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Introduction

Object detection is one of the most important and challenging tasks in computer vision. More and more sophisticated and efficient algorithms are proposed every year. Several benchmarks have appeared in the past decade. The PASCAL VOC Challenge [START_REF] Everingham | The PASCAL Visual Object Classes (VOC) Challenge[END_REF] is certainly the most popular one. In the last VOC 2012 edition [START_REF] Everingham | The PAS-CAL Visual Object Classes Challenge 2012[END_REF], the organizers built a super-classifier over the seven methods that were submitted to the classification challenge. The scores returned by the classifiers were concatenated into a single vector and a linear SVM was trained with it. An increase of more than 10% in terms of average precision was reported for certain object classes such as "bottle" or "pottedplant". Performance losses were observed for five classes out of twenty, but they remained relatively limited. One main drawback of such an approach is the difficulty to include new methods as a whole new classifier needs to be trained every time.

In this paper, we use this idea for pedestrian detection, which is the most studied case. There exist many pedestrian datasets; INRIA [START_REF] Dalal | Histograms of oriented gradients for human detection[END_REF], ETH [START_REF] Ess | A mobile vision system for robust multi-person tracking[END_REF], TUD-Brussels [START_REF] Wojek | Multi-cue onboard pedestrian detection[END_REF] and Caltech Pedestrian Detection Benchmark [START_REF] Dollár | Pedestrian detection: An evaluation of the state of the art[END_REF] are among the most popular ones. The last one is the largest. More than 30 state-of-the-art detectors were tested on it and their outputs are publicly c 2014. The copyright of this document resides with its authors. It may be distributed unchanged freely in print or electronic forms. available. Moreover, the high diversity of the evaluated methods makes their combination an ever more interesting issue. Figure 1 (a) lists the detectors evaluated on the Caltech dataset.

Diversity, and thus potential complementarity of the detectors exist because of mainly three reasons. The first one is related to the features used to represent pedestrians. Haarlike features [START_REF] Viola | Robust real-time face detection[END_REF], shapelets [START_REF] Sabzmeydani | Detecting pedestrians by learning shapelet features[END_REF], shape context [START_REF] Mori | Efficient shape matching using shape contexts[END_REF] and histogram of oriented gradient (HOG) [START_REF] Dalal | Histograms of oriented gradients for human detection[END_REF] features are commonly used. The last one is the most popular and almost all detectors use it in some forms. Wojek and Schiele [START_REF] Wojek | A performance evaluation of single and multi-feature people detection[END_REF] concatenated all the previously mentioned features and trained a new model outperforming all individual ones. Other features such as local binary pattern (LBP) [START_REF] Wang | An HOG-LBP human detector with partial occlusion handling[END_REF] or motion features [START_REF] Walk | New features and insights for pedestrian detection[END_REF] were also considered in addition to HOG. However, even though the HOG feature is used in those methods, it is not guaranteed that a pedestrian detected by the original 'HOG' detector [START_REF] Dalal | Histograms of oriented gradients for human detection[END_REF] would still be detected by the other methods. Nevertheless, the use of multiple types of features as in [START_REF] Dollár | Integral channel features[END_REF][START_REF] Dollár | The fastest pedestrian detector in the west[END_REF][START_REF] Park | Exploring weak stabilization for motion feature extraction[END_REF] or features learned in very large spaces [START_REF] Bar-Hillel | Part-based feature synthesis for human detection[END_REF][START_REF] Dollár | Feature mining for image classification[END_REF] have led to significant improvements.

The second source of diversity comes from the classifier. Linear SVM and AdaBoost are often considered. The use of latent variables in SVM has been popularized by Felzenszwalb et al. [START_REF] Felzenszwalb | Object detection with discriminatively trained part based models[END_REF] for part-based approaches. Non-linear SVM [START_REF] Maji | Classification using intersection kernel support vector machines is efficient[END_REF], Partial Least Squares analysis [START_REF] Schwartz | Human detection using partial least squares analysis[END_REF] or boosting optimizing directly the area under the ROC curve [START_REF] Paisitkriangkrai | Efficient pedestrian detection by directly optimize the partial area under the roc curve[END_REF] were also used. More recently, deep learning was also considered [START_REF] Ouyang | A discriminative deep model for pedestrian detection with occlusion handling[END_REF][START_REF] Ouyang | Modeling mutual visibility relationship with a model in pedestrian detection[END_REF][START_REF] Sermanet | Pedestrian detection with unsupervised multi-stage feature learning[END_REF]. Finally, the choice of the training data, if not the same for all detectors, is an additional source of diversity.

Different forms of detectors combination can be found in the literature. The use of multiple sensors in robotics has often led to the combination of several detectors. The easiest way is to use a first weak detector to gather a set of regions of interest, which are then more deeply analyzed by a more efficient one. The 'FeatSynth' [START_REF] Bar-Hillel | Part-based feature synthesis for human detection[END_REF] algorithm actually only processes the detections returned by 'FtrMine' [START_REF] Dollár | Feature mining for image classification[END_REF]. Some works make use of other object detectors such as cars [START_REF] Yan | Robust multi-resolution pedestrian detection in traffic scenes[END_REF] or 2-pedestrians detectors [START_REF] Ouyang | Single-pedestrian detection aided by multi-pedestrian detection[END_REF]. Recently, Denoeux et al. [START_REF] Denoeux | Optimal object association in the Dempster-Shafer framework[END_REF] applied an optimal object association algorithm to combine the outputs of two object detectors in polynomial time. However, the optimal association problem with more than two detectors is NP-hard.

To figure out the potential gain from combining multiple detectors, we show in Fig. 1 (b) some detection statistics for the Caltech dataset. We can see that, at one False Positive Per Image (FPPI), more than 95% of the pedestrians in the "Reasonable" scenario were detected by at least one detector. The "Reasonable" scenario corresponds to pedestrians over 50 pixels tall and with an occlusion rate lower than 35%. As a comparison, the currently best performing algorithm ('ACF+SDt' [START_REF] Park | Exploring weak stabilization for motion feature extraction[END_REF]) has a recall rate of about 80% at 1 FPPI. Similarly, in the "Overall" scenario where all the pedestrians were considered, about 60% of the pedestrians were detected by at least one detector. The 'MT-DPM+Context' [START_REF] Yan | Robust multi-resolution pedestrian detection in traffic scenes[END_REF] algorithm, which outperforms 'ACF+SDt' in this scenario, hardly reached a 40% recall rate. The potential gain of combining in a proper way all those detectors is thus fairly significant.

In this paper, we propose a combination framework that models the outputs of the detectors with the theory of belief functions and combines them with a pre-defined rule. A pedestrian detector is seen as a black box that only outputs a set of bounding boxes (BB) with associated scores. In Sec. 2 we propose a new way to associate the BBs returned by multiple detectors; we then show how the scores are calibrated and combined from a probabilistic point of view. In Sec. 3 we present different combination strategies using belief functions. Finally, in Sec. 4 we compare the different combination methods using the Caltech dataset.

Combination of pedestrian detectors

The outputs of most pedestrian detectors are given as bounding boxes. To each of them is associated a score representing the confidence of the detector. The range of those scores depends on the features and the classifier used for detection. Figure 2 shows some detection results from three algorithms, applied to one particular image frame. The 'VJ' algorithm gives pretty poor results with a very high false detection rate. Even worse, the BBs with the highest scores are actually false positives. The 'HOG' algorithm gives relatively good results with few false positives. It can be noticed that the two detected pedestrians in the foreground have very low scores. The 'ACF+SDt' algorithm is the one with the highest recall rate. Even though it returns more false positives than 'HOG', most of the true positives have a higher score than the false negatives. It is, however, interesting to notice that on the particular image shown in Figure 2, the only pedestrian missed by 'ACF+SDt' was actually detected by both the 'VJ' and 'HOG' algorithms. The aims of combining the algorithms are thus to obtain a higher overall recall rate and to increase the confidence in the pedestrians that are detected by multiple detectors. For this purpose, two main issues have to be solved. First of all, it is necessary to appropriately associate the BBs returned by the detectors. The scores from the different algorithms have then to be made comparable and combined.

