the former it is necessary to define
a covariance matrix representing the uncertainty in position and size of the BBs. This can
be difficult considering the high variety of detectors. Felzenszwalb et al. [19] proposed a
simpler way by suppressing the least confident of any pair of BBs that overlap sufficiently.
Given two bounding boxes BB; and BB, their area of overlap is defined as

area(BB; N BB))

i _— 1
“union area(BB; UBB)) M
Dollar et al. (see addendum to [12]) proposed to replace the above definition with
area(BB; BB ;
Amin ( : ]) (2)

min(area(BB;),area(BB;))

By using aynion OF amin as a distance measure between BBs, a simple hierarchical clustering
can be used to group them until the overlap exceeds a certain threshold. The distance between
two clusters is defined as the maximum distance between every pairs of BBs. This guarantees
that within a cluster the overlapping area between two BBs is always sufficient. Dollar
et al. [12] showed that proceeding greedily leads to the best results. They processed the
detections in decreasing order of scores; when two BBs are associated, the one with the
lowest score would no longer be used for further associations. In our clustering formulation,
this later point is equivalent to defining the distance between two clusters as the distance
between their respective highest-scored BBs. One issue with this approach is that the scores
from the different detectors have to be comparable.

2.2 Score calibration

As stated earlier, the scores from the detectors can be of very different natures and a probabil-
ity measure is often used as a common representation. The transformation from a classifier
score into a probability is referred to as calibration. Given a BB with a score s € R and an
unknown label y € {0, 1}, the calibration aims at finding a function f : R — [0, 1] so that f(s)
is an estimator of P(y = 1|s). Several calibration methods can be found in the literature [3].
As the scores are supposed to represent the confidence of the classifier, the calibration func-
tion f is assumed to be non-decreasing. Logistic regression [34] and isotonic regression [46]
are two popular calibration methods that use this assumption. Given a set of n detected BBs
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Figure 3: (a) Logistic and isotonic calibration of the scores from the ‘HOG’ pedestrian
detector. (b) Histogram of the scores.

with scores si,...,5, € R and known labels yi,...,y, € {0,1}, Platt [34] proposed to use
logistic regression and to fit a sigmoid function g : R — [0, 1] defined as

1
= —— VseR 3
8(s) 1+exp(A+Bs)’ sER )

where the parameters A,B € R are determined by minimizing the negative log-likelihood
function on the training data

min — )" y;log (g (sk)) + (1 —yi)log (1 —g(st))- (4)
A,BER =1

Zadrozny and Elkan [46] proposed a non-parametric calibration method by fitting a stepwise-
constant non-decreasing, i.e. isotonic, function 4 : R — [0, 1] that directly minimizes the
mean-squared error

MSE(h) = Z [h(si) — ye]?. )
k=1

S |-

This function can be computed efficiently using the pair-adjacent violators algorithm [1].
Figure 3 (a) shows two calibrations of SVM scores computed from the ‘HOG’ algorithm.

2.3 Probabilistic combination of bounding boxes

One particularity of object detection is the relatively high false positive rate. For example
with the ‘HOG’ algorithm, more than 99% of the detections have a score less than 0.1, as
illustrated on Figure 3 (b). Less than 0.1% of these detections are true positives. As a result,
most detections have an associated probability lower than 0.1. From a Bayesian perspective,
multiple sources of information returning low probabilities would actually lead to an even
lower one. Let s(1),...,s() be the scores returned by k detectors for a cluster of BBs of label
y. By using Bayes’ rule and assuming conditional independence, the following equation
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holds:
Py:l k
P(y=1lsqy,....50) = MHP(S(W]) ©
P<s( )) P(S ))
P(S(1)7~..,S(k))P(y: 1)k= 1I_I y= |S ) (7
k
o Ply="1)""F[[Py=1]s)- "

i=1

By using different approximations on this product rule, Kittler et al. [22] derived several
classical combination rules such as the minimum, average, or maximum rules. Those rules
have the following relations:

~

1
HP(y:1|s(l-))< rrlnn P(y—1|s ) %

P(y=1|s;) < Jmax, P(y=1lsp). (9
ro S E R S o

T

Kittler et al. [22] reported the superiority of the average combiner. A popular variant is the
weighted average combiner. Bella et al. [4] showed that using a weighting in addition to
calibration often leads to better results. Another classical combination strategy is the voting
rule and its weighted variant.

3 Theory of belief functions
The theory of belief functions, also known as Dempster-Shafer theory [39], is a generaliza-

tion of probability theory. It is commonly used as an alternative to probability theory as it is
especially well adapted for information fusion [21].

3.1 Information representation

Let Q = {w),...,wy} be a finite set of classes and 2% its powerset. A mass function is
defined as a function m : 2+ [0, 1] verifying
Y m@A)=1, m(0)=o0. (10)
ACQ

Given a sample of class @ € Q and a subset A C Q, the quantity m(A) represents the amount
of belief strictly supporting the hypothesis @ € A. In the case of pedestrian detection where
Q = {0,1}, when a detector returns a BB, it actually only supports the hypothesis that a
pedestrian is present. The output of a calibration function f for a detection score s is thus
interpreted as the following mass function:

m({1}) = f(s),  m({0,1}) = 1= f(s). (11)

Such a mass function is said to be simple and will be noted as {1}~/ (), More generally,
given A C Q and x € [0, 1], A refers to the mass function m(A) = 1 —x, m(Q) = x. The
reliability of a source of information can be encoded through a discounting factor 6 € [0, 1],
which leads to a discounted mass function ®m defined as

5 _ [ a=8&m@),  iface,
m(A) = {(1_5)m(g)+6, otherwise. (12
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This factor can be seen as a weight in a combination. The mass function is kept unchanged
if 6 = 1 and becomes the total ignorance, i.e. m(Q) = 1, when & = 0.

3.2 Evidential combination rules

There exists several ways to combine two mass functions m; and m;. The most basic way is
Dempster’s rule of combination [39] which defines a mass function m| & m; as follows:

(m @&my)(0) =0,  (mi&my)(A) = 1i1< Y. mi(Bymz(C), VAC Q, A#0, (13)
BNC
with
K=Y, mi(B)m(C). (14)

BNC=0

For two simple mass functions {1}% and {1}, it leads to
(B efly™ = {1p9%. (15)

This combination rule is based on the assumption that the mass functions to combine are
generated by independent sources of information. In particular, Dempster’s rule is not idem-
potent: a mass function combined with itself leads, in general, to a different mass function. In
our context, some detectors are clearly not independent, for example, the ‘FPDW” [13] algo-
rithm is just an accelerated variant of ‘ChnFtrs’ [12]. To deal with such issues, Denceux [8, 9]
proposed the cautious rule, which in the case of simple mass functions is defined as

(" @ {1}* = {139"%, (16)

where A denotes the minimum operator. In practice, the cautious rule simply keeps the most
confident mass function. It thus leads to the same results as a NMS procedure.

Quost et al. [35] proposed to optimize an operator that generalizes both Dempster’s rule
and the cautious rule. They used the Frank’s family of t-norms, which is defined as

o N\ 0 it p=0,
T, = a o ifp=1, (17)
! (P =D(p%2-1) ~
log, (1 + T) otherwise.

For any p € [0, 1], & T, 0 returns a value between o and o A &. Using this family of
t-norms, they finally define the following combination rule:

{39 @, {132 = {139%*=, (18)

To choose the value of the parameter p, Quost et al. [35] proposed to group the detectors
into clusters and optimize the value of p for each cluster independently.

3.3 Clustering detectors

Detectors that return similar mass functions are likely to be using similar information. Their
combination should thus be handled more cautiously. To define a measure between classi-
fiers, a distance between mass functions has to be defined first. A survey of such distances
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can be found in [20]. A commonly used distance measure between two mass functions m
and my is defined as

d(mms) = \/;MC%W 3 () =) ()= maB) (19

For two simple mass functions, we get

0<d({1}"‘1,{1}“2):ml\;;2<\2. (20)

The average distance for all detections is then used as a distance between the detectors C)
and C(y):

1 n
~ 2 d (mu.im.i) @y
i=1

D(Cwy),Cey) =

where m) ; and m,) ; refers to the mass functions associated to the i-th BB cluster provided
by Cr) and C(y), respectively. The above definition actually assumes that, for every BB
returned by C) there is an associated one returned by C(y). It is actually not the case. When
one of the detector does not provide any BB, the distance is set to

1 o _ o 0y _ 1+(170‘1)2
75 S0 =d ({117 {0)) =/ =< 1. (22)

Using this pairwise distance, the detectors can be grouped through hierarchical clustering.

