
HAL Id: hal-01119483
https://hal.science/hal-01119483

Preprint submitted on 23 Feb 2015

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A Refinement-Based Approach for Building Valid SOA
Design Patterns

Imen Tounsi, Mohamed Hadj Kacem, Ahmed Hadj Kacem, Khalil Drira

To cite this version:
Imen Tounsi, Mohamed Hadj Kacem, Ahmed Hadj Kacem, Khalil Drira. A Refinement-Based Ap-
proach for Building Valid SOA Design Patterns. 2014. �hal-01119483�

https://hal.science/hal-01119483
https://hal.archives-ouvertes.fr


A Re�nement-Based Approach for Building Valid SOA

Design Patterns

February 18, 2015

Imen Tounsi, Mohamed Hadj Kacem, Ahmed Hadj Kacem
Univ. Sfax, ReDCAD, Sfax, Tunisia

E-mail: imen.tounsi@redcad.org, mohamed.hadjkacem@redcad.org,
ahmed.hadjkacem@fsegs.rnu.tn

Khalil Drira
CNRS, LAAS, 7 avenue du colonel Roche, F-31400 Toulouse, France

Univ. Toulouse, LAAS, F-31400 Toulouse, France
E-mail: khalil@laas.fr

Abstract

Although design patterns have become increasingly popular, most of them are proposed
in an informal way, which can give rise to ambiguity and may lead to their incorrect usage.
Patterns proposed by the SOA design pattern community are described with informal visual
notations. Modeling SOA design patterns with a standard formal notation contributes to avoid
misunderstanding by software architects and helps endowing design methods with re�nement
approaches for mastering system architectures complexity. In this paper, we present a formal
re�nement-based approach that aims, �rst, to model message-oriented SOA design patterns
with the SoaML standard language, and second to formally specify these patterns at a high
level of abstraction using the Event-B method. These two steps are performed before under-
taking the e�ective coding of a design pattern providing correct by construction pattern-based
software architectures. Our approach is experimented through an example we present in this
paper. We implemented our approach under the Rodin platform, which we use to prove model
consistency.

1 Introduction

During its course of nearly �ve decades, software engineering has known several main evolu-
tions regarding approaches to software development. Structured programming gave way to the
concept of object-orientation. Today's current trend is clearly service orientation. Service-
oriented architecture (SOA), as emerging architectural model, attracts attention worldwide.
Recent advances in SOA, including storage and networking, are providing exciting opportuni-
ties to make signi�cant progress in solving complex real-world challenges.

However these architectures are subject to some quality attribute failures (e.g., reliability,
availability, and performance problems). Design patterns, as tested design solutions for com-
mon design problems within a context, have been widely used to tackle a spectrum of design
problems and solve these weaknesses (Erl, 2009).

Patterns, proposed by the SOA design pattern community, are described with informal
visual notations that can raise ambiguity and may lead to their incorrect usage (Erl, 2009).
Modeling these patterns with a standard formal notation contributes to avoid misunderstand-
ing by software architects and helps endowing design methods with re�nement approaches
for mastering system architectures complexity. The intent of our approach is to model and
formalize (Tounsi et al., 2013c,b) message-oriented SOA design patterns. These two steps are
performed before undertaking the e�ective coding of a design pattern, so that the pattern in
question will be correct by construction. Our approach allows to reuse correct SOA design
patterns, hence we can save e�ort on proving pattern correctness.

1



Our approach is based principally on three contributions. The �rst contribution consists
in modeling SOA design patterns with a semi-formal language. We propose an SoaML-based
(Service oriented architecture Modeling Language) approach for this modeling step. We in-
troduce a metamodel, using extended UML 2.0 notations. This modeling step is proposed
in order to attribute a visual standard notation to SOA design patterns. This part of our
approach provides several advantages. First, the modeling process is de�ned in a high level
of abstraction providing a generic and reusable model. Second, our approach seeks to take
advantage of the expressive power of standard visual notations provided by the semi-formal
SoaML 2.0 language that makes easy the understanding of design patterns. Third, a software
environment supporting the di�erent features of this approach, has been implemented and
integrated as a plug-in in the open source Eclipse framework.

The second contribution consists in proposing a generic formalization of these patterns
using the Event-B method. This step is enhanced with the automatic transformation of
SoaML pattern diagrams to Event-B pattern speci�cations with respect to transformation
rules (Tounsi et al., 2013a). We implement a rule-based generator which automatically trans-
lates the design pattern models that can be modeled using our tool into Event-B speci�cations
(Tounsi et al., 2013d).

Finally, the third contribution is based on formal methods. Using the Rodin theorem prover
tool supporting Event-B, we check the syntax of the generated Event-B SOA design pattern
models as well as their correctness (i.e. no deadlocks...)

An other advantage of our approach is the use of re�nement techniques that make the
understanding of pattern models easy. At the �rst level of the modeling step an abstract
model is speci�ed which is further re�ned in the next levels to add more details. The graphical
models in SoaML are automatically translated into Event-B speci�cations at each re�nement
level.

The remainder of the paper is organized as follows. In section 2, we provide some back-
ground information on the SoaML language and the Event-B notation. In section 3, we give
a short overview of our approach. In section 4, we present our approach for modeling and
re�ning SOA design patterns, then we show how we can prove their correctness. In section 5,
we illustrate our approach through a case study. In section 6, we present the Eclipse plug-in
that implements our approach. In section 7, we discuss the related works. We examine several
research done on the modeling and the formalisation of design patterns in general. Ultimately,
in section 8, we present conclusions and future work.

2 Basic concepts and notations

In this section, we provide some background information on the SoaML modeling language
and the Event-B method.

2.1 SoaML

SoaML1 (Service oriented architecture Modeling Language) (OMG, 2012) is a speci�cation
developed by the OMG that provides a standard way to architect and model SOA solutions.
It consists of a UML pro�le and a metamodel that extends the UML 2.0 (Uni�ed Modeling
Language).

To model SOA design patterns, we can represent many description levels. The highest level
is described as Services Architectures where participants are working together using services.
It is modeled using UML collaborations diagram stereotyped �ServicesArchitecture�. The
next level is described as Participants using UML class diagram stereotyped �Participant�.
The Service Contract is at the middle of the SoaML set of SOA architecture constructs,
it describes services mentioned above and it is modeled using UML collaboration diagram
stereotyped �ServiceContract�. In the next level, we �nd the speci�cation of Interfaces
and Message Types using UML class diagrams stereotyped respectively �ServiceInterface�
and �MessageType�. For both the service contract and the interface levels we can specify
behavioral features of patterns using any UML behavior (e.g sequence or activity diagrams).

1http ://www.omg.org/spec/SoaML/

2



2.2 Event-B method

Event-B (Abrial, 2010) is a formal method for developing systems via stepwise re�nement,
based on �rst-order logic. The method is enhanced by its supporting Rodin Platform (Abrial
et al., 2010) for analyzing and reasoning rigorously about Event-B models. The basic concept
in the Event-B development is the model which is made of two types of components: contexts
andmachines. A context describes the static part of a model, whereas amachine describes the
dynamic behavior of a model. Machines and contexts can be inter-related: a machine can be
refined by another one, a context can be extended by another one and a machine can see one
or several contexts. Each context has a name and other clauses like "Extends", "Constants",
"Sets" to declare a new data type and "Axioms" that denotes the type of the constants and
the various predicates which the constants obey. It is a predicate that is assumed to be true
in the rest of the model. Like a context, a machine has an identi�cation name, variables that
constitute the state of the machine (their values are determined by an initialization and can
be changed by events), invariants and events.

A relation is used to describe ways in which elements of two distinct sets are related. If
A and B are two distinct sets, then R ∈ A ↔ B denotes a relation between A and B. The
domain of R is the set of elements in A related to something in B: dom(R). The range of R
is the set of elements of B to which some element of A is related: ran(R). We also say that A
and B are the source and target sets of R, respectively. Given two elements a and b belonging
to A and B respectively, we call ordered pair a to b, the pair having the �rst element a (start
element) and the last element b (arrival element). We denote that by a 7→ b or (a,b).

A partial function is a relation where each element of the domain is uniquely related to
one element of the range. If A and B are two sets, then A 7→ B denotes the set of partial
functions from A to B.

Partitions are used in two di�erent manners. The �rst one is partition(S, A,B). It means
that A and B partition the set S, i.e. S=A∪B ∧ A∩B = ∅. The second one is partition(S,
{A},{B},{C}) which is a specialized use for enumerated sets. It means that S={A,B,C} ∧
A6=B ∧ B 6=C ∧ C 6=A.

3 Our approach in a nutshell

Our contribution is a formal architecture-centric design approach. It supports the graphi-
cal modeling of message-oriented SOA design patterns with the semi-formal SoaML standard
language (OMG, 2012), the automatic transformation of pattern diagrams to Event-B spec-
i�cations (Abrial, 2010) and the formal veri�cation of their correctness. We provide both
structural and behavioral features of SOA design patterns in the modeling step as well as in
the formalization step. As presented in Figure 1, in the modeling step, structural features
are described with the �Participant� diagram, the �ServiceInterface� diagram and the �Mes-
sageType� diagram. These diagrams are modeled with an Eclipse plug-in that we propose and
transformed to one or several CONTEXTS in the Event-B speci�cations. Behavioral features,
are described with the UML2.0 �Sequence� diagram that provides a graphical notation to
describe dynamic aspects of design patterns. This diagram is modeled with an Eclipse plug-in
that we propose and transformed to one or several MACHINES in the Event-B speci�cations.
All the speci�cations are implemented under the Rodin (Abrial et al., 2010) platform in order
to be checked. The speci�cation of a pattern P will be too complicated and error prone if it is
done in one shot. In order to handle this complexity, we de�ne speci�cation levels by using a
step-wise development approach. Models are developed in a stepwise manner which are then
automatically translated into Event-B speci�cations. Here is our strategy, it is explained in
Figure 1:

• In the �rst level (Level0), we start with creating a very abstract model (a context PC0
and a machine PM0).

• In the next levels, we use the horizontal re�nement techniques (de�ned in (Abrial, 2010))
to gradually introduce detail and complexity into our model until obtaining the �nal
pattern speci�cation. By applying a horizontal re�nement, we extend the state of a
pattern model by adding new variables. We can strengthen the guards of an event or
add new guards. We also add new actions in an event. Finally, it is possible to add new
events (Abrial, 2010). When we move from Level(i) to Level(i+1), we add a new entity
and its connections to the model. In Level(i+1), the context PCi is extended with the
context PC(i + 1) and the machine PMi is re�ned with the machine PM(i + 1). The

3



Figure 1: Approach overview (see online version for colours)

«ServiceInterface» 
Diagram

«MessageType» 
Diagram

Sequence Diagram
«Participant» 

Diagram

Behavioral
features

Structural 
features

CONTEXT MACHINE Sees

Transformation 
SoaML

CONTEXT 
PC0

Extends

Add a new entity & connections

MACHINE 
PM1

MACHINE 
PM0

Refines

Sees

Sees

…

L
ev

el
0

CONTEXT 
PC1

L
ev

el
1

R
o
d
in

P
la
tf
o
rm

Event-B

Refines

MACHINE 
PMn

CONTEXT 
PCn

Extends

Sees
L

ev
el

n

re�ned machine sees the extended context. The Event-B speci�cations are proved by
theorem provers at each re�nement step.

4 Proposed approach

The upcoming sections provide descriptions of our proposed approach.

4.1 Modeling SOA design patterns

We provide a modeling solution for describing SOA design patterns using a visual notation
based on the graphical SoaML language (OMG, 2012). Three main reasons lead to use SoaML.
First, it is a standard modeling language de�ned by OMG. Second, it is used to describe SOA.
Third, diagrams used in SoaML, allow to represent structural features as well as behavioral
features of design patterns.

The SoaML metamodel extends the UML2.0 metamodel to support an explicit service
modeling in distributed environments. This extension is perfectly applied to SOA design pat-
terns modeling. We model structural features of design patterns with �Participant� diagram,
�ServiceInterface� diagram and �MessageType� diagram. We model behavioral features with
the UML2.0 sequence diagram. To model these diagrams, we use the part of the SoaML meta-
model presented in Figure 2. Gray classes represent abstract metaclasses and white classes
represent stereotypes. In follows, we only present the base concepts that we use in the pattern
modeling.

• Entities, that make up the architecture of an SOA design pattern, can be either �Partic-
ipants� or �Agents�. A �Participant� represents a subclass of Component that provides
and/or consumes services. �Agents� extend �Participants� with the ability to be active
(their needs and capabilities may change over time).

• Entities can have �Ports� that constitute interaction points with their environment.
These �Ports� are related to one or more provided or required Interfaces and their
types can be either �Service� or �Request�.

4



• The communication path between Services and Requests within an architecture is called
�ServiceChannel�, it extends the metaclass Connector.

• A �Capability� is the ability to act and produce an outcome that achieves a result, it
extends the metaclass Class. A �Participant� can realize zero or several capabilities
with the link �CapabilityRealization�.

• �ServiceInterfaces� are used to describe provided and required operations to complete
services functionality, they can be used as protocols for a service port or a request port.

• The �MessageType� is used to specify information exchanged between services, it extends
the metaclass DataType. An �Attachment� is a part of a message that is attached to
it, it extends the metaclass Property. The stereotype �Property� extends the metaclass
Property with the ability to be distinguished as an identifying property (�primary key"
for messages).

Figure 2: SOA design patterns Metamodel

«Participant»

«S
er

vi
ce

»

«R
eq

ue
st

»

Port

Component

Connector

1..*

Interface

0..* 0..*+
/p

ro
vi

de
d

+
/r

eq
ui

re
d

12

ConnectorKind

ha
s

DelegationAssembly

enumeration

«A
ge

nt
»

«Port»
ConnectorRequired : Boolean=True

R
ed

ef
in

es
ty

pe
}*

*

Participants and Service Interfaces

*

1

Realization Property

«ServiceChannel»

PackageArtifact

«ServiceInterface»

0..1{R
ed

ef
in

es

0..1
{Redefines type} Class

Capabilities MessagesClass Descriptions

0..*

«Capability»

«CapabilityRealization»

*

1
*

«MessageType»

DataType

«Attachment»

«Categorization»

Dependency

«Category» «Catalog»

«Belongs_To»

ToCatalogFromCategory

F
ro

m
P

ar
ti

ci
pa

nt

To
C

at
eg

or
y

«Property»
isID : Boolean

«NodeDescriptor»
0..*

1

0..*

In some SOA design patterns entities are organized in various ways across many orthogonal
dimensions, for example they can be organized by service layers or by physical boundaries.
�Catalogs� provide a means of classifying and organizing elements by �Categories� for any
purpose, they extends the metaclass Package and specializes the stereotype �NodeDescriptor�.
�Categories� are related to �Catalogs� with the relation �Belongs_to�. A collection of related
entities are characterized by a �Category�. Applying a �Category� to an entity by using a
Categorization places that entity in the �Catalog�.

4.2 Formalizing SOA design patterns

In this section, we present an overview of the generic formalization of SOA design patterns
with the Event-B method (Abrial, 2010). We use the Rodin Platform (Abrial et al., 2010) in
order to prove the correctness of the pattern speci�cation.

Three main reasons lead to use Event-B method. First, it allows the speci�cation of
structural and behavioral features of design patterns. Second, re�nement techniques proposed
by this method allow to represent patterns at di�erent abstraction levels. Third, mathematical
proofs allow to verify model consistency and consistency between re�nement levels.

A pattern P is described with structural and behavioral features. Structural features are
speci�ed with one or several contexts PCi and behavioral features are speci�ed with one or
several machines PMi.

5



4.2.1 Structural Features

Structural features are generally speci�ed by assertions on the existence of types of entities in
the pattern. The con�guration of the entities is also described in terms of the static relation-
ships between them (Zhu and Bayley, 2010).

Entities, that compose the architecture of an SOA design pattern, can be either Participants
or Agents. Using Event-B, we specify in a context PCi the two entities as constants. The
set Entity is composed of the set of all Participants and the set of all Agents (Entity =
Participant∪Agent ∧ Participant∩Agent = ∅). This is speci�ed by using a partition in the
AXIOMS clause (Entity_partition).

SETS
Entity

CONSTANTS
Participant
Agent

AXIOMS
Entity_partition : partition(Entity, Participant,Agent)

Participants name Pi are speci�ed as constants in the CONSTANTS clause. The set
of participants is composed of all participants name. Formally, this is speci�ed by
a partition (Participant_partition) i.e. Participant = {P1,...,Pn} ∧ P1 6=P2 ∧...∧
Pn−1 6=Pn.

CONSTANTS
P1

...
Pn

AXIOMS
Participant_partition : partition(Participant, {P1}, ..., {Pn})

Agents name Ai are also speci�ed as constants. The set of agents is speci�ed using
a partition in the AXIOMS clause (Agent_partition), that is Agent = {A1,...,An} ∧
A1 6=A2 ∧...∧ An−1 6=An.

CONSTANTS
A1

...
An

AXIOMS
Agent_partition : partition(Agent, {A1}, ..., {An})

In the SoaML modeling a �ServiceChannel� PushEiEj is a connection between two
entities. It can be between two participants (PushPiPj), two agents (PushAiAj) and
between a participant and an agent. When the direction of the connection is from a
participant to an agent, it is named PushPiAj and if it is from an agent to a participant,
it is named PushAiPj . Formally, ServiceChannels are speci�ed with an Event-B relation
between two entities. ServiceChannel's name PushEiEj are speci�ed with constants in
the CONSTANTS clause. The set of ServiceChannels is composed of all ServiceChannel's
name. This is speci�ed formally with a partition (ServiceChannel_partition).

CONSTANTS
ServiceChannel
PushEiEj , ..., PushEnEm

AXIOMS
ServiceChannel_Relation : ServiceChannel ∈ Entity↔ Entity
ServiceChannel_partition : partition(ServiceChannel, {PushEiEj}, ...,
{PushEnEm})

To de�ne the source and the target of a service channel, two axioms must be added,
namely the domain and the range.

6



PushEiEj_Domain : dom({PushEiEj}) = {Ei}
PushEiEj_Range : ran({PushEiEj}) = {Ej}

In the SoaML modeling �Catalogs� provide a means of classifying and organizing
elements by �Categories�. A collection of related entities are characterized by a �Cat-
egory�. Applying a �Category� to an entity by using a Categorization places that
entity in the �Catalog�.

Formally, �Catalogs� are speci�ed with an Event-B catalog type and catalogs name
Ci are speci�ed with constants in the CONSTANTS clause. The set of Catalogs is composed
of all Catalogs name. This is speci�ed formally with a partition (Catalog_partition).
Like �Catalogs�, �Categories� are speci�ed with an Event-B category type and cat-
egories name Ci are speci�ed with constants in the CONSTANTS clause. The set of
Categories is composed of all Categories name. This is speci�ed formally with a parti-
tion (Category_partition). The containment relation of a Catalog with Categories is
speci�ed with the relation Belongs_to and the link of Categorization is speci�ed with
a relation between a Category and an Entity.

SETS
Catalog
Category

CONSTANTS
C1, ..., Cn

Ca1, ..., Can

Belongs_to
Categorization

AXIOMS
Catalog_partition : partition(Catalog, {C1}, ..., {Cn})
Category_partition : partition(Category, {Ca1}, ..., {Can})
Belongs_to_Relation : Belongs_to ∈ Catalog↔ Category
Categorization : Categorization ∈ Category↔ Entity
Belongs_to_init : Belongs_to = {Cn 7→ Ca1, ..., Cn 7→ Can}
Categorization_init : Categorization = {Ca1 7→ Pi, ..., Can 7→ Aj}

A �Capability� is the ability to produce an outcome that achieves a result. Each
Participant is comprised of a set of capabilities. Capabilities are formally speci�ed as
follows.

SETS
Capability

CONSTANTS
Cp1, ..., Cpn
Provide

AXIOMS
Capability_partition : partition(Capability, {Cp1}, ..., {Cpn})
Provide_Relation : Provide ∈ Participant↔ Capability
Provide_init : Provide = {Pi 7→ Cpk, ..., Pj 7→ Cpm}

The �ServiceInterface� diagram models entity interfaces and their relations with
messages. We don't do the formalisation of all the elements of this diagram to the
event-B speci�cations, but we do it to know only what entity can send what message.

CONSTANTS
Can_Send

AXIOMS
Can_Send_Relation : Can_Send ∈ entity↔MessageType
Can_Send_init : Can_Send = {Ei 7→Mk, ..., Ej 7→Mm}

�MessageType� is the type of messages exchanged between di�erent entities, it
is declared in the SETS clause. Messages name Mi are speci�ed in the CONSTANTS

clause. They are attributed with their type with a partition in the AXIOMS clause
(Message_partition).

7



SETS
MessageType

CONSTANTS
M1, ...,Mn

AXIOMS
Message_partition : partition(MessageType, {M1}, ..., {Mn})

4.2.2 Behavioral features

Behavioral features of a design pattern are generally de�ned by assertions on the tem-
poral orders of the messages exchanged between the di�erent pattern entities (Zhu and
Bayley, 2010).

A machine of a pattern speci�cation PMi has a state de�ned by means of a number
of variables and invariants. Some of variables can be general as the variable Send, which
denotes the sent message and the variable Process, which denotes the message process.
The variable Send is de�ned with the invariant Send_Relation which specify that Send
is a relation between a ServiceChannel and a MessageType so we know the sender,
the receiver and the sent message. The variable Process is de�ned with the invariant
Process_Function which specify that Process is a function between a Participant and
a MessageType so we know which participant is processing which message.

VARIABLES
Send
Process

INVARIANTS
Send_Relation : Send ∈ ServiceChannel↔MessageType
Process_Function : Process ∈ Participant 7→MessageType

Each pattern has its own behavior but some events can be general like the event of
sending a message Sending_Mi and the event of processing a message Processing_Mi.

Event Sending_Mi

when
grd : G(v)

then
act : Send := Send∪
{PushEiEj 7→Mi}

end

Event Processing_Mi

when
grd : G(v)

then
act : Process := ProcessC−
{Pi 7→Mi}

end

4.2.3 Formal veri�cation

SoaML as a semi-formal language provides many advantages to de�ning SOA design
patterns, such as standard visual notation. However, the fact that SoaML lacks a precise
semantics is a serious drawback because it does not allow proofs and in consequence,
with SoaML, we can not verify required properties like liveness (no deadlocks), and
reachability property.

During our development, we use a systematic approach that consists in developing a
series of more and more accurate models of the pattern we want to build. This technique
is called re�nement (Abrial, 2010). Each pattern model is analyzed and proved, thus
enabling us to establish that it is correct relative to a number of criteria. As a result,
when the last model is �nished, we will be able to say that this model is correct by
construction (Abrial, 2010).

Four formal veri�cation techniques have been used for checking design patterns;
type checking, model checking, animation and theorem proving. Type checking is a
technique controlling low level properties of variables in a program. We use it to check
the syntax of the generated Event-B pattern speci�cations and to detect modeling errors
(ex. modeling incomplete ServiceChannel). It is done within the compiler. Model

8



checking and animation are two techniques used to show the dynamic behavior of a
model and they allow to systematically explore all its reachable states. We use them
to check the behavior of the pattern if it is correct or not. Some temporal/behavioral
properties are veri�ed like liveness (no deadlocks present in the model) and reachability
(prove that an event whose guard is not necessarily true now will nevertheless certainly
occur within a certain �nite time) properties. This is done by the model checker ProB
(Leuschel and Butler, 2003). Theorem proving technique allows to check properties
which can be experimented either as predicates (INVARIANTS, AXIOMS, THEOREMS) or
with guards in the events. It is also ensured by proof obligations. They de�ne what
is to be proved to ensure the consistency of an Event-B pattern model. As example
of consistency constraint, we check that each entity can't send a message only if it is
authorised. This is controlled by the invariant Can_Send_INV. For sequence diagrams,
we require that every message must start an activation.

INVARIANTS
Can_Send_INV : ∀z, x, y ·z ∈ Entity ∧ {x 7→ y} ∈ ServiceChannel
↔MessageType ∧ dom({x}) = {z} ∧ x 7→ y ∈ Send⇒ z 7→ y ∈ Can_Send

When we enrich the pattern model by using re�nement techniques, we make sure
that re�ned models are not contradictory. These proofs are automatically generated
by the Rodin Platform. Our approach allows developers to reuse correct SOA design
patterns, hence we can save e�ort on proving pattern correctness.

5 Case study: Asynchronous Queuing pattern

Asynchronous Queuing pattern2 is an SOA design pattern for inter-service message
exchange (Erl, 2009). It belongs to the category "Service Messaging Patterns". It
establishes an intermediate queuing mechanism that enables asynchronous message ex-
changes and increases the reliability of message transmissions when service availability
is uncertain. The problem addressed by this pattern is that when services interact
synchronously, it can inhibit performance and compromise reliability when one of ser-
vices cannot guarantee its availability to receive the message. Synchronous message
exchanges can impose processing overhead, because the service consumer needs to wait
until it receives a response from its original request before proceeding to its next action.
Responses can introduce latency by temporally locking both consumer and service. The
proposed solution by this pattern is to introduce an intermediate queuing technology
into the architecture. The behavior of this pattern is described in detail section 5.1.2.

5.1 Modeling step

5.1.1 Structural features

In the structural modeling step, we specify entities of the pattern and their dependencies
(connections) in the �Participant� diagram (Figure 3) and we specify their interfaces
and exchanged messages in the �ServiceInterface� and �MessageType� diagrams re-
spectively (Figure 4).

ServiceA, ServiceB and the Queue are de�ned as participants because they pro-
vide and use services. As shown in Figure 3, ServiceB provides a ServiceX used by
ServiceA and the Queue provides a storage service. We did not represent the stor-
age service provided by the Queue in order to concentrate principally on the commu-
nication between ServiceA and ServiceB and to not complicate the presented dia-
grams. Participants provide capabilities through service ports. Both ServiceA and
ServiceB have a port typed with �ServiceX". ServiceB is the provider of the service
and has a �Service� port. ServiceA is a consumer of the service and uses a �Request�
port. We note that ServiceB's port provides the �ProviderServiceX" interface and

2http://soapatterns.org/design_patterns/asynchronous_queuing

9



requires the �OrderServiceX" interface. Since ServiceA uses a �Request� port pre-
ceded with a tilde (∼), the conjugate interfaces are used. So, ServiceA's port provides
the �OrderServiceX" interface and uses the �ProviderServiceX" interface. In this
diagram, �ServiceChannels� are explicitly represented, they enables communication
between the di�erent participants.