Clustering of bounding boxes

In a sliding windows approach, a single pedestrian is often detected at several nearby positions and scales. A non-maximal suppression (NMS) step is often needed in order to select only one BB per pedestrian. In our context, the same issue occurs but instead of having multiple detections from a single detector they are returned by several ones. As reported (a) 'VJ' [START_REF] Viola | Robust real-time face detection[END_REF] (b) 'HOG' [START_REF] Dalal | Histograms of oriented gradients for human detection[END_REF] (c) 'ACF+SDt' [33] Figure 2: Pedestrian detection results from three algorithms. The colour of the bounding boxes represents the score. Solid boxes are true positives and doted boxes are false positives. The red arrow points to a pedestrian detected by both 'VJ' and 'HOG' but not 'ACF+SDt'. by Dollár et al. [START_REF] Dollár | Pedestrian detection: An evaluation of the state of the art[END_REF], there exist two dominant NMS approaches: mean shift mode estimation [START_REF] Dalal | Histograms of oriented gradients for human detection[END_REF] and pairwise maximum suppression [START_REF] Felzenszwalb | Object detection with discriminatively trained part based models[END_REF]. For the former it is necessary to define a covariance matrix representing the uncertainty in position and size of the BBs. This can be difficult considering the high variety of detectors. Felzenszwalb et al. [START_REF] Felzenszwalb | Object detection with discriminatively trained part based models[END_REF] proposed a simpler way by suppressing the least confident of any pair of BBs that overlap sufficiently. Given two bounding boxes BB i and BB j , their area of overlap is defined as

a union = area(BB i ∩ BB j ) area(BB i ∪ BB j ) . (1) 
Dollár et al. (see addendum to [START_REF] Dollár | Integral channel features[END_REF]) proposed to replace the above definition with

a min = area(BB i ∩ BB j ) min(area(BB i ), area(BB j )) . (2) 
By using a union or a min as a distance measure between BBs, a simple hierarchical clustering can be used to group them until the overlap exceeds a certain threshold. The distance between two clusters is defined as the maximum distance between every pairs of BBs. This guarantees that within a cluster the overlapping area between two BBs is always sufficient. Dollár et al. [START_REF] Dollár | Integral channel features[END_REF] showed that proceeding greedily leads to the best results. They processed the detections in decreasing order of scores; when two BBs are associated, the one with the lowest score would no longer be used for further associations. In our clustering formulation, this later point is equivalent to defining the distance between two clusters as the distance between their respective highest-scored BBs. One issue with this approach is that the scores from the different detectors have to be comparable.

Score calibration

As stated earlier, the scores from the detectors can be of very different natures and a probability measure is often used as a common representation. The transformation from a classifier score into a probability is referred to as calibration. Given a BB with a score s ∈ R and an unknown label y ∈ {0, 1}, the calibration aims at finding a function f : R → [0, 1] so that f (s) is an estimator of P(y = 1|s). Several calibration methods can be found in the literature [START_REF] Bella | Calibration of machine learning models[END_REF].

As the scores are supposed to represent the confidence of the classifier, the calibration function f is assumed to be non-decreasing. Logistic regression [START_REF] Platt | Probabilistic outputs for support vector machines and comparisons to regularized likelihood methods[END_REF] and isotonic regression [START_REF] Zadrozny | Transforming classifier scores into accurate multiclass probability estimates[END_REF] are two popular calibration methods that use this assumption. Given a set of n detected BBs with scores s 1 , . . . , s n ∈ R and known labels y 1 , . . . , y n ∈ {0, 1}, Platt [START_REF] Platt | Probabilistic outputs for support vector machines and comparisons to regularized likelihood methods[END_REF] proposed to use logistic regression and to fit a sigmoid function g : R → [0, 1] defined as

g(s) = 1 1 + exp(A + Bs) , ∀s ∈ R, (3) 
where the parameters A, B ∈ R are determined by minimizing the negative log-likelihood function on the training data min

A,B∈R - n ∑ k=1 y k log (g (s k )) + (1 -y k ) log (1 -g (s k )) . (4) 
Zadrozny and Elkan [START_REF] Zadrozny | Transforming classifier scores into accurate multiclass probability estimates[END_REF] proposed a non-parametric calibration method by fitting a stepwiseconstant non-decreasing, i.e. isotonic, function h : R → [0, 1] that directly minimizes the mean-squared error

MSE(h) = 1 n n ∑ k=1 [h(s k ) -y k ] 2 . ( 5 
)
This function can be computed efficiently using the pair-adjacent violators algorithm [START_REF] Ayer | An empirical distribution function for sampling with incomplete information[END_REF]. Figure 3 (a) shows two calibrations of SVM scores computed from the 'HOG' algorithm.

Probabilistic combination of bounding boxes

One particularity of object detection is the relatively high false positive rate. For example with the 'HOG' algorithm, more than 99% of the detections have a score less than 0.1, as illustrated on Figure 3 (b). Less than 0.1% of these detections are true positives. As a result, most detections have an associated probability lower than 0.1. From a Bayesian perspective, multiple sources of information returning low probabilities would actually lead to an even lower one. Let s (1) , . . . , s (k) be the scores returned by k detectors for a cluster of BBs of label y. By using Bayes' rule and assuming conditional independence, the following equation holds:

P y = 1|s (1) , . . . , s (k) = P(y = 1) P s (1) , . . . , s (k) k ∏ i=1 P s (i) |y = 1 (6) = P s (1) • • • P s (k) P s (1) , . . . , s (k) P(y = 1) k-1 k ∏ i=1 P y = 1|s (i) (7) 
∝ P(y = 1) 1-k k ∏ i=1 P(y = 1|s (i) ). (8) 
By using different approximations on this product rule, Kittler et al. [START_REF] Kittler | On combining classifiers[END_REF] derived several classical combination rules such as the minimum, average, or maximum rules. Those rules have the following relations:

k ∏ i=1 P y = 1|s (i) ≤ min i=1,...,k P y = 1|s (i) ≤ 1 k k ∑ i=1 P y = 1|s (i) ≤ max i=1,...,k P y = 1|s (i) . (9) 
Kittler et al. [START_REF] Kittler | On combining classifiers[END_REF] reported the superiority of the average combiner. A popular variant is the weighted average combiner. Bella et al. [START_REF] Bella | On the effect of calibration in classifier combination[END_REF] showed that using a weighting in addition to calibration often leads to better results. Another classical combination strategy is the voting rule and its weighted variant.

Theory of belief functions

The theory of belief functions, also known as Dempster-Shafer theory [START_REF] Shafer | A mathematical theory of evidence[END_REF], is a generalization of probability theory. It is commonly used as an alternative to probability theory as it is especially well adapted for information fusion [START_REF] Khaleghi | Multisensor data fusion: A review of the state-of-the-art[END_REF].

Information representation

Let Ω = {ω 1 , . . . , ω N } be a finite set of classes and 2 Ω its powerset. A mass function is defined as a function m :

2 Ω → [0, 1] verifying ∑ A⊆Ω m(A) = 1, m( / 0) = 0. ( 10 
)
Given a sample of class ω ∈ Ω and a subset A ⊆ Ω, the quantity m(A) represents the amount of belief strictly supporting the hypothesis ω ∈ A. In the case of pedestrian detection where Ω = {0, 1}, when a detector returns a BB, it actually only supports the hypothesis that a pedestrian is present. The output of a calibration function f for a detection score s is thus interpreted as the following mass function:

m({1}) = f (s), m({0, 1}) = 1 -f (s). ( 11 
)
Such a mass function is said to be simple and will be noted as {1} 1-f (s) . More generally, given A ⊆ Ω and x ∈ [0, 1], A x refers to the mass function m(A) = 1x, m(Ω) = x. The reliability of a source of information can be encoded through a discounting factor δ ∈ [0, 1], which leads to a discounted mass function δ m defined as

δ m(A) = (1 -δ )m(A), if A Ω, (1 -δ )m(Ω) + δ , otherwise. ( 12 
)
This factor can be seen as a weight in a combination. The mass function is kept unchanged if δ = 1 and becomes the total ignorance, i.e. m(Ω) = 1, when δ = 0.

Evidential combination rules

There exists several ways to combine two mass functions m 1 and m 2 . The most basic way is Dempster's rule of combination [START_REF] Shafer | A mathematical theory of evidence[END_REF] which defines a mass function m 1 ⊕ m 2 as follows:

(m 1 ⊕ m 2 )( / 0) = 0, (m 1 ⊕ m 2 )(A) = 1 1 -κ ∑ B∩C m 1 (B)m 2 (C), ∀A ⊆ Ω, A = / 0, ( 13 
)
with

κ = ∑ B∩C= / 0 m 1 (B)m 2 (C). ( 14 
)
For two simple mass functions {1} α 1 and {1} α 2 , it leads to

{1} α 1 ⊕ {1} α 2 = {1} α 1 α 2 . ( 15 
)
This combination rule is based on the assumption that the mass functions to combine are generated by independent sources of information. In particular, Dempster's rule is not idempotent: a mass function combined with itself leads, in general, to a different mass function. In our context, some detectors are clearly not independent, for example, the 'FPDW' [START_REF] Dollár | The fastest pedestrian detector in the west[END_REF] algorithm is just an accelerated variant of 'ChnFtrs' [START_REF] Dollár | Integral channel features[END_REF]. To deal with such issues, Denoeux [START_REF] Denoeux | The cautious rule of combination for belief functions and some extensions[END_REF][START_REF] Denoeux | Conjunctive and disjunctive combination of belief functions induced by non distinct bodies of evidence[END_REF] proposed the cautious rule, which in the case of simple mass functions is defined as

{1} α 1 ∧ {1} α 2 = {1} α 1 ∧α 2 , (16) 
where ∧ denotes the minimum operator. In practice, the cautious rule simply keeps the most confident mass function. It thus leads to the same results as a NMS procedure. Quost et al. [START_REF] Quost | Classifier fusion in the Dempster-Shafer framework using optimized t-norm based combination rules[END_REF] proposed to optimize an operator that generalizes both Dempster's rule and the cautious rule. They used the Frank's family of t-norms, which is defined as

α 1 p α 2 =      α 1 ∧ α 2 if p = 0, α 1 α 2 if p = 1, log p 1 + (p α 1 -1)(p α 2 -1) p-1 otherwise. (17) 
For any p ∈ [0, 1], α 1 p α 2 returns a value between α 1 α 2 and α 1 ∧ α 2 . Using this family of t-norms, they finally define the following combination rule:

{1} α 1 p {1} α 2 = {1} α 1 p α 2 . ( 18 
)
To choose the value of the parameter p, Quost et al. [START_REF] Quost | Classifier fusion in the Dempster-Shafer framework using optimized t-norm based combination rules[END_REF] proposed to group the detectors into clusters and optimize the value of p for each cluster independently.

Clustering detectors

Detectors that return similar mass functions are likely to be using similar information. Their combination should thus be handled more cautiously. To define a measure between classifiers, a distance between mass functions has to be defined first. A survey of such distances can be found in [START_REF] Jousselme | Distances in evidence theory: Comprehensive survey and generalizations[END_REF]. A commonly used distance measure between two mass functions m 1 and m 2 is defined as

d(m 1 , m 2 ) = 1 2 ∑ A,B⊆Ω\{ / 0} |A ∩ B| |A ∪ B| (m 1 (A) -m 2 (A))(m 1 (B) -m 2 (B)) (19) 
For two simple mass functions, we get

0 ≤ d ({1} α 1 , {1} α 2 ) = |α 1 -α 2 | √ 2 ≤ 1 √ 2 . ( 20 
)
The average distance for all detections is then used as a distance between the detectors C (k) and C ( ) :

D(C (k) , C ( ) ) = 1 n n ∑ i=1 d m (k),i , m ( ),i , (21) 
where m (k),i and m ( ),i refers to the mass functions associated to the i-th BB cluster provided by C (k) and C ( ) , respectively. The above definition actually assumes that, for every BB returned by C (k) there is an associated one returned by C ( ) . It is actually not the case. When one of the detector does not provide any BB, the distance is set to

1 √ 2 ≤ d ({1} α 1 , / 0) = d {1} α 1 , {0} 0 = 1 + (1 -α 1 ) 2 2 ≤ 1. (22) 
Using this pairwise distance, the detectors can be grouped through hierarchical clustering.

