Imen Tounsi
email: imen.tounsi@redcad.org

Mohamed Hadj Kacem
email: mohamed.hadjkacem@redcad.org

Ahmed Hadj Kacem
email: ahmed.hadjkacem@fsegs.rnu.tn

Khalil Drira
email: khalil@laas.fr

A Renement-Based Approach for Building Valid SOA Design Patterns

Although design patterns have become increasingly popular, most of them are proposed in an informal way, which can give rise to ambiguity and may lead to their incorrect usage.

Patterns proposed by the SOA design pattern community are described with informal visual notations. Modeling SOA design patterns with a standard formal notation contributes to avoid misunderstanding by software architects and helps endowing design methods with renement approaches for mastering system architectures complexity. In this paper, we present a formal renement-based approach that aims, rst, to model message-oriented SOA design patterns with the SoaML standard language, and second to formally specify these patterns at a high level of abstraction using the Event-B method. These two steps are performed before undertaking the eective coding of a design pattern providing correct by construction pattern-based software architectures. Our approach is experimented through an example we present in this paper. We implemented our approach under the Rodin platform, which we use to prove model consistency.

Introduction

During its course of nearly ve decades, software engineering has known several main evolutions regarding approaches to software development. Structured programming gave way to the concept of object-orientation. Today's current trend is clearly service orientation. Serviceoriented architecture (SOA), as emerging architectural model, attracts attention worldwide.

Recent advances in SOA, including storage and networking, are providing exciting opportunities to make signicant progress in solving complex real-world challenges.

However these architectures are subject to some quality attribute failures (e.g., reliability, availability, and performance problems). Design patterns, as tested design solutions for common design problems within a context, have been widely used to tackle a spectrum of design problems and solve these weaknesses (Erl, 2009).

Patterns, proposed by the SOA design pattern community, are described with informal visual notations that can raise ambiguity and may lead to their incorrect usage (Erl, 2009).

Modeling these patterns with a standard formal notation contributes to avoid misunderstanding by software architects and helps endowing design methods with renement approaches for mastering system architectures complexity. The intent of our approach is to model and formalize (Tounsi et al., 2013c,b) message-oriented SOA design patterns. These two steps are performed before undertaking the eective coding of a design pattern, so that the pattern in question will be correct by construction. Our approach allows to reuse correct SOA design patterns, hence we can save eort on proving pattern correctness.

Our approach is based principally on three contributions. The rst contribution consists in modeling SOA design patterns with a semi-formal language. We propose an SoaML-based (Service oriented architecture Modeling Language) approach for this modeling step. We introduce a metamodel, using extended UML 2.0 notations. This modeling step is proposed in order to attribute a visual standard notation to SOA design patterns. This part of our approach provides several advantages. First, the modeling process is dened in a high level of abstraction providing a generic and reusable model. Second, our approach seeks to take advantage of the expressive power of standard visual notations provided by the semi-formal SoaML 2.0 language that makes easy the understanding of design patterns. Third, a software environment supporting the dierent features of this approach, has been implemented and integrated as a plug-in in the open source Eclipse framework.

The second contribution consists in proposing a generic formalization of these patterns using the Event-B method. This step is enhanced with the automatic transformation of SoaML pattern diagrams to Event-B pattern specications with respect to transformation rules (Tounsi et al., 2013a). We implement a rule-based generator which automatically translates the design pattern models that can be modeled using our tool into Event-B specications [START_REF] Tounsi | Using SoaML Models and Event-B Specications for Modeling SOA Design Patterns[END_REF].

Finally, the third contribution is based on formal methods. Using the Rodin theorem prover tool supporting Event-B, we check the syntax of the generated Event-B SOA design pattern models as well as their correctness (i.e. no deadlocks...) An other advantage of our approach is the use of renement techniques that make the understanding of pattern models easy. At the rst level of the modeling step an abstract model is specied which is further rened in the next levels to add more details. The graphical models in SoaML are automatically translated into Event-B specications at each renement level.

The remainder of the paper is organized as follows. In section 2, we provide some background information on the SoaML language and the Event-B notation. In section 3, we give a short overview of our approach. In section 4, we present our approach for modeling and rening SOA design patterns, then we show how we can prove their correctness. In section 5, we illustrate our approach through a case study. In section 6, we present the Eclipse plug-in that implements our approach. In section 7, we discuss the related works. We examine several research done on the modeling and the formalisation of design patterns in general. Ultimately, in section 8, we present conclusions and future work.

Basic concepts and notations

In this section, we provide some background information on the SoaML modeling language and the Event-B method.

SoaML

SoaML 1 (Service oriented architecture Modeling Language) (OMG, 2012) is a specication developed by the OMG that provides a standard way to architect and model SOA solutions.

It consists of a UML prole and a metamodel that extends the UML 2.0 (Unied Modeling Language).

To model SOA design patterns, we can represent many description levels. The highest level is described as Services Architectures where participants are working together using services.