4 Experimental results

We conducted our experiments on the Caltech Pedestrian Detection Benchmark. The dataset
consists in six training sets (set00-set05) that have been used to train detectors (see Fig-
ure 1 (a)), and five testing sets (set06-set10). For our experiments we kept one of the testing
sets (set06) as a validation set for calibration and the remaining four sets were used for test-
ing. A five fold cross-validation step was also conducted on the validation set to tune the
different parameters of the combination system. As a performance measure, we used the
log-average miss rate as proposed in [15].

Figure 4 (a) shows the influence of the threshold used for BBs association. The results
were much better when doing the association greedily after score calibration. The best per-
formance was obtained using aypion With a threshold of 0.45, although using ap,, with a
threshold of 0.8 gave very close results. We then compared the probabilistic combination
rules (Sec. 2.3) with the evidential ones (Sec. 3.2). Figure 4 (b) shows the results obtained
from a logistic calibration on the “Reasonable” case scenario. For the weighted version of
the combinations, the average precision estimated on the validation set was used as weight.
In the evidential method, this weight was used as a discounting factor & (Eq. 12). We can
see that the product and minimum rules performed very poorly. The average rule performed
better than the majority vote. The cautious rule, which is equivalent to the maximum rule,
performed better than all the other probabilistic rules but worse than Dempster’s rule and
the t-norm based rule. Using an additional weight led to better results for all combination
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Figure 4: (a) Log-average miss rate for different values of the overlapping threshold. The
methods marked with a star correspond to greedy box association after a logistic calibra-
tion. (b) Results of different combination strategies using a logistic regression calibration
on the “Reasonable” scenario. (c) Results on the “Reasonable” scenario. (d) Results on the
“Overall” scenario.
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Figure 5: Detectors hierarchical clustering. The colors show how the detectors are to be

combined. The blues branches correspond to Dempster’s rule, the red ones to the cautious
rule and the green ones to a t-norm rule with parameter different from 0 and 1.
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methods except the minimum combination rule. Similar conclusions were reached by using
an isotonic calibration.

For the t-norm based rule, the detectors were combined following the hierarchical clus-
tering shown on Figure 5. For each pairwise combination the parameter of the t-norm was
computed from the validation set. For most pairs of clusters, the best results were obtained
using Dempster’s rule (p = 1). The detectors #7 and #26 are, respectively, the combination
of #6 and #27 with a 2-pedestrian detector while #9 uses a car detector with #8. For those
three pairs, the cautious rule (p = 0) was optimal. The only case where the t-norm param-
eter was different from O and 1 was the combination between ‘ChnFtrs’ and ‘FPDW’. The
relatively high diversity of the evaluated detectors explains the limited gain from the t-norm
rule compared to Dempster’s rule.

Figure 4 (c-d) compares the 12 best detectors, including ‘VJ” and ‘HOG’, to the logistic
and isotonic weighted t-norm and the logistic weighted average. In the “Reasonable” sce-
nario, the logistic weighted t-norm led to an improvement of 9% in terms of log-average
miss rate and 6% for the isotonic one. The weighted average only led to 1% improvement.
In the “Overall” scenario, the logistic and isotonic t-norm have very similar results with a
performance improvement of 4% while the weighted average performed worse than the ‘MT-
DPM+Context’ alone. Results for the other scenarios, details of the isotonic combinations,
detection examples and source code are supplied as supplementary materials on the authors’
website! .

5 Conclusions and perspectives

In this paper, we proposed and evaluated an evidential framework for combining pedestrian
detectors, noticing it could also be applied directly to detect other classes of objects. The use
of belief functions and evidential combination rules yielded much better results than classical
probabilistic approaches. One novelty of our approach relies on the use of an optimized t-
norm rule, which can take into account the dependencies between detectors. This property
can become critical if many new detectors are to be added. As optimizing pairwise rules
may provide only sub-optimal results, a global optimization will be investigated in future
work. An important advantage of the proposed approach is that it allows us to easily include
a new detector regardless of the features, training data and classifier it uses. Moreover, this
modularity allows new detectors to rely on existing state-of-the-art ones. Therefore one
may focus future research on the development of detectors specially designed to detect hard
examples without risking an overall recall loss.
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