Figure 3: �Participant� diagram (see online version for colours)

« Participant »
ServiceA

« Participant »
ServiceB 

« Participant »
Queue

« Request »
: ~ServiceX

ProviderServiceX

OrderServiceX

« Service »
: Service X

ProviderServiceX

OrderServiceX

«ServiceChannel» 
PushAQ

«ServiceChannel» 
PushBQ

«ServiceChannel» 
PushQB

«ServiceChannel» 
PushQA

IJCCIJCC

Figure 4 shows a couple of �MessageType� that are used to de�ne the information
exchanged between ServiceA and ServiceB. These messages are �RequestMessage"
and �ResponseMessage", they are used as types for operation parameters of the service
interfaces. The type of the ServiceB's port is the UML interface �ProviderServiceX"
that has the operation �processServiceXProvider". This operation has a message
style parameter where the type of the parameter is the MessageType �ResponseMessage".
ServiceA expresses its request for the �ServiceX" using its request port. The type of
this request port is the UML interface �OrderServiceX". This interface has an op-
eration �ProcessServiceXOrder" and the type of parameter of this operation is the
MessageType �RequestMessage".

Figure 4: �ServiceInterface� and �MessageType� diagrams

« Interface »
ProviderServiceX

« Interface »
OrderServiceX

+ processServiceXOrder (rq : RequestMessage) 
«ServiceInterface»

~ServiceX

«ServiceInterface»
ServiceX

«use»

«use»

«MessageType»
RequestMessage

«MessageType»
ResponseMessage

ProviderServiceX

+ processServiceXProvider (rs : ResponseMessage) 

«Participant»
ServiceA

«Request»
: ~ServiceX

OrderServiceX

+

processServiceXOrder 

«Participant»
ServiceB

«Service»
: ServiceX

ProviderServiceX

processServiceXProvider 

+

«use»
Type Type

new

5.1.2 Behavioral features

We use UML2.0 sequence diagram (Figure 5) to specify behavioral features. During a
course of exchanging messages, the �rst service (ServiceA) sends a request message to
the second one (ServiceB), at that time, its resources are locked and consumes memory.
This message is intercepted and stored by an intermediary queue. ServiceB receives

10



the message forwarded by the Queue and ServiceA releases its resources and memory.
While ServiceB is processing the message, ServiceA consumes no resources. After
completing its processing, ServiceB issues a response message back to ServiceA (this
response is also received and stored by the intermediary Queue). ServiceA receives the
response and completes the processing of the response while ServiceB is deactivated.

Figure 5: Sequence diagram (see online version for colours)

Sending Request

Transmissing Request 
Processing
Request

Sending Response

Storing Request

Storing 

ServiceA ServiceBQueue

Storing 
Response

Transmissing Response 

Processing
Response

AQM0
AQM1

IJCC

5.2 Formalization Step

To illustrate the formalization step of our approach, we apply it on the same pattern
example used in the modeling step (Asynchronous Queuing pattern). The model of
this pattern is composed of two contexts AQC0 and AQC1 and two machines AQM0
and AQM1 (AQC denotes Asynchronous Queuing Context and AQM denotes Asyn-
chronous Queuing Machine). In the �rst level of speci�cation, we specify the pattern
at a high level of abstraction, i.e. we suppose that the communication is only between
ServiceA and ServiceB. In the second level, we add the Queue and all its behavior to
the model. Machines and contexts relationships are illustrated in Figure 6.

Figure 6: Contexts and machines relationships

MACHINE 
AQM1

MACHINE 
AQM0

CONTEXT
AQC1

Refines

Sees

Sees CONTEXT
AQC0

Extends

5.2.1 Structural features

In theAsynchronous Queuing pattern, we have three Participants: ServiceA, ServiceB
and the Queue. In the context AQC0, we specify only two participants ServiceA and
ServiceB.

CONSTANTS
ServiceA
ServiceB

AXIOMS
Participant_partition : partition(Participant, {ServiceA}, {ServiceB})

11



ServiceA and ServiceB are connected together through the ServiceChannels PushAB
and PushBA.

CONSTANTS
ServiceChannel
PushAB
PushBA

AXIOMS
ServiceChannel_Relation : ServiceChannel ∈ Entity↔ Entity
ServiceChannel_partition : partition(ServiceChannel, {PushAB}, {PushBA})

For each service channel, we add two axioms in order to de�ne the domain and the
range. For example, for PushAB relation we add the following two axioms to denote
that its source is ServiceA and its target is ServiceB.

PushAB_Domain : dom(PushAB) = {ServiceA}
PushAB_Range : ran(PushAB) = {ServiceB}

We did not specify ports and interfaces because they are �ne details.Whereas,
we specify messages to know what message is being exchanged. So, we de�ne the
MessageType set, two constants RequestMessage and ResponseMessage and then
the message partition.

SETS
MessageType

CONSTANTS
RequestMessage
ResponseMessage

AXIOMS
Message_partition : partition(MessageType, {RequestMessage},
{ResponseMessage})

The second context AQC1 is an extension of the context AQC0. In this context
we add a new constant Queue and we rede�ne the Participant_partition by adding
the Queue. Also we add four constants PushAQ, PushQB, PushBQ and PushQA
to de�ne the new ServiceChannels. Axioms that restrict the domain and the range
of these ServiceChannels are also added to the context. This part of speci�cation
belongs to the �Participant� diagram (Figure 3) and �MessageType� diagram (Figure
4).

5.2.2 Behavioral features

To specify behavioral features, we have two steps. First, we specify the pattern with a
machine at a high level of abstraction. Second, we add all necessary details to the �rst
machine by using the re�nement technique.

In the �rst machine AQM0, we only specify the communication between ServiceA
and ServiceB, i.e. the queue is completely transparent, meaning that neither ServiceA
nor ServiceB may know that a queue was involved in the data exchange. So, the be-
havior is described as follows: ServiceA sends a RequestMessage to ServiceB and
then remains released from resources and memory (unavailable). When ServiceB be-
comes available, it receives the Request Message, process it and sends the Response
Message. When ServiceA becomes available, it receives the Response Message, pro-
cess it and then becomes deactivated.

Formally, we can use three variables to represent the state of the pattern; Dispo
to denote the state of the participant either available or not, Send to indicate who
sends what message and Process to indicate which participant is processing what mes-
sage. The �rst invariant Dispo_Function speci�es the availability feature of partic-
ipants. This feature is speci�ed with a partial function which is a special kind of
relation (each domain element has at most one range element associated with it) i.e.
the function Dispo relates Participants to a Boolean value in order to specify their

12



availability. We use the partial function because a participant cannot be available and
not available at the same time. The second invariant, i.e. Send_Relation, speci�es
what is the sent message, who is the sender and the receiver. The third invariant, i.e.
Process_Function, speci�es the message process with a partial function that relates
a Participant to a MessageType.

INVARIANTS
Dispo_Function : Dispo ∈ Participant 7→BOOL
Send_Relation : Send ∈ ServiceChannel↔MessageType
Process_Function : Process ∈ Participant 7→MessageType

As presented in the pattern, initially ServiceA is available and ServiceB is not
available. Also, there are no messages sent and no message is processed. Hence, both
Send relation and Process function are initialized to the empty set.

INITIALISATION
begin
init1 : Dispo := {ServiceA 7→ TRUE, ServiceB 7→ FALSE}
init2 : Send := ∅
init3 : Process := ∅

end

The dynamic system can be seen in Figure 5. It is formalized by the following
events; Sending_Req, Processing_Req, Sending_Resp and Processing_Resp
(Req denotes Request and Resp denotes Response). Sending the request message starts
when there is no messages sent and ServiceA is available. This is formally speci�ed
with the event Sending_Req. This is illustrated in Figure 7.

Figure 7: AQM0 Events

Sending_Req Processing_Req Sending_Resp Processing_Resp

���

Event Sending_Req
when
grd1 : Send = ∅
grd2 : ServiceA ∈ dom(Dispo) ∧Dispo(ServiceA) = TRUE

then
act1 : Send := Send ∪ {PushAB 7→ RequestMessage}
act2 : Dispo(ServiceA) := FALSE

end

The event of processing the request is triggered when the message is sent, not yet
processed and ServiceB is available. In the action part, we add, to the process function,
the pair (ServiceB 7→ RequestMessage) to denote that ServiceB is processing the
request.

Event Processing_Req
when
grd1 : RequestMessage ∈ ran(Send)
grd2 : RequestMessage /∈ ran(Process)
grd3 : ServiceB ∈ dom(Dispo) ∧Dispo(ServiceB) = TRUE
then
act1 : Process := ProcessC− {ServiceB 7→ RequestMessage}

end

ServiceB sends the ResponseMessage when the request message is processed and
when ServiceB is available. After that ServiceB becomes unavailable.

13



Event Sending_Resp
when
grd1 : ServiceB ∈ dom(Dispo) ∧Dispo(ServiceB) = TRUE
grd2 : RequestMessage ∈ ran(Process)
grd3 : ResponseMessage /∈ ran(Send)

then
act1 : Send := Send ∪ {PushBA 7→ ResponseMessage}
act2 : Dispo(ServiceB) := FALSE

end

After sending the response, ServiceA process the received message and becomes
unavailable.

Event Processing_Resp
when
grd1 : RequestMessage ∈ ran(Send)
grd2 : ServiceA ∈ dom(Dispo) ∧Dispo(ServiceA) = TRUE
then
act1 : Process := ProcessC− {ServiceA 7→ ResponseMessage}
act2 : Dispo(ServiceA) := FALSE

end

The second machine AQM1 re�nes the cited above AQM0 machine and uses the
AQC1 context. In the AQM1 machine, we introduce the behavior of the Queue, so
as to complete all the behavior of the pattern. We add two new variables named
Store and Transmit. Store is speci�ed with a relation that relates a Participant to a
MessageType. We add an invariant that restricts the domain of this relation to only the
Queue. Consequently, Store reveals what message the queue is storing. Transmit is
speci�ed with a partial function that relates a Participant to a MessageType. We add
an invariant that restricts the domain of this function to only the Queue. Consequently,
Transmit reveals what message the Queue is transmitting. Initially Store relation and
Transmit function are both initialized to the empty set.

INVARIANTS
Store_Relation : Store ∈ Participant↔MessageType
Store_Dom_Rest : dom(Store) = {Queue} ∨ Store = ∅
Transmit_Function : Transmit ∈ Participant 7→MessageType
Transmit_Dom_Rest : dom(Transmit) = {Queue} ∨ Transmit = ∅

The AQM1machine events are de�ned in Figure 8. We keep the Sending_Req and
the Sending_Resp events. We add four new events namely Storing_Req, Trans-
mitting_Req, Storing_Resp and Transmitting_Resp. These events are related
to the Queue behavior. We add more details to the abstract events Processing_Req
and Processing_Resp.

Figure 8: AQM1 events (see online version for colours)

Sending_Req Processing_Req Sending_Resp Processing_Resp

Processing_Req Processing_Resp

refines refines

Storing_Req

skip

refines

Transmitting_Req

skip

refines

Storing_Resp

skip

refines

Transmitting_Resp

skip

refines

skip skip skip skip

IJCC

Due to space restrictions, we did not present the four new events. We present only
Storing_Req and Transmitting_Req events, the other two events are similar to
them. The event Storing_Req is triggered when the RequestMessage is sent, not

14



yet processed and when ServiceB is not available. When the message is stored, the
Transmitting_Req event can be triggered.

Event Storing_Req
when
grd1 : RequestMessage ∈ ran(Send)
...
grd4 : Stores = ∅

then
act1 : Stores := Stores ∪ {Queue 7→ RequestMessage}
end

Event Transmitting_Req
when
grd1 : RequestMessage ∈ ran(Stores)

then
act1 : Transmit := TransmitC− {Queue 7→ RequestMessage}
end

The two events of processing the messages are re�ned by adding in the guards clause
the condition of transmitting the message. If a participant (ServiceA or ServiceB)
receives a message, the storage of this message in the Queue becomes unnecessary, so
in the processing event we empty the Queue.

6 Tool support

Our approach is enhanced by an Eclipse plug-in3 . It is a graphical modeling tool
that makes the modeling of SOA design patterns easier. It ensures an easy and e�-
cient modeling way of SOA design patterns. For the development of the plug-in, we
have used several Eclipse frameworks, i.e., GMF (Graphical Modeling Framework)
(Eclipse, 2010a), EMF (Eclipse Modeling Framework) (Steinberg et al., 2009) and
GEF (Graphical Editing Framework) (Eclipse, 2010b). Several diagrams are avail-
able in the plug-in; we can model �Participant� diagram, �Service Interface� diagram,
�Message Type� diagram and UML2.0 Sequence diagram.

The SOA design patterns diagram editor is a tool where diagrams can be created to
model patterns. Graphical elements can be picked up from a tool palette and created in
the Diagram editor pane in a �drag-and-drop" way. Elements of the palette are listed
under Nodes and Links elements. The �Property Editor" can be used for changing
properties of the object selected in the diagram editor pane. Property elements vary
depending on the type of the chosen object. Figure 9 shows the diagram editor of the
SOA design patterns with an illustration of the pattern example �Asynchronous Queue-
ing". After modeling a design pattern, the plug-in generates an XML �le describing
it.

The plug-in transforms the generated XML �le, according to transformation rules
(described in (Tounsi et al., 2013a)) expressed with the XSLT language (Tounsi et al.,
2013d), into Event-B speci�cations. These speci�cations can be imported under the
Rodin platform to verify their correctness.

By applying transformations rules on the generated XML speci�cations, we obtain
Event-B speci�cations presented in Figure 10.

7 Related work

This section surveys related research to design patterns in the �eld of software archi-
tecture. These research are mainly classi�ed into three branches of work according to

3The plug-in is available for download in:
http://www.redcad.org/members/imen.tounsi/

15



Figure 9: SOA design patterns plug-in (see online version for colours)

their architectural style. The �rst is about design patterns for Object-Oriented Ar-
chitectures, the second is about design patterns for Enterprise Application Integration
(EAI), and the third is for SOA.