A =B ∧ B =C ∧ C =A.
3 Our approach in a nutshell

Our contribution is a formal architecture-centric design approach. It supports the graphical modeling of message-oriented SOA design patterns with the semi-formal SoaML standard language (OMG, 2012), the automatic transformation of pattern diagrams to Event-B specications [START_REF] Abrial | Rodin: An Open Toolset for Modelling and Reasoning in Event-B[END_REF] and the formal verication of their correctness. We provide both structural and behavioral features of SOA design patterns in the modeling step as well as in the formalization step. As presented in Figure 1 All the specications are implemented under the Rodin [START_REF] Abrial | Rodin: An Open Toolset for Modelling and Reasoning in Event-B[END_REF] platform in order to be checked. The specication of a pattern P will be too complicated and error prone if it is done in one shot. In order to handle this complexity, we dene specication levels by using a step-wise development approach. Models are developed in a stepwise manner which are then automatically translated into Event-B specications. Here is our strategy, it is explained in Figure 1:

• In the rst level (Level0), we start with creating a very abstract model (a context P C0 and a machine P M 0). • In the next levels, we use the horizontal renement techniques (dened in [START_REF] Abrial | Rodin: An Open Toolset for Modelling and Reasoning in Event-B[END_REF] to gradually introduce detail and complexity into our model until obtaining the nal pattern specication. By applying a horizontal renement, we extend the state of a pattern model by adding new variables. We can strengthen the guards of an event or add new guards. We also add new actions in an event. Finally, it is possible to add new events [START_REF] Abrial | Rodin: An Open Toolset for Modelling and Reasoning in Event-B[END_REF]. When we move from Level(i) to Level(i+1), we add a new entity and its connections to the model. In Level(i+1), the context P Ci is extended with the context P C(i + 1) and the machine P M i is rened with the machine P M (i + 1). The

Proposed approach

The upcoming sections provide descriptions of our proposed approach.

Modeling SOA design patterns

We provide a modeling solution for describing SOA design patterns using a visual notation based on the graphical SoaML language (OMG, 2012). Three main reasons lead to use SoaML.

First, it is a standard modeling language dened by OMG. Second, it is used to describe SOA.

Third, diagrams used in SoaML, allow to represent structural features as well as behavioral features of design patterns.

The SoaML metamodel extends the UML2.0 metamodel to support an explicit service modeling in distributed environments. This extension is perfectly applied to SOA design pat- • Entities, that make up the architecture of an SOA design pattern, can be either Participants or Agents. A Participant represents a subclass of Component that provides and/or consumes services. Agents extend Participants with the ability to be active (their needs and capabilities may change over time).

• Entities can have Ports that constitute interaction points with their environment. These Ports are related to one or more provided or required Interf aces and their types can be either Service or Request.

• The communication path between Services and Requests within an architecture is called ServiceChannel, it extends the metaclass Connector. • A Capability is the ability to act and produce an outcome that achieves a result, it extends the metaclass Class. A Participant can realize zero or several capabilities with the link CapabilityRealization.

• ServiceInterfaces are used to describe provided and required operations to complete services functionality, they can be used as protocols for a service port or a request port.

• The MessageType is used to specify information exchanged between services, it extends the metaclass DataT ype. An Attachment is a part of a message that is attached to it, it extends the metaclass P roperty. The stereotype Property extends the metaclass P roperty with the ability to be distinguished as an identifying property (primary key" for messages). In some SOA design patterns entities are organized in various ways across many orthogonal dimensions, for example they can be organized by service layers or by physical boundaries.

Catalogs provide a means of classifying and organizing elements by Categories for any purpose, they extends the metaclass P ackage and specializes the stereotype NodeDescriptor.

Categories are related to Catalogs with the relation Belongs_to. A collection of related entities are characterized by a Category. Applying a Category to an entity by using a

Categorization places that entity in the Catalog.

Formalizing SOA design patterns

In this section, we present an overview of the generic formalization of SOA design patterns with the Event-B method [START_REF] Abrial | Rodin: An Open Toolset for Modelling and Reasoning in Event-B[END_REF]. We use the Rodin Platform [START_REF] Abrial | Rodin: An Open Toolset for Modelling and Reasoning in Event-B[END_REF] in order to prove the correctness of the pattern specication.

Three main reasons lead to use Event-B method. First, it allows the specication of structural and behavioral features of design patterns. Second, renement techniques proposed by this method allow to represent patterns at dierent abstraction levels. Third, mathematical proofs allow to verify model consistency and consistency between renement levels.

A pattern P is described with structural and behavioral features. Structural features are specied with one or several contexts P Ci and behavioral features are specied with one or several machines P M i.

Structural Features

Structural features are generally specied by assertions on the existence of types of entities in the pattern. The conguration of the entities is also described in terms of the static relationships between them [START_REF] Zhu | Laws of pattern composition[END_REF].

Entities, that compose the architecture of an SOA design pattern, can be either P articipants or Agents. Using Event-B, we specify in a context P Ci the two entities as constants. The set Entity is composed of the set of all P articipants and the set of all Agents (Entity = P articipant∪Agent ∧ P articipant∩Agent = ∅). This is specied by using a partition in the AXIOMS clause (Entity_partition).

SETS

Entity

CONSTANTS

P articipant Agent

AXIOMS

Entity_partition : partition(Entity, P articipant, Agent) Agents name A i are also specied as constants. The set of agents is specied using a partition in the AXIOMS clause (Agent_partition), that is

Agent = {A 1 ,...,A n } ∧ A 1 =A 2 ∧...∧ A n-1 =A n . CONSTANTS A1 .
.. An AXIOMS Agent_partition : partition(Agent, {A1}, ..., {An})

In the SoaML modeling a ServiceChannel PushE i E j is a connection between two entities. It can be between two participants (PushP i P j), two agents (PushA i A j) and between a participant and an agent. When the direction of the connection is from a participant to an agent, it is named PushP i A j and if it is from an agent to a participant, it is named PushA i P j . Formally, ServiceChannels are specied with an Event-B relation between two entities. ServiceChannel's name PushE i E j are specied with constants in the CONSTANTS clause. The set of ServiceChannels is composed of all ServiceChannel's name. This is specied formally with a partition (ServiceC hannel_partition).

CONSTANTS

Behavioral features

Behavioral features of a design pattern are generally dened by assertions on the temporal orders of the messages exchanged between the dierent pattern entities [START_REF] Zhu | Laws of pattern composition[END_REF].

A machine of a pattern specication P M i has a state dened by means of a number of variables and invariants. Some of variables can be general as the variable Send, which denotes the sent message and the variable P rocess, which denotes the message process.

The variable Send is dened with the invariant Send_Relation which specify that Send is a relation between a ServiceChannel and a M essageT ype so we know the sender, the receiver and the sent message. The variable P rocess is dened with the invariant Process_Function which specify that P rocess is a function between a P articipant and a M essageT ype so we know which participant is processing which message.

VARIABLES

Send P rocess

INVARIANTS

Send_Relation : Send ∈ ServiceChannel ↔ M essageT ype Process_Function : P rocess ∈ P articipant → M essageT ype

Each pattern has its own behavior but some events can be general like the event of sending a message Sending_M i and the event of processing a message P rocessing_M i .

Event

Formal verication

SoaML as a semi-formal language provides many advantages to dening SOA design patterns, such as standard visual notation. However, the fact that SoaML lacks a precise semantics is a serious drawback because it does not allow proofs and in consequence,

with SoaML, we can not verify required properties like liveness (no deadlocks), and reachability property.

During our development, we use a systematic approach that consists in developing a series of more and more accurate models of the pattern we want to build. This technique is called renement [START_REF] Abrial | Rodin: An Open Toolset for Modelling and Reasoning in Event-B[END_REF]. Each pattern model is analyzed and proved, thus enabling us to establish that it is correct relative to a number of criteria. As a result, when the last model is nished, we will be able to say that this model is correct by construction [START_REF] Abrial | Rodin: An Open Toolset for Modelling and Reasoning in Event-B[END_REF].

Four formal verication techniques have been used for checking design patterns;

type checking, model checking, animation and theorem proving.

INVARIANTS Can_Send_INV

: ∀z, x, y•z ∈ Entity ∧ {x → y} ∈ ServiceChannel ↔M essageT ype ∧ dom({x}) = {z} ∧ x → y ∈ Send ⇒ z → y ∈ Can_Send
When we enrich the pattern model by using renement techniques, we make sure that rened models are not contradictory. These proofs are automatically generated by the Rodin Platform. Our approach allows developers to reuse correct SOA design patterns, hence we can save eort on proving pattern correctness.

Case study: Asynchronous Queuing pattern

Asynchronous Queuing pattern2 is an SOA design pattern for inter-service message exchange (Erl, 2009). It belongs to the category "Service Messaging Patterns". It establishes an intermediate queuing mechanism that enables asynchronous message exchanges and increases the reliability of message transmissions when service availability is uncertain. The problem addressed by this pattern is that when services interact synchronously, it can inhibit performance and compromise reliability when one of services cannot guarantee its availability to receive the message. Synchronous message exchanges can impose processing overhead, because the service consumer needs to wait until it receives a response from its original request before proceeding to its next action.

Responses can introduce latency by temporally locking both consumer and service. The proposed solution by this pattern is to introduce an intermediate queuing technology into the architecture. The behavior of this pattern is described in detail section 5.1.2.

Modeling step

Structural features

In the structural modeling step, we specify entities of the pattern and their dependencies (connections) in the Participant diagram (Figure 3) and we specify their interfaces and exchanged messages in the ServiceInterface and MessageType diagrams respectively (Figure 4).