Experimental results

We conducted our experiments on the Caltech Pedestrian Detection Benchmark. The dataset consists in six training sets (set00-set05) that have been used to train detectors (see Figure 1 (a)), and five testing sets (set06-set10). For our experiments we kept one of the testing sets (set06) as a validation set for calibration and the remaining four sets were used for testing. A five fold cross-validation step was also conducted on the validation set to tune the different parameters of the combination system. As a performance measure, we used the log-average miss rate as proposed in [START_REF] Dollár | Pedestrian detection: An evaluation of the state of the art[END_REF]. Figure 4 (a) shows the influence of the threshold used for BBs association. The results were much better when doing the association greedily after score calibration. The best performance was obtained using a union with a threshold of 0.45, although using a min with a threshold of 0.8 gave very close results. We then compared the probabilistic combination rules (Sec. 2.3) with the evidential ones (Sec. 3.2). Figure 4 (b) shows the results obtained from a logistic calibration on the "Reasonable" case scenario. For the weighted version of the combinations, the average precision estimated on the validation set was used as weight. In the evidential method, this weight was used as a discounting factor δ (Eq. 12). We can see that the product and minimum rules performed very poorly. The average rule performed better than the majority vote. The cautious rule, which is equivalent to the maximum rule, performed better than all the other probabilistic rules but worse than Dempster's rule and the t-norm based rule. Using an additional weight led to better results for all combination methods except the minimum combination rule. Similar conclusions were reached by using an isotonic calibration.

For the t-norm based rule, the detectors were combined following the hierarchical clustering shown on Figure 5. For each pairwise combination the parameter of the t-norm was computed from the validation set. For most pairs of clusters, the best results were obtained using Dempster's rule (p = 1). The detectors #7 and #26 are, respectively, the combination of #6 and #27 with a 2-pedestrian detector while #9 uses a car detector with #8. For those three pairs, the cautious rule (p = 0) was optimal. The only case where the t-norm parameter was different from 0 and 1 was the combination between 'ChnFtrs' and 'FPDW'. The relatively high diversity of the evaluated detectors explains the limited gain from the t-norm rule compared to Dempster's rule.

Figure 4 (c-d) compares the 12 best detectors, including 'VJ' and 'HOG', to the logistic and isotonic weighted t-norm and the logistic weighted average. In the "Reasonable" scenario, the logistic weighted t-norm led to an improvement of 9% in terms of log-average miss rate and 6% for the isotonic one. The weighted average only led to 1% improvement. In the "Overall" scenario, the logistic and isotonic t-norm have very similar results with a performance improvement of 4% while the weighted average performed worse than the 'MT-DPM+Context' alone. Results for the other scenarios, details of the isotonic combinations, detection examples and source code are supplied as supplementary materials on the authors' website 1 .

Conclusions and perspectives

In this paper, we proposed and evaluated an evidential framework for combining pedestrian detectors, noticing it could also be applied directly to detect other classes of objects. The use of belief functions and evidential combination rules yielded much better results than classical probabilistic approaches. One novelty of our approach relies on the use of an optimized tnorm rule, which can take into account the dependencies between detectors. This property can become critical if many new detectors are to be added. As optimizing pairwise rules may provide only sub-optimal results, a global optimization will be investigated in future work. An important advantage of the proposed approach is that it allows us to easily include a new detector regardless of the features, training data and classifier it uses. Moreover, this modularity allows new detectors to rely on existing state-of-the-art ones. Therefore one may focus future research on the development of detectors specially designed to detect hard examples without risking an overall recall loss.
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 1 (a) List of algorithms evaluated on the Caltech Pedestrian Benchmark. (b) Percentage of detected pedestrians by at least k ∈ {1, 5, . . . , 34} detectors at 1 FPPI. The detections were done on the Caltech-Test dataset with the "Reasonable" and "Overall" scenarios.
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 3 (a) Logistic and isotonic calibration of the scores from the 'HOG' pedestrian detector. (b) Histogram of the scores.
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 45 Figure 5: Detectors hierarchical clustering. The colors show how the detectors are to be combined. The blues branches correspond to Dempster's rule, the red ones to the cautious rule and the green ones to a t-norm rule with parameter different from 0 and 1.
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