Among research related to design patterns for Object-Oriented Architectures, we
present the work of Gamma et al (Gamma et al., 1995). They have proposed a set
of design patterns in the �eld of object-oriented software design. These patterns are
described with graphical notations based on the OMT (Object Modeling Technique)
notation. There is no formal semantics associated with these patterns, hence their
meanings can be imprecise. Several research have proposed the formalization of these
patterns (Gamma et al., 1995) (hereafter referred to as GoF) using di�erent formal
notations. We quote: Zhu et al. (Zhu and Bayley, 2010) specify 23 GoF patterns
formally. They use the First-Order Logic (FOL) induced from the abstract syntax of
UML de�ned in the Graphic Extension of BNF (GEBNF) to de�ne both structural
and behavioral features of design patterns. Taibi et al. (Taibi, 2006; Taibi and Ngo,
2003) develop the Balanced Pattern Speci�cation Language (BPSL) to formally specify
patterns, pattern composition and instances of patterns. This language is used as a
formal basis to specify structural features of design patterns in the FOL and behavioral
features in the Temporal Logic of Action (TLA). Taibi et al. use as a case study a
pattern composition proposed by GoF. Dong et al. (Dong et al., 2007) focus on the
speci�cation of design pattern component. They use the FOL to specify structural
features of patterns with Object-Z and TLA to specify their behavioral features. As
examples, they use GoF patterns. Kim et al. (Kim and Carrington, 2009) present an
approach to describe design patterns based on role concepts. First, they develop an
initial role meta-model using Eclipse Modeling Framework (EMF), then they transform
the meta-model to Object-Z in order to specify structural features. Behavioral features
of patterns are also speci�ed using Object-Z. Kim et al. also use GoF patterns as
examples. Blazy et al. (Blazy et al., 2003) propose an approach for specifying design
patterns and how to reuse them formally. They use B-method to specify structural
features of design patterns but they do not consider the speci�cation of their behavioral

16



Figure 10: Excerpt of Event-B speci�cation results (see online version for colours)

features.
Among research related to design patterns for EAI, we present the work of Gregor et

al. (Hohpe and Woolf, 2003). They have proposed a set of design patterns dealing with
EAI using messaging. These patterns are presented with a visual proprietary notation.
To our knowledge, there is no research work that propose the formalization of EAI
design patterns and as examples it refer to Gregor et al. patterns and to EAI patterns
in general.

In the branch of SOA design patterns, we �nd out the work of Erl. Erl has proposed a
set of design patterns for SOA (Erl, 2009). Each pattern is presented with a proprietary
informal notation presented in a symbol legend. These patterns are modeled without
any formal speci�cation. In order to understand them, the �rst step is to form a
knowledge on the pattern-related terminology and notation. In addition, Erl proposes
a set of speci�c pattern symbols used to represent a design pattern.

All cited research work are dealing with object oriented design patterns, in our
research work we are interested in SOA design patterns de�ned by Erl (Erl, 2009). For
these patterns, there are no work that model or formally specify them. Erl presents his
patterns with an informal proprietary notation because there is no standard modeling
notation for SOA, but now OMG announces the publication of the SoaML language
(OMG, 2012), it is a speci�cation for the UML pro�le and a metamodel for services.
So, in our work (Tounsi et al., 2013c,b), we propose to model SOA design patterns with
the SoaML standard language. After the modeling step, we propose to specify these
patterns formally. Similar to (Zhu and Bayley, 2010; Kim and Carrington, 2009) we
de�ne both structural and behavioral features of design patterns using FOL, but we
use a di�erent formal method which is Event-B.

In conclusion, most proposed patterns are described with a combination of textual
description and a graphical presentation (Gamma et al., 1995), some times using pro-
prietary notations (Hohpe and Woolf, 2003), (Erl, 2009), in order to make them easy

17



Approach
Object Oriented Design Pat-
terns

EAI
De-
sign
Pat-
terns

SOA De-
sign Pat-
terns

Gamma
et al.
(Gamma
et al.,
1995)

Zhu
et al.
(Zhu
and
Bay-
ley,
2010)

Taibi
et al.
(Taibi,
2006)

Dong
et al.
(Dong
et al.,
2007)

Kim
et al.
(Kim
and
Car-
ring-
ton,
2009)

Blazy
et al.
(Blazy
et al.,
2003)

Hope
et al.
(Hohpe
and
Woolf,
2003)

Erl
(Erl,
2009)

Our
appr
(Tounsi
et al.,
2013b)

Pattern
modeling

OMT GoF
(OMT)

GoF
(OMT)

GoF
(OMT)

GoF
(OMT)

GoF
(OMT)

Prop
Nota

Prop
Nota

SoaML

Structural
formal
speci�ca-
tion

_ GEBNF
(FOL)

BPSL
(FOL)

Object
Z
(FOL)

Object
Z
(FOL)

B
Method

_ _ Event-
B

Behavioral
formal
speci�ca-
tion

_ GEBNF
(FOL)

BPSL
(TLA)

TLA Object
Z
(FOL)

_ _ _ Event-
B

Table 1: Summary table of related works

to read and understand. However, using these descriptions makes patterns ambigu-
ous and may lack details. There have been many research that specify patterns using
formal techniques (Zhu and Bayley, 2010; Blazy et al., 2003) but research that model
design patterns with semi-formal languages are few (Mapelsden et al., 2002). We �nd a
number of approaches that formally specify di�erent sorts of features of patterns: struc-
tural, behavioral, or both. Table 1 is a recapitulation of related works that contains a
comparison between the above-mentioned approaches and our approach.

8 Conclusions

In this paper, we presented a formal re�nement-based design approach supporting the
modeling and the formalization of message-oriented SOA design patterns. The modeling
phase allows to represent SOA design patterns with a graphical standard notation using
the SoaML language. The formalization phase allows to formally specify both structural
and behavioral features of these patterns at a high level of abstraction using Event-B
method. We implemented the elaborated speci�cations under the Rodin platform.
We illustrated our approach through a pattern example within the "Service messaging
patterns" category. In order to reach the generality and the validity of our approach,
we have applied it to more pattern examples within the "Service messaging patterns"
category and "Transformation patterns" category.

In real applications, problems are complex and their solutions can be represented
by compound patterns that require the combination and reuse of other design patterns.
So, as future work, we are working on formally specifying pattern composition and
verifying some related properties.

9 Acknowledgment

This paper is done with the support of the Ministry of Higher Education and Scienti�c
Research of Tunisia within the Tunisian-French scienti�c cooperation (DGRS/CNRS).

References

J.-R. Abrial. Modeling in Event-B: System and Software Engineering. Cambridge
University Press, New York, NY, USA, 1st edition, 2010. ISBN 0521895561,
9780521895569.

18



J.-R. Abrial, M. Butler, S. Hallerstede, T. S. Hoang, F. Mehta, and L. Voisin. Rodin:
An Open Toolset for Modelling and Reasoning in Event-B. Int. J. Softw. Tools
Technol. Transf., 12(6):447�466, November 2010. ISSN 1433-2779. doi: 10.1007/
s10009-010-0145-y. URL http://dx.doi.org/10.1007/s10009-010-0145-y.

S. Blazy, F. Gervais, and R. Laleau. Reuse of speci�cation patterns with the B method.
In Proceedings of the 3rd international conference on Formal speci�cation and devel-
opment in Z and B, ZB'03, pages 40�57, Berlin, Heidelberg, 2003. Springer-Verlag.
ISBN 3-540-40253-5. URL http://dl.acm.org/citation.cfm?id=1761968.1761972.

J. Dong, P. S. C. Alencar, D. D. Cowan, and S. Yang. Composing pattern-based
components and verifying correctness. J. Syst. Softw., 80:1755�1769, November 2007.
ISSN 0164-1212. doi: 10.1016/j.jss.2007.03.005. URL http://portal.acm.org/citation.
cfm?id=1290192.1290213.

Eclipse. Graphical modeling framework. https://wiki.eclipse.org/Graphical_Modeling_Framework,
February 2010a.

Eclipse. Graphical editing framework. http://www.eclipse.org/gef/, February 2010b.

T. w. a. c. Erl. SOA Design Patterns (The Prentice Hall Service-Oriented
Computing Series from Thomas Erl). Prentice Hall PTR, 1 edition, January
2009. ISBN 0136135161. URL http://www.amazon.com/exec/obidos/redirect?tag=
citeulike07-20&path=ASIN/0136135161.

E. Gamma, R. Helm, R. E. Johnson, and J. Vlissides. Design Patterns: Elements
of Reusable Object-Oriented Software. Addison-Wesley, Reading, MA, 1995. ISBN
978-0-201-63361-0.

G. Hohpe and B. Woolf. Enterprise Integration Patterns: Designing, Building, and De-
ploying Messaging Solutions. Addison-Wesley Longman Publishing Co., Inc., Boston,
MA, USA, 2003. ISBN 0321200683.

S.-K. Kim and D. A. Carrington. A formalism to describe design patterns based on
role concepts. Formal Asp. Comput., 21(5):397�420, 2009.

M. Leuschel and M. Butler. ProB: A Model Checker for B. In FME 2003: FORMAL
METHODS, LNCS 2805, pages 855�874. Springer-Verlag, 2003.

D. Mapelsden, J. Hosking, and J. Grundy. Design pattern modelling and instanti-
ation using DPML. In Proceedings of the 40th International Conference on Tools
Paci�c: Objects for internet, mobile and embedded applications, CRPIT'02, pages
3�11. Australian Computer Society, Inc., 2002. ISBN 0-909925-88-7. URL http:
//dl.acm.org/citation.cfm?id=564092.564094.

OMG. Service oriented architecture Modeling Language (SoaML) Speci�cation. Tech-
nical report, Fundacion European Software Institute, May 2012.

D. Steinberg, F. Budinsky, M. Paternostro, and E. Merks. EMF: Eclipse Modeling
Framework 2.0. Addison-Wesley Professional, 2nd edition, 2009. ISBN 0321331885.

T. Taibi. Formalising design patterns composition. Software IEE Proceedings, 153(3):
127�136, 2006.

T. Taibi and D. C. L. Ngo. Formal speci�cation of design pattern combination using
BPSL. Information and Software Technology, 45(3):157 � 170, 2003. ISSN 0950-
5849. doi: DOI:10.1016/S0950-5849(02)000195-7. URL http://www.sciencedirect.
com/science/article/pii/S0950584902001957.

19

http://dx.doi.org/10.1007/s10009-010-0145-y
http://dl.acm.org/citation.cfm?id=1761968.1761972
http://portal.acm.org/citation.cfm?id=1290192.1290213
http://portal.acm.org/citation.cfm?id=1290192.1290213
http://www.amazon.com/exec/obidos/redirect?tag=citeulike07-20&path=ASIN/0136135161
http://www.amazon.com/exec/obidos/redirect?tag=citeulike07-20&path=ASIN/0136135161
http://dl.acm.org/citation.cfm?id=564092.564094
http://dl.acm.org/citation.cfm?id=564092.564094
http://www.sciencedirect.com/science/article/pii/S0950584902001957
http://www.sciencedirect.com/science/article/pii/S0950584902001957


I. Tounsi, M. Hadj Kacem, and A. Hadj Kacem. Building Correct by Construction SOA
Design Patterns: Modeling and Re�nement. In Software Architecture: Proceedings
of the 7th European Conference, ECSA, volume 7957 of Lecture Notes in Computer
Science, pages 33�44, Monpellier, France, July 2013a. Springer Berlin Heidelberg.

I. Tounsi, M. Hadj Kacem, and A. Hadj Kacem. An Approach for Modeling and
Formalizing SOA Design Patterns. In Proceedings of the IEEE 22nd International
WETICE Conference (WETICE 2013), pages 330�335, Hammamet, Tunisia, June
2013b. IEEE Computer Society.

I. Tounsi, M. Hadj Kacem, A. Hadj Kacem, K. Drira, and E. Mezghani. Towards an
Approach for Modeling and Formalizing SOA Design Patterns with Event-B. In
Proceedings of the 28th Annual ACM Symposium on Applied Computing, SAC 2013,
pages 1937�1938, Coimbra, Portugal, March 2013c. ACM.

I. Tounsi, Z. Hrichi, M. Hadj Kacem, A. Hadj Kacem, and K. Drira. Using SoaML
Models and Event-B Speci�cations for Modeling SOA Design Patterns. In Proceed-
ings of the 15th International Conference on Enterprise Information Systems (ICEIS
2013), pages 294�301, Angers, France, July 2013d. doi: 10.5220/0004453302940301.

H. Zhu and I. Bayley. Laws of pattern composition. In Proceedings of the 12th
international conference on Formal engineering methods and software engineering,
ICFEM'10, pages 630�645, Berlin, Heidelberg, 2010. Springer-Verlag. ISBN 3-
642-16900-7, 978-3-642-16900-7. URL http://portal.acm.org/citation.cfm?id=1939864.
1939915.

20

http://portal.acm.org/citation.cfm?id=1939864.1939915
http://portal.acm.org/citation.cfm?id=1939864.1939915

	Introduction
	Basic concepts and notations
	SoaML
	Event-B method

	Our approach in a nutshell
	Proposed approach
	Modeling SOA design patterns
	Formalizing SOA design patterns
	Structural Features
	Behavioral features
	Formal verification


	Case study: Asynchronous Queuing pattern
	Modeling step
	Structural features
	Behavioral features

	Formalization Step
	Structural features
	Behavioral features


	Tool support
	Related work
	Conclusions
	Acknowledgment