ServiceA, ServiceB and the Queue are dened as participants because they provide and use services. As shown in Figure 3, ServiceB provides a ServiceX used by ServiceA and the Queue provides a storage service. We did not represent the storage service provided by the Queue in order to concentrate principally on the communication between ServiceA and ServiceB and to not complicate the presented diagrams. Participants provide capabilities through service ports. Both ServiceA and ServiceB have a port typed with ServiceX". ServiceB is the provider of the service and has a Service port. ServiceA is a consumer of the service and uses a Request port. We note that ServiceB's port provides the ProviderServiceX" interface and requires the OrderServiceX" interface. Since ServiceA uses a Request port preceded with a tilde (∼), the conjugate interfaces are used. So, ServiceA's port provides the OrderServiceX" interface and uses the ProviderServiceX" interface. In this diagram, ServiceChannels are explicitly represented, they enables communication between the dierent participants.

IJCC IJCC

Figure 4 shows a couple of MessageType that are used to dene the information exchanged between ServiceA and ServiceB. These messages are RequestMessage" and ResponseMessage", they are used as types for operation parameters of the service interfaces. The type of the ServiceB's port is the UML interface ProviderServiceX" that has the operation processServiceXProvider". This operation has a message style parameter where the type of the parameter is the MessageType ResponseMessage".

ServiceA expresses its request for the ServiceX" using its request port. The type of this request port is the UML interface OrderServiceX". This interface has an operation ProcessServiceXOrder" and the type of parameter of this operation is the MessageType RequestMessage". This message is intercepted and stored by an intermediary queue. ServiceB receives the message forwarded by the Queue and ServiceA releases its resources and memory. While ServiceB is processing the message, ServiceA consumes no resources. After completing its processing, ServiceB issues a response message back to ServiceA (this response is also received and stored by the intermediary Queue). ServiceA receives the response and completes the processing of the response while ServiceB is deactivated.

Formalization Step

To illustrate the formalization step of our approach, we apply it on the same pattern example used in the modeling step (Asynchronous Queuing pattern). The model of this pattern is composed of two contexts AQC0 and AQC1 and two machines AQM 0 and AQM 1 (AQC denotes Asynchronous Queuing Context and AQM denotes Asynchronous Queuing Machine). In the rst level of specication, we specify the pattern at a high level of abstraction, i.e. we suppose that the communication is only between

ServiceA and ServiceB. In the second level, we add the Queue and all its behavior to the model. Machines and contexts relationships are illustrated in Figure 6.

Structural features

In the Asynchronous Queuing pattern, we have three Participants: ServiceA, ServiceB and the Queue. In the context AQC0, we specify only two participants ServiceA and ServiceB.

CONSTANTS

ServiceA ServiceB

AXIOMS

Participant_partition : partition(P articipant, {ServiceA}, {ServiceB})

ServiceA and ServiceB are connected together through the ServiceChannels P ushAB and P ushBA. The second context AQC1 is an extension of the context AQC0. In this context we add a new constant Queue and we redene the P articipant_partition by adding the Queue. Also we add four constants P ushAQ, P ushQB, P ushBQ and P ushQA to dene the new ServiceChannels. Axioms that restrict the domain and the range of these ServiceChannels are also added to the context. This part of specication belongs to the Participant diagram (Figure 3) and MessageType diagram (Figure 4).

CONSTANTS

Behavioral features

To specify behavioral features, we have two steps. First, we specify the pattern with a machine at a high level of abstraction. Second, we add all necessary details to the rst machine by using the renement technique.

In the rst machine AQM 0, we only specify the communication between ServiceA and ServiceB, i.e. the queue is completely transparent, meaning that neither ServiceA nor ServiceB may know that a queue was involved in the data exchange. So, the behavior is described as follows: ServiceA sends a RequestM essage to ServiceB and then remains released from resources and memory (unavailable). When ServiceB becomes available, it receives the Request M essage, process it and sends the Response M essage. When ServiceA becomes available, it receives the Response M essage, process it and then becomes deactivated.

Formally, we can use three variables to represent the state of the pattern; Dispo to denote the state of the participant either available or not, Send to indicate who sends what message and P rocess to indicate which participant is processing what message. The rst invariant Dispo_F unction species the availability feature of participants. This feature is specied with a partial function which is a special kind of relation (each domain element has at most one range element associated with it) i.e. the function Dispo relates P articipants to a Boolean value in order to specify their availability. We use the partial function because a participant cannot be available and not available at the same time. The second invariant, i.e. Send_Relation, species what is the sent message, who is the sender and the receiver. The third invariant, i.e. P rocess_F unction, species the message process with a partial function that relates a P articipant to a M essageT ype.

INVARIANTS

Dispo_Function : Dispo ∈ P articipant → BOOL Send_Relation : Send ∈ ServiceChannel ↔ M essageT ype Process_Function : P rocess ∈ P articipant → M essageT ype

As presented in the pattern, initially ServiceA is available and ServiceB is not available. Also, there are no messages sent and no message is processed. Hence, both

Send relation and P rocess function are initialized to the empty set.

INITIALISATION begin init1 : Dispo := {ServiceA → T RU E, ServiceB → F ALSE} init2 : Send := ∅ init3 : P rocess := ∅ end

The dynamic system can be seen in Figure 5. It is formalized by the following events; Sending_Req, Processing_Req, Sending_Resp and Processing_Resp (Req denotes Request and Resp denotes Response). Sending the request message starts when there is no messages sent and ServiceA is available. This is formally specied with the event Sending_Req. This is illustrated in Figure 7. The event of processing the request is triggered when the message is sent, not yet processed and ServiceB is available. In the action part, we add, to the process function, the pair (ServiceB → RequestM essage) to denote that ServiceB is processing the request.

Event Processing_Req when grd1 The second machine AQM 1 renes the cited above AQM 0 machine and uses the AQC1 context. In the AQM 1 machine, we introduce the behavior of the Queue, so as to complete all the behavior of the pattern. We add two new variables named Store and T ransmit. Store is specied with a relation that relates a P articipant to a M essageT ype. We add an invariant that restricts the domain of this relation to only the Queue. Consequently, Store reveals what message the queue is storing. T ransmit is specied with a partial function that relates a P articipant to a M essageT ype. We add an invariant that restricts the domain of this function to only the Queue. The AQM 1 machine events are dened in Figure 8. We keep the Sending_Req and the Sending_Resp events. We add four new events namely Storing_Req, Trans-mitting_Req, Storing_Resp and Transmitting_Resp. These events are related to the Queue behavior. We add more details to the abstract events Processing_Req and Processing_Resp. The two events of processing the messages are rened by adding in the guards clause the condition of transmitting the message. If a participant (ServiceA or ServiceB) receives a message, the storage of this message in the Queue becomes unnecessary, so in the processing event we empty the Queue. The plug-in transforms the generated XML le, according to transformation rules (described in (Tounsi et al., 2013a)) expressed with the XSLT language [START_REF] Tounsi | Using SoaML Models and Event-B Specications for Modeling SOA Design Patterns[END_REF], into Event-B specications. These specications can be imported under the Rodin platform to verify their correctness.

Tool

By applying transformations rules on the generated XML specications, we obtain Event-B specications presented in Figure 10. Among research related to design patterns for Object-Oriented Architectures, we present the work of Gamma et al [START_REF] Gamma | Design Patterns: Elements of Reusable Object-Oriented Software[END_REF]. They have proposed a set of design patterns in the eld of object-oriented software design. These patterns are described with graphical notations based on the OMT (Object Modeling Technique) notation. There is no formal semantics associated with these patterns, hence their meanings can be imprecise. Several research have proposed the formalization of these patterns [START_REF] Gamma | Design Patterns: Elements of Reusable Object-Oriented Software[END_REF] (hereafter referred to as GoF) using dierent formal notations. We quote: Zhu et al. [START_REF] Zhu | Laws of pattern composition[END_REF] [START_REF] Blazy | Reuse of specication patterns with the B method[END_REF] propose an approach for specifying design patterns and how to reuse them formally. They use B-method to specify structural features of design patterns but they do not consider the specication of their behavioral In the branch of SOA design patterns, we nd out the work of Erl. Erl has proposed a set of design patterns for SOA (Erl, 2009). Each pattern is presented with a proprietary informal notation presented in a symbol legend. These patterns are modeled without any formal specication. In order to understand them, the rst step is to form a knowledge on the pattern-related terminology and notation. In addition, Erl proposes a set of specic pattern symbols used to represent a design pattern.

All cited research work are dealing with object oriented design patterns, in our research work we are interested in SOA design patterns dened by Erl (Erl, 2009). For these patterns, there are no work that model or formally specify them. Erl presents his patterns with an informal proprietary notation because there is no standard modeling notation for SOA, but now OMG announces the publication of the SoaML language (OMG, 2012), it is a specication for the UML prole and a metamodel for services.

So, in our work (Tounsi et al., 2013c,b), we propose to model SOA design patterns with the SoaML standard language. After the modeling step, we propose to specify these patterns formally. Similar to [START_REF] Zhu | Laws of pattern composition[END_REF][START_REF] Kim | A formalism to describe design patterns based on role concepts[END_REF] we dene both structural and behavioral features of design patterns using FOL, but we use a dierent formal method which is Event-B.

In conclusion, most proposed patterns are described with a combination of textual description and a graphical presentation [START_REF] Gamma | Design Patterns: Elements of Reusable Object-Oriented Software[END_REF], some times using proprietary notations [START_REF] Hohpe | Enterprise Integration Patterns: Designing, Building, and Deploying Messaging Solutions[END_REF], (Erl, 2009), in order to make them easy Erl (Erl, 2009) Our appr [START_REF] Tounsi | An Approach for Modeling and Formalizing SOA Design Patterns[END_REF] Pattern modeling to read and understand. However, using these descriptions makes patterns ambiguous and may lack details. There have been many research that specify patterns using formal techniques [START_REF] Zhu | Laws of pattern composition[END_REF][START_REF] Blazy | Reuse of specication patterns with the B method[END_REF] but research that model design patterns with semi-formal languages are few [START_REF] Mapelsden | Design pattern modelling and instantiation using DPML[END_REF]. We nd a number of approaches that formally specify dierent sorts of features of patterns: structural, behavioral, or both. Table 1 is a recapitulation of related works that contains a comparison between the above-mentioned approaches and our approach.

Conclusions

In this paper, we presented a formal renement-based design approach supporting the modeling and the formalization of message-oriented SOA design patterns. The modeling phase allows to represent SOA design patterns with a graphical standard notation using the SoaML language. The formalization phase allows to formally specify both structural and behavioral features of these patterns at a high level of abstraction using Event-B method. We implemented the elaborated specications under the Rodin platform.

We illustrated our approach through a pattern example within the "Service messaging patterns" category. In order to reach the generality and the validity of our approach, we have applied it to more pattern examples within the "Service messaging patterns" category and "Transformation patterns" category.

In real applications, problems are complex and their solutions can be represented by compound patterns that require the combination and reuse of other design patterns.

So, as future work, we are working on formally specifying pattern composition and verifying some related properties.

 , in the modeling step, structural features are described with the Participant diagram, the ServiceInterface diagram and the Mes-sageType diagram. These diagrams are modeled with an Eclipse plug-in that we propose and transformed to one or several CONTEXTS in the Event-B specications. Behavioral features, are described with the UML2.0 Sequence diagram that provides a graphical notation to describe dynamic aspects of design patterns. This diagram is modeled with an Eclipse plug-in that we propose and transformed to one or several MACHINES in the Event-B specications.

Figure 1 :

 1 Figure 1: Approach overview (see online version for colours)

 terns modeling. We model structural features of design patterns with Participant diagram, ServiceInterface diagram and MessageType diagram. We model behavioral features with the UML2.0 sequence diagram. To model these diagrams, we use the part of the SoaML metamodel presented in Figure 2. Gray classes represent abstract metaclasses and white classes represent stereotypes. In follows, we only present the base concepts that we use in the pattern modeling.

Figure

 Figure 2: SOA design patterns Metamodel

Figure 3 :

 3 Figure 3: Participant diagram (see online version for colours)

Figure

 Figure 4: ServiceInterface and MessageType diagrams

Figure 5 :

 5 Figure 5: Sequence diagram (see online version for colours)

Figure

 Figure 6: Contexts and machines relationships

Figure:

 Figure 7: AQM 0 Events

 Consequently, Transmit reveals what message the Queue is transmitting. Initially Store relation and T ransmit function are both initialized to the empty set. INVARIANTS Store_Relation : Store ∈ P articipant ↔ M essageT ype Store_Dom_Rest : dom(Store) = {Queue} ∨ Store = ∅ Transmit_Function : T ransmit ∈ P articipant → M essageT ype Transmit_Dom_Rest : dom(T ransmit) = {Queue} ∨ T ransmit = ∅

Figure 8 :

 8 Figure 8: AQM 1 events (see online version for colours)

 Our approach is enhanced by an Eclipse plug-in 3 . It is a graphical modeling tool that makes the modeling of SOA design patterns easier. It ensures an easy and ecient modeling way of SOA design patterns. For the development of the plug-in, we have used several Eclipse frameworks, i.e., GMF (Graphical M odeling F ramework) (Eclipse, 2010a), EMF (Eclipse M odeling F ramework) (Steinberg et al., 2009) and GEF (Graphical Editing F ramework) (Eclipse, 2010b). Several diagrams are available in the plug-in; we can model Participant diagram, Service Interface diagram, Message Type diagram and UML2.0 Sequence diagram. The SOA design patterns diagram editor is a tool where diagrams can be created to model patterns. Graphical elements can be picked up from a tool palette and created in the Diagram editor pane in a drag-and-drop" way. Elements of the palette are listed under N odes and Links elements. The Property Editor" can be used for changing properties of the object selected in the diagram editor pane. Property elements vary depending on the type of the chosen object. Figure 9 shows the diagram editor of the SOA design patterns with an illustration of the pattern example Asynchronous Queueing". After modeling a design pattern, the plug-in generates an XML le describing it.

7

 Figure 9: SOA design patterns plug-in (see online version for colours)

 specify 23 GoF patterns formally. They use the First-Order Logic (FOL) induced from the abstract syntax of UML dened in the Graphic Extension of BNF (GEBNF) to dene both structural and behavioral features of design patterns. Taibi et al.[START_REF] Taibi | Formalising design patterns composition[END_REF][START_REF] Taibi | Formal specication of design pattern combination using BPSL[END_REF] develop the Balanced Pattern Specication Language (BPSL) to formally specify patterns, pattern composition and instances of patterns. This language is used as a formal basis to specify structural features of design patterns in the FOL and behavioral features in the Temporal Logic of Action (TLA). Taibi et al. use as a case study a pattern composition proposed by GoF. Dong et al. (Dong et al., 2007) focus on the specication of design pattern component. They use the FOL to specify structural features of patterns with Object-Z and TLA to specify their behavioral features. As examples, they use GoF patterns. Kim et al. (Kim and Carrington, 2009) present an approach to describe design patterns based on role concepts. First, they develop an initial role meta-model using Eclipse Modeling Framework (EMF), then they transform the meta-model to Object-Z in order to specify structural features. Behavioral features of patterns are also specied using Object-Z. Kim et al. also use GoF patterns as examples. Blazy et al.

Figure 10 :

 10 Figure 10: Excerpt of Event-B specication results (see online version for colours)

 It is modeled using UML collaborations diagram stereotyped ServicesArchitecture. The next level is described as P articipants using UML class diagram stereotyped Participant. The Service Contract is at the middle of the SoaML set of SOA architecture constructs, it describes services mentioned above and it is modeled using UML collaboration diagram stereotyped ServiceContract. In the next level, we nd the specication of Interf aces and M essage T ypes using UML class diagrams stereotyped respectively ServiceInterface and MessageType. For both the service contract and the interface levels we can specify Abrial, 2010) is a formal method for developing systems via stepwise renement, based on rst-order logic. The method is enhanced by its supporting Rodin Platform[START_REF] Abrial | Rodin: An Open Toolset for Modelling and Reasoning in Event-B[END_REF] for analyzing and reasoning rigorously about Event-B models. The basic concept in the Event-B development is the model which is made of two types of components: contexts and machines. A context describes the static part of a model, whereas a machine describes the dynamic behavior of a model. Machines and contexts can be inter-related: a machine can be ref ined by another one, a context can be extended by another one and a machine can see one or several contexts. Each context has a name and other clauses like "Extends", "Constants", "Sets" to declare a new data type and "Axioms" that denotes the type of the constants and the various predicates which the constants obey. It is a predicate that is assumed to be true in the rest of the model. Like a context, a machine has an identication name, variables that constitute the state of the machine (their values are determined by an initialization and can be changed by events), invariants and events.A relation is used to describe ways in which elements of two distinct sets are related. IfA and B are two distinct sets, then R ∈ A ↔ B denotes a relation between A and B. The domain of R is the set of elements in A related to something in B: dom(R). The range of R is the set of elements of B to which some element of A is related: ran(R). We also say that A and B are the source and target sets of R, respectively. Given two elements a and b belonging

	2.2	Event-B method
	Event-B (

behavioral features of patterns using any UML behavior (e.g sequence or activity diagrams). 1 http ://www.omg.org/spec/SoaML/ to A and B respectively, we call ordered pair a to b, the pair having the rst element a (start element) and the last element b (arrival element). We denote that by a → b or (a,b). A partial function is a relation where each element of the domain is uniquely related to one element of the range. If A and B are two sets, then A → B denotes the set of partial functions from A to B. Partitions are used in two dierent manners. The rst one is partition(S, A,B). It means that A and B partition the set S, i.e. S=A∪B ∧ A∩B = ∅. The second one is partition(S, {A},{B},{C }) which is a specialized use for enumerated sets. It means that S={A,B,C} ∧

 In the SoaML modeling Catalogs provide a means of classifying and organizing elements by Categories. A collection of related entities are characterized by a Category. Applying a Category to an entity by using a Categorization places that entity in the Catalog.Formally, Catalogs are specied with an Event-B catalog type and catalogs name C i are specied with constants in the CONSTANTS clause. The set of Catalogs is composed of all Catalogs name. This is specied formally with a partition (C atalog_partition). Catalogs, Categories are specied with an Event-B category type and categories name C i are specied with constants in the CONSTANTS clause. The set of Categories is composed of all Categories name. This is specied formally with a partition (C ategory_partition). The containment relation of a Catalog with Categories is specied with the relation Belongs_to and the link of Categorization is specied with a relation between a Category and an Entity.

	SETS
	M essageT ype
	CONSTANTS
	M1, ..., Mn
	AXIOMS
	Message_partition : partition(M essageT ype, {M1}, ..., {Mn})
	Like SETS
	Catalog
	Category
	CONSTANTS
	C1, ..., Cn
	Ca1, ..., Can
	Belongs_to
	Categorization
	The ServiceInterface diagram models entity interfaces and their relations with
	messages. We don't do the formalisation of all the elements of this diagram to the
	event-B specications, but we do it to know only what entity can send what message.
	ServiceChannel
	P ushEiEj, ..., P ushEnEm

AXIOMS

ServiceChannel_Relation : ServiceChannel ∈ Entity ↔ Entity ServiceChannel_partition : partition(ServiceChannel, {P ushEiEj}, ...,

{P ushEnEm})

To dene the source and the target of a service channel, two axioms must be added, namely the domain and the range. PushEiEj_Domain : dom({P ushEiEj}) = {Ei} PushEiEj_Range : ran({P ushEiEj}) = {Ej} AXIOMS Catalog_partition : partition(Catalog, {C1}, ..., {Cn}) Category_partition : partition(Category, {Ca1}, ..., {Can}) Belongs_to_Relation : Belongs_to ∈ Catalog ↔ Category Categorization : Categorization ∈ Category ↔ Entity Belongs_to_init : Belongs_to = {Cn → Ca1, ..., Cn → Can} Categorization_init : Categorization = {Ca1 → Pi, ..., Can → Aj} A Capability is the ability to produce an outcome that achieves a result. Each Participant is comprised of a set of capabilities. Capabilities are formally specied as follows. SETS Capability CONSTANTS Cp1, ..., Cpn P rovide AXIOMS Capability_partition : partition(Capability, {Cp1}, ..., {Cpn}) Provide_Relation : P rovide ∈ P articipant ↔ Capability Provide_init : P rovide = {Pi → Cp k , ..., Pj → Cpm} CONSTANTS Can_Send AXIOMS Can_Send_Relation : Can_Send ∈ entity ↔ M essageT ype Can_Send_init : Can_Send = {Ei → M k , ..., Ej → Mm} MessageType is the type of messages exchanged between dierent entities, it is declared in the SETS clause. Messages name M i are specied in the CONSTANTS clause. They are attributed with their type with a partition in the AXIOMS clause (M essage_partition).

 Modelchecking and animation are two techniques used to show the dynamic behavior of a model and they allow to systematically explore all its reachable states. We use them to check the behavior of the pattern if it is correct or not. Some temporal/behavioral properties are veried like liveness (no deadlocks present in the model) and reachability (prove that an event whose guard is not necessarily true now will nevertheless certainly occur within a certain nite time) properties. This is done by the model checker ProB[START_REF] Leuschel | ProB: A Model Checker for B[END_REF]. Theorem proving technique allows to check properties which can be experimented either as predicates (INVARIANTS, AXIOMS, THEOREMS) or with guards in the events. It is also ensured by proof obligations. They dene what is to be proved to ensure the consistency of an Event-B pattern model. As example of consistency constraint, we check that each entity can't send a message only if it is authorised. This is controlled by the invariant Can_Send_INV. For sequence diagrams, we require that every message must start an activation.

Type checking is a technique controlling low level properties of variables in a program. We use it to check the syntax of the generated Event-B pattern specications and to detect modeling errors (ex. modeling incomplete ServiceChannel). It is done within the compiler.

 For each service channel, we add two axioms in order to dene the domain and the range. For example, for P ushAB relation we add the following two axioms to denote that its source is ServiceA and its target is ServiceB.We did not specify ports and interfaces because they are ne details.Whereas, we specify messages to know what message is being exchanged. So, we dene the M essageT ype set, two constants RequestM essage and ResponseM essage and then

	ServiceChannel
	P ushAB
	P ushBA
	AXIOMS
	ServiceChannel_Relation : ServiceChannel ∈ Entity ↔ Entity
	ServiceChannel_partition : partition(ServiceChannel, {P ushAB}, {P ushBA})
	PushAB_Domain : dom(P ushAB) = {ServiceA}
	PushAB_Range : ran(P ushAB) = {ServiceB}
	the message partition.
	SETS
	M essageT ype
	CONSTANTS
	RequestM essage
	ResponseM essage

AXIOMS

Message_partition : partition(M essageT ype, {RequestM essage}, {ResponseM essage})

 ServiceB sends the ResponseM essage when the request message is processed and when ServiceB is available. After that ServiceB becomes unavailable.

	Event Sending_Resp
	when
	grd1 : ServiceB ∈ dom(Dispo) ∧ Dispo(ServiceB) = T RU E
	grd2 : RequestM essage ∈ ran(P rocess)
	grd3 : ResponseM essage / ∈ ran(Send)
	then
	act1 : Send := Send ∪ {P ushBA → ResponseM essage}
	act2 : Dispo(ServiceB) := F ALSE
	end
	After sending the response, ServiceA process the received message and becomes
	unavailable.
	Event Processing_Resp
	when
	grd1 : RequestM essage ∈ ran(Send)
	grd2 : ServiceA ∈ dom(Dispo) ∧ Dispo(ServiceA) = T RU E
	then
	act1 : P rocess := P rocess -{ServiceA → ResponseM essage}
	act2 : Dispo(ServiceA) := F ALSE
	end
	: RequestM essage ∈ ran(Send)
	grd2 : RequestM essage / ∈ ran(P rocess)

grd3 : ServiceB ∈ dom(Dispo) ∧ Dispo(ServiceB) = T RU E then act1 : P rocess := P rocess -{ServiceB → RequestM essage} end

Table 1 :

 1 Summary table of related works

		OMT	GoF	GoF	GoF	GoF	GoF	Prop	Prop	SoaML
	Structural formal specica-tion Behavioral formal tion specica-	_ _	(OMT) GEBNF (FOL) GEBNF (FOL)	(OMT) BPSL (FOL) BPSL (TLA)	(OMT) Object Z (FOL) TLA	(OMT) Object Z (FOL) Object (FOL) Z	(OMT) B Method _	Nota _ _	Nota _ _	Event-B Event-B

http://soapatterns.org/design_patterns/asynchronous_queuing

9 Acknowledgment This paper is done with the support of the Ministry of Higher Education and Scientic Research of Tunisia within the Tunisian-French scientic cooperation (DGRS/CNRS). References J.-R. Abrial. Modeling in Event-B: System and Software Engineering. Cambridge University Press, New York, NY, USA, 1st edition, 2010. ISBN 0521895561, 9780521895569.