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Abstract 

Sedimentary records of tsunamis are a precious tool to assess the occurrence of past events, as attested 

by an abundant literature, which has seen a particular 'boom' in the aftermath of the 2004 Indian Ocean 

tsunami and the 2011 Tohoku tsunami. Despite an extensive literature, there is very little to no 

understanding of the role that the changing coastal environment is playing on the record of a tsunami, 

and for a given location, it is still unclear whether the largest tsunamis leave the largest amount of 

deposits. To research this question, the present study took place in Japan, in the Tohoku Region at 

Agawa-pond, because the pond act as a sediment trap. Using a sediment-slicer, a 1 m thick deposit was 

retrieved, from which 4 tsunami sequences were identified, including the latest 2011 tsunami. Using a 

series of sedimentary proxies: the AMS (Anisotropy of Magnetic Susceptibility), grain size analysis, quartz 

morphoscopy (morphology and surface characteristics) and the analysis of microfossils, disparities 

between the tsunami deposits were identified and most importantly a clear thinning of the tsunami 

deposit towards the top. Provided the present evidences, the authors discuss that the upward fining is 

due to at least two components that are seldom assessed in tsunami research (1) a modification of the 

depositional environment, with the progressive anthropization of the coast, providing less sediments to 

remobilize; and (2) a progressive filling of the Agawa pond, which progressively loses its ability to trap 

tsunami materials. 

 

1. Introduction 

 

Less than 7 years after the 2004 Boxing Day tsunami devastated Indian Ocean coasts (Lavigne et al., 2009; 

Paris et al., 2009), the Great East Japan Earthquake 9.0 Mw megathrust earthquake generated the 

Tohoku-oki tsunami (UTM-54N E505030 - N4267960) at 14:46 local time on 11 March 2011 (Chester et 

al., 2013; Hwang, 2014; Koyama and Tsuzuki, 2013; Kyriakopoulos et al., 2013, Mori et al., 2011). The 

tsunami waves swept along a 2000 km stretch of the east coast of Japan (Ramirez-Herrera and Navarrete-

Pacheco, 2013) and impacted shores as far afield as North America (Thomson et al., 2013). For better or 

worse, this catastrophic event (e.g. Schwantes et al., 2012) has generated an extremely high number of 



scientific publications (Gomez and Hart, 2013; Gaillard and Gomez, 2014), including numerous 

contributions on the ensuing erosion and sedimentation of the Sendai Plain. These studies indicate that 

very few diatoms found in the tsunami deposits belonged to truly marine species (Szczucioski et al., 2012; 

Takashimizu et al., 2012), and that the mineral composition points to shallower, more coastal source 

areas (Nakamura et al., 2012), and sometimes precise nearshore sand origins (Jagodzinski et al., 2012). 

Such results have also been confirmed by ostracod analysis, indicating shore-based sediment origins 

(Tanaka et al., 2012; Naruse et al., 2012). Significantly, a detailed, localized study of a multi-kilometer 

transect supports the idea of one long, shore-parallel, coast-proximal source of tsunami deposit 

sediments; that is, the results evidence the shoreline and terrestrial origins of the material (Putra et al., 

2013), as opposed to deeper marine origins. The dominance of locally-sourced sediments in tsunami 

deposits was also reported on the northern shore of Sumatra after the 2004 Indian Ocean Tsunami (IOT) 

(Wassmer et al., 2008). Therefore, this suggests that the position and amount of tsunami deposits are not 

only linked to the energy of the tsunami waves, but also to the type of landcover near shore, and how the 

tsunami waves have behaved once on land. Using previous tsunami deposits archives, one should 

therefore observe non-linear relationships between the deposits and the magnitude of the tsunamis: 

because the coast was less populated with a different landcover; because the coast have had an evolving 

configuration; and because the waves have travelled following different patterns depending on the 

source of the tsunamis…  

Consequently, the present contribution aims to shed new light on the historic tsunamis of the Tohoku 

coast via an investigation of sedimentary records of the northern Sendai Plain and it aims to show that 

the evolution of the coast should – in theory – play an important role in shaping the characteristics of 

tsunami deposits.  

 

While the 2011 tsunami has been the specific focus of a lot of recent scientific attention – including over 

2,000 references in Scopus® – it is well-known that several tsunamis have swept the same coast 

historically (Liu et al., 2012). During the last 120 years, the 1896 Meiji tsunami, the 1933 Showa tsunami, 



and the 1960 Chilean tsunami pre-date the 2011 disaster, with the 2011 and 1896 events constituting the 

first and second most destructive events over this period (Liu et al., 2012; Kanamori, 1972). 

The impacts of the Meiji tsunami (15 June 1896) were particularly severe on the coast near Rikuzentakata 

(UTM N54 E554090 – N4319950) in large part due to the arrival of the waves coinciding with the local 

high tide. This effect was pronounced, despite the area having a microtidal regime with a tidal range of 

around 1.5 m. The inundating tsunami wave run-up height reached approximately 4.6 m above sea level 

and inundated an area of 1.56 km2 (Matsuo, 1933). The Showa tsunami (3 March 1933) wave run up was 

smaller than that of the Meiji tsunami, reaching between 3.5 to 3.8 m above sea level and inundating an 

area of 1.34 km2 (Matsuo, 1933). The Chilean tsunami of 22 May 1960 was a far-field tsunami, triggered 

by a 9.5 Mw earthquake in Chile, and inundating more than 5 km2 of the Rikuzentakata coast area, with 

wave run up of 4.5 to 5 m. Most likely, the extent of the inundation of this event was greatly increased 

due to the wave period matching the natural resonance of the bay (Satake and Kanamori, 1991). Finally, 

on 11 March 2011 the Tohoku-oki tsunami inundated an area of about 13.45 km2 and produced wave run 

up heights 15 m above sea level – 0.2 m at low tide. 

The present research was conducted on Honshu Island, Japan, in the Tohoku region (literally meaning the 

‘east–north’ or northeast) from which the 2011 tsunami takes its name. The Sendai coastal plain is 

located to the east of Eponym City, in the province of Miyagi, north of Fukushima prefecture and south of 

Iwate prefecture. The area is characterized by a long stretch of sandy shoreline, which ends in the north 

with a series of pocket beaches embayed by rocky headlands. At the junction between these two beach 

types lies the coastal village of Shiogama, including Agawa Pond, the feature from which the material 

used in the present study has been retrieved. 

 

2. Materials and methods 

 

2.1. Sampling for sediment analysis 

The sedimentary series used for the present study has been acquired from a core slice of the bed of 

Agawa Pond (in eastern Shiogama, Miyagi prefecture – Fig. 1), which was drained in the aftermath of the 



2011 tsunami. The sediment core was retrieved using a geo-slicer (Fukken Co. Ltd.), which is a coring 

technique developed in Japan that creates very little to no disturbance in the grain fabric of fine deposits 

as they are sampled. The system is made of a rectangular casing that cuts a slice out of the subsurface. 

Once retrieved, the casing is then opened for sediment sampling and analysis.  

 

Fig. 1 Core from Agawapond with the samples. 

 



The rectangular core retrieved with the geoslicer was 9.6 cm wide, 3 cm thick, and 100 cm long. Initial 

visual observations along its length revealed the existence of four similar, superimposed, sequences: 

these were labeled from the base to the top of the core as Ts1 to Ts4. Each sequence comprised sub-

layers of fine to coarse sand containing bioclasts in various proportions and capped by a layer of dark-

brown sandy silt. Given their characteristics and similarities, we believe that each sequence in the core 

corresponds to a single tsunami event. The last sequence at the top of the core, Ts4, most likely 

corresponds to sediments emplaced by the 2011 Tohoku-oki tsunami. 

A total of 39 samples were taken from the core for sediment analyses as follows: (a) systematic sampling 

of the core every 5 cm produced 20 samples, and (b) a further 19 cube samples were taken for AMS or 

Anisotropy of Magnetic Susceptibility analysis (technique details below) and these latter samples are 

denoted throughout this paper by an asterisk.  

 

Three complimentary methods of sediment analysis were applied to the Agawa Pond core: (1) an 

electromagnetic method developed by the authors for interpreting tsunami deposits - the AMS for soft 

sediments (Wassmer et al., 2010; Wassmer & Gomez, 2011); (2) foraminiferal data extraction; and (3) 

grain size and shape characteristics measured using a Shimatsu SALD (Series Laser Diffraction Particle Size 

Analyzer). In addition, further interpretations were produced using diachronic aerial photograph 

analyses, specifically structure-from-motion and multiple-view stereo-photogrammetric techniques 

(Gomez, 2014a,b; Gomez, et al., 2014). 

 

2.2. The Anisotropy of Magnetic Susceptibility Method 

The anisotropy of magnetic susceptibility (AMS) is an electromagnetic method that uses the time an 

induced electromagnetic signal takes to travel through sediments to detect the magnetic alignment of 

deposit crystals. The AMS has been traditionally used on rock dynamics to infer emplacement 

mechanisms and orientations (Hamilton and Rees, 1971; Ellwood, 1980; Tarling and Hrouda, 1993; 

Borradaile and Henry, 1997; Bradak, 2009). More recently the method has been adapted for use on 

unconsolidated, sandy tsunami sediments, in order to retrieve the preferential orientation of the crystals 



in sand grains and, thus, the sediment fabric (Wassmer et al., 2010; Wassmer & Gomez, 2011). It is 

possible to use this property as a proxy of the orientations of grains in a deposit. According to Runsack 

(1957), when clastic sediments are emplaced, the long axes of the sand grains tend to align themselves 

parallel to the fluid flow direction. Runsack (1957) explained that the more elongated sand grains are, the 

more parallel to the fluid-flow direction they tend to be. Also, the grains tend to be imbricated (shingled) 

according to the direction of dip upstream. Additionally, he specified that the fluid-flow direction of the 

depositing medium can be determined from an orientation analysis of the dimension fabric of a sand 

deposit. Evidencing sedimentary fabric and, thus, the flow direction is the major contribution of the AMS 

technique. Depending on the shape of the grains, their concentration in the traction carpet and the flow 

velocity, elongated particles can be imbricated (their long axis showing the flow direction) or can roll on 

the bottom (their long axis aligned perpendicular to the flow direction). To address this complexity, and 

avoid potential misinterpretations in inferring the flow direction from the dip and azimuth of the long 

axis of the ellipsoid of anisotropy (Kmax or K1), the present contribution uses the “Kmin or K3”, which is 

the pole of the magnetic foliation following Palmer et al. (1996), Ort et al. (2003), Giordano et al. (2008), 

La Berge et al. (2009) and Wilcock et al. (2014).  

Parametric values extracted from this method are commonly: the magnetic foliation (F), the magnetic 

lineation (L), the shape parameter (T), the corrected degree of anisotropy (Pj), the alignment parameter 

(Fs), and the ellipsoid shape factor (q) 

Parameter F (foliation) reflects the intensity of the planar linear orientation, while L (lineation) 

characterizes the intensity of the planar parallel orientation. A high F value corresponds to a deposit 

transported as traction load (for an environment where the fluid isn’t still and characterized by a current) 

while a high L value reflects a deposit process dominated by settling. The alignment parameter Fs 

increases with the energy of bottom currents (de Menorcal 1986, Park et al, 2000). Fs values have been 

used in conjunction with particle size analysis as an indicator of palaeo-current velocity variations by 

Elwood and Ledbetter (1977). The shape parameter T distinguishes the relative dominance of traction 

versus settling as influences on the resulting deposit: when T values are between 0 and 1, settling 

dominates (1 indicates a purely foliated deposit) whereas when T values are between 0 and -1, lineation 



dominates (-1 indicates a purely lineated deposit). Pj is typically a measure of the eccentricity of the 

anisotropy ellipsoid. If Pj = 1, the fabric is perfectly isotropic; between 1 and 1.05 the fabric is weak while 

between 1.1 and 1.2 it is strong. The ellipsoid shape factor q is an indicator of either depositional or 

tectonic fabric. A value less than 0.7 is indicative of an undeformed sediment fabric (primary fabric) while 

a value higher than 0.7 suggests that a tectonic activity deformed the primary fabric (Hamilton and Rees, 

1970).  

An AMS core sampling strategy was established to plug the sampling boxes into the center of units and 

avoid unit ends and transitions, in order to avoid the pollution of one deposition process over another 

linked to shear stress and material mixing. Nineteen AMS samples were analysed using the AGICO MFK1A 

Kappabridge® with automatic spinner, following the same method adopted in Wassmer et al. (2010); 

Wassmer and Gomez (2011) and Kain et al. (2014). Recently, the AMS has also been referred to as ‘the 

Magnetic Fabric’ MF (Kain et al., 2013), but the present contribution keeps the first terminology widely 

used in the scientific community: AMS (Wassmer et al., 2010; Wassmer & Gomez, 2011). 

N.B.: Samples collected too close to the interface between tsunamis 2 and 3 (28* & 29*) as well as 

between tsunamis 3 and 4 (36*) were excluded from this analysis due to the potential mixing of fine 

material from the top of the older (lower) tsunami sequence with coarse material from the base of the 

younger (upper) tsunami sequence in these samples. 

 

2.3. Grain-size, quartz morphoscopy and foraminifera analyses 

To complement the AMS results, which offers data on wave orientations, the authors also analyzed the 

sediment units for grain sizes, quartz morphoscopy (morphology and surface state) and foraminiferal 

species in order to ascertain the environmental origin of the sediments. From the grain size analyses, 

parameters were extracted: mean grain size according to Trask (µm); standard deviation (Φ) calculated 

according to the methods of Folk and Ward (1957) and Blott and Pye (2001); skewness according to 

Trask(µm). To confirm the observations and the general data obtained by the described methods, we 

used Passega’s CM diagram according to the technique of Passega and Byramjee (1969), and Passega 



(1977). The mean grain size was plotted on a log/log diagram with the fifth percentile C95 (µm). This 

provided further insights into the deposition conditions experienced by the different tsunami units 

Sand samples were washed under distilled water on a 50µ sieve and dried in an air oven. Each sample 

was homogenized and submitted to a double quarting. From the remaining sands, a random sample of 

100 grains was studied under a binocular microscope using the quartz morphoscopy method, which focus 

on the grain shape (angular to well rounded) according to Pettijohn (1957) and on the grain surface 

characteristics (polish / matt, presence of coating) according to Tricart and Cailleux (1963), in order to 

identify the main processes responsible for the sediment transport.  

 

Foraminiferal analysis is a precious tool in geology and stratigraphy. With contemporary deposit 

investigations, such as those examining tsunami, information about the composition of foraminifera 

assemblages may be analysed from to differentiate sediments sourced from marine versus terrestrial 

versus estuarine origins and even to detect the water depth from which the sediments were entrained or 

the distance of transport before deposition (Chagué -Goff et al., 2011). Changes in assemblage 

composition within a sedimentary sequence indicate changes in marine environmental conditions. 

Species with restricted environmental niches are particularly instrumental in such palaeogeographic 

analyses and palaeoenvironmental reconstructions (Chagué -Goff et al., 2011). For the present study, 569 

specimens were examined and the dataset was studied in light of previous work by Griveaud (2007), 

Hussein et al. (2006), Nanayama and Shigeno (2006), and Uchida et al. (2010). To classify the origin of the 

foraminifera, the authors have adopted a depth-based division in three ‘zones’, following Nanayama an 

Shigeno (2006): i.e. an inner sub-littoral zone (ISZ) with water depths up to 50 m, a medium sub-littoral 

zone (MSZ) with water depths between 50 and 90 m, and an outer sub-littoral zone (OSZ) with water 

depths between 90 and 240 m. The foraminiferal investigations were carried out based on 100 g of 

sediments taken from homogenized samples placed in an experiment tray. The foraminifera were 

removed one by one from the rest of the sediments using fine tweezers and a binocular microscope, in 

order to conduct the species identification. This operation was repeated three times for each sample. 



Examples of the species found were then photographed using the microscope software Motic Images 

Plus 2.0 ML. 

 

3. Results 

The in-situ observations of the extracted core revealed a series of four tsunami deposits, corresponding 

to the four last tsunamis that inundated the area during the last ~150 years. The first sequence, Ts1, 

located at the base of the core between 100 and 58 cm below the core surface, was characterized by a 

series of sandy layers with bioclasts topped with a sandy-silt unit (Table 1).  

 

Table 1. Detailed description of the sediment deposit sequences observed in the Agawa Pond core 

Deposit 
sequence 

Depth below 
core surface 

(cm) 

Layer description 

Ts1 100-91 well sorted grey sands 
91-86 lightly erosive contact at base, then coarse grey sands containing 

abundant bioclasts, oriented into roughly horizontal layers 
86-74 Relatively homogenous finer sands with small bioclasts, no visible 

layering except a thin, grey, very fine sand layer (78-77 cm), resting atop 
a line of abundant bioclasts. 

74-67 coarse sands with omnipresent bioclasts, overlain by unbroken shells 
followed by an undulating contact underlined 

67-64 greyish fine sands, evolving into next layer 
64-58 dark grey silts poor in bioclasts including elongate clasts of darker, fine 

material 
Ts2 58-59 erosive contact 

59-52 medium to coarse sands, lighter grey in color and containing numerous 
bioclasts, evolving into next layer 

52-48 finer and darker sands 
52/48-45 coarse sands with abundant coarse bioclasts, strongly erosive of deeper 

sub-layer which was locally erased by an undulating contact 
45-40 elongate clasts of brownish silty material 

40 to 32 dark brown silts characterized by a lack of bioclasts 
Ts3 32-25/24 clean, grey coarse sands with bioclasts present but not abundant, 

inclusions of large (3-4 cm length) dark-brown silt clasts 
25/24-14 dark-brown compacted silt and clay, devoid of bioclasts 

Ts4 14/13-10 erosive contact with the previous sequence, followed by clean, grey, 
medium sized sands containing numerous dark-brown silt elongated rip-
up 

10-8 dark silt interleaved by thin, clean, sandy beds  
8-4 Well sorted layer of clean, grey sands with little bioclast content 
4-0 a large rust-colored artifact (~3.5 cm diameter) separated, flowed by 

dark-brown clayey silts 
 



For this earliest deposit the information collected was partial since its base was too deep to be sampled 

with the 1 m geo-slicer. Despite the absence of its base, this tsunami deposit was still significantly thicker 

than the three more recent ones above.  

The second tsunami deposit, Ts2, was found between 59 and 32 cm below the core surface (Table x). The 

third tsunami deposit, Ts3, was situated between 32 cm and 14 cm below the core surface while the 

fourth (Tohoku-oki) tsunami deposit, Ts4, lay between 14 and 0 cm below the core surface. Sandy layers 

topped by sandy-silt deposits characterized all four tsunami deposits sequences sampled. The presence 

of numerous coarse dark-brown rip up-clasts in the sandy sequences were a characteristic specific to the 

last two tsunami deposits, Ts3 and Ts4. All four observed sequences were characterized by a progressive 

decrease in thickness towards the surface, with total sequence thicknesses equaling 42, 26, 18 and 13-14 

cm from the core base to top. 

 

3.1 Grain-size and grain morphoscopy 

The grain-size distribution was established for each sample layer within the successive sequences. Within 

each of the four sequences Ts1 to Ts4, the base comprised coarse sands (500 to 700 µm), with the 

texture fining upward into a layer of fine sands (260 to 240 µm). The proportion of sand in this part of the 

deposit varied from 100 to 97%. A very small amount of silt (2-3%) was present only at the very end of 

these sand-dominated layers. The top of each tsunami deposit sequence comprised a layer of dark-brown 

material (221 to 64 µm) where silt dominated and the sand content decreased to values comprised 

between 30 and 17%, with less than 10% clays. 

Within Ts1, three superimposed upward fining sub-sequences were discernable, albeit with the first sub-

sequence having an incomplete base. Within Ts2, two normal graded sub-sequences were superimposed. 

Ts3 and Ts4 were each characterized by a single fining upward layer. In addition to the within-sequence 

textural changes, when comparing textures between sequences there was a clear trend of decreasing 

mean grain sizes from Ts1 to Ts4. 

  



The evolution of grain size sorting within the core revealed similar patterns in all four tsunami deposit 

sequences. The general tendency was for good sorting at the base of each sequence, with (values close to 

0.5), followed by a reduction in sorting, with moderate to poor sorting (values >2) within the fine unit at 

the top of each sequence (Fig. 2). These patterns are consistent with the results obtained by Szczucioski 

et al. (2012) for the Tohoku-oki tsunami deposit on Sendai Plain. Within the two first sequences, the two 

steps evolution evidenced in the grain size are reflected in the sorting values, which ranged between 0.9 

– 1.0 at the base and 1.6 – 1.7 at the top. The skewness values are all above 0, indicating that all the 

sequences were skewed in favour of coarse particles (Fig. 2).  

 

 

Fig. 2 Grain-size distribution 



 

The morphoscopy of the sands shows a clear predominance of highly polished grains in the material 

emplaced in Agawa Pond. The proportion ranged from 70 to 89% within the first sequence, to 57% in the 

fine material constituting the end of the sequence. This polishing indicates a littoral origin (s.s), nearshore 

or beach, for this material polished by the back and forth action of waves. A smaller proportion of the 

sandy sediments (15-20% at the base of the core, 25-35% at the top) exhibit surfaces pitted with 

thousands of microscopic cavities. These visually matt grains evidence sediments originating from local 

aeolian onshore deposits such as in the beach backshore and dunes. Generally the grains in the core 

were found to be well rounded to rounded (50-70%). The proportion of blunt grains was generally 

around 20 to 30%, but increased in the muddy layers of each sequence end, reaching 80% at the top of 

the first sequence. These grains were typically yellow or rust colored.  

The proportion of bioclasts and microfossils varied throughout the whole core. Their concentrations 

changed simultaneously, decreasing or being absent in the fine material marking the end of each 

sequence.  

 

 

3.2 Analysis of deposition characteristics from the Passega CM diagrams 

Based on the analyses using CM diagrams , the four investigated tsunami sequences exhibited a range of 

sediment deposition characteristics that varied from rolling to uniform suspension, with most of the 

material having been deposited via rolling and gradual suspension. Keeping in mind that we did not 

recover the full first tsunami deposit, the sediments of Ts1 (Fig. 3-1) displayed a series of alternating 

deposition modes, varying between rolling and gradual suspension from the base of the core upwards, 

before finishing at the top of the sequence with sediments reflecting uniform suspension characteristics. 

The mean grain size was coarse (200 to 725 µm), except for the uppermost sequence sample, which had 

a mean grain-size of 65 µm. Ts2 (Fig. 3-2) exhibited a similar median grain size distribution, with sample 

mean grain diameters ~ 522 µm, except for the very top of the sequence, which had a mean grain size 

between 40 and 50 µm. As in Ts1, Ts2 displayed alternating layers with rolling and ground suspension 



characteristics, topped by a layer reflecting uniform suspension. The characteristics of Ts3 and Ts4 were 

simpler, these deposits being thinner than the previous ones and showing less layering (Fig. 3-3,4), but 

they too displayed the same general pattern of coarse material at the bottom of the column and a layer 

of fine material at the top of each sequence. 

 

Fig. 3 Passega Diagram 

 

3.3. Anisotropy of Magnetic Susceptibility parameters and inferred flow directions 

As outlined in the methods section, parametric values are derived from the three axes (K1) > (K2) > (K3) of 

the anisotropy ellipsoid and these values, combined with the grain size data and the flow direction 

information, allow us to interpret the hydrodynamic conditions that existed during sediment deposition. 

For the complete Agawa Pond core, the Pj values indicated a consistently weak to moderate eccentricity 

of the anisotropy ellipsoid with values ranging from 1.017 to 1.112. The q values (ellipsoid shape factor) 

were comprised between 0.06 and 1.039 with 10% of the values exceeding 0.7, indicating that the 



general magnetic fabric acquired during deposition (primary fabric) has not been disturbed by tectonic, 

bioturbation or compaction (Rees 1961). The first tsunami sequence was characterized by a strong Fs 

value at its base, with a progressive weakening of Fs values above. A small peak in Fs, with a value around 

74, occurred at the base of an uprush phase, and there was a weak increase the Fs values at the very end 

(top) of Ts1. 

 

Fig 4 Orientation of the k-max, k-med and k-min for each sample.  



. In Ts2 and Ts3, the general pattern of decreasing Fs values from bottom to top was found as well, but 

interrupted by the presence of small peaks of stronger values reflecting punctual short energy recovery. 

According to the shape parameter (T), the three tsunami sequences were largely dominated by settling 

processes, with the only exceptions being the traction-dominated coarse sands at the base of the core as 

well at the end of the second sequence. 

 

Topographically, Agawa Pond is a depression starting 350 m from the ocean shore. It is 110 m in width 

and stretches 700 m inland along a N129º to N309º (SE-NW) axis. This narrow gutter acts as a tsunami 

sediment trap. It channels tsunami wave uprush, which surges inland in this area at N303º, on a similar 

angle to the pond long axis. The channelling influence of the pond removes from its deposits much of the 

sediment emplacement flow direction variations that are observed elsewhere across the surface of the 

plain. Some tsunami inflows related to the local hilly topography around the pond generate bottom 

currents with systematic preferential directions (toward the SW for instance). On the one hand, when 

reconstructing the characteristics of the flows that have emplaced the pond deposits, care must be taken 

to interpret these findings within the context of the pond’s effect on tsunami wave flow directions and 

not simply as indicative of flow patterns on the surrounding coastal plain. On the other hand, the number 

of tsunamis recorded in the pond, the characteristics of the sedimentary sequences themselves, and the 

characteristics of the source material are not simply ‘pond-dependant’ but rather have implications for 

the tsunami event effects on the wider coastal plain.  

The first tsunami sequence recorded in our core, Ts1, was the most complex. As mentioned earlier, the 

base of our core was not the very base of the tsunami deposit. In the core, Ts1 begins with sediments 

indicating a flow oriented towards the SW (100-91 cm from the top of the core). This is consistent with 

backwash coming off the slopes of the hills located NE of the pond. This backwash emplaced deposit is 

followed by a coarse deposit (from 91-86 cm) indicating flows oriented towards the SE, consistent with 

flow channelization along the long axis of the pond towards the coast. The next sediment layer (from 86 

to 74 cm) indicates an uprush phase oriented NE, consistent with flows guided inland along the pond 

gutter. This is followed by another two backwash indicative layers: the first oriented towards the SW 



(from 86-78 cm), and the second, guided by the pond, oriented towards the SE (from 78-74 cm). The next 

deposit layer (from 74 to 67 cm) indicates emplacement by a new uprush phase, with grains oriented 

towards the NW. Like before, this uprush deposit is followed by two backwash deposits, the first 

indicating flows oriented towards the E and the second indicating SW-oriented flow corresponding to the 

deposition of the dark-brown fine materials, marking the end of the Ts1 sequence. 

Ts2 begins with an uprush deposit (from 59-52 cm), emplaced by flows heading towards the NE, followed 

by a layer (from 52-45 cm) emplaced by backwash flows directed towards the SW. The second uprush 

layer (from 45-43 cm) indicates flows oriented towards the NW and is followed by a backwash layer (from 

43-40 cm) indicating SW-moving flows. The sequence ends with a thick muddy layer (from 40-37 cm), 

deposited by a flow towards the NW.  

The Ts3 deposit began with a sediment layer emplaced by an uprush phase that flowed towards the NE 

(from 32-24 cm) and ended with dark silts (from 24-14 cm) deposited by an uprush flow oriented towards 

the NW. 

 

4. Evidence synthesis 

4.1 Deciphering the hydrodynamic conditions of the four recorded tsunami events 

Agawa Pond has existed for well over a century. During this time, the pond has functioned to record and 

preserve the sedimentary signatures of four large tsunamis that have surged across the Sendai coast and 

plain. The multi-proxy approach to describing the pond deposits detailed in this paper now enables us to 

reconstruct the characteristics of these events and to compare them. 

As mentioned earlier, the very base of Ts1 was not captured in our core. This first tsunami event, as 

recorded in the base of the Agawa pond core, appears to have been very strong considering the 

dominance of traction processes identified in sediments here and given the large mean grain size (200 to 

725 µm) of the materials emplaced. Three fining-upward sub-sequences were identified within Ts1 via 

textural analysis but, interestingly, the AMS analysis revealed that these were not emplaced by flows 

coming from a uniform, seaward direction. AMS results revealed that the first Ts1 normal –graded sub-

sequence in our core was emplaced by an initial flow heading SW (seaward), followed by another flow 



heading SE (seaward in alignment with the long axis of the pond). These directions are consistent with 

backwash flows. Atop these two coarse sand layers, there was a second, apparently fining-upward sub-

sequence comprising coarse sands overlain by fine sands. AMS analysis of this sequence showed, 

however, that the base of this subsequence was emplaced by a seaward-moving flow while the finer 

material above was emplaced by a land-ward moving uprush flow aligned NW along the gutter-like long 

axis of the pond. As such, AMS reveals that this second ‘sub-sequence’ was not in fact a single graded 

sub-sequence but rather two distinct layers deposited by waves travelling in opposing cross-shore 

directions. Another sub-sequence comprising an uprush (inland-moving) layer was then identified at the 

top of Ts1, indicating emplacement by a flow heading in a NW direction. This was followed by deposits 

indicating a weak current travelling westward (quasi shore-parallel), then towards the south-east 

(seaward), these ‘backwashes’ resulting in the deposition of the fine dark brown silts that cap Ts1. For 

Ts1, the Passega’s CM diagrams clearly indicate the dominance of high energies and rolling processes at 

the base of each of the three sub-sequences, transitioning towards the top into a deposit indicative of 

lower energies dominated by ‘rolling and ground suspension’ to ‘uniform suspension’ at the very top of 

Ts1. 

Ts2 begins with medium to coarse sands deposited on a landward-moving uprush, heading NW. This 

uprush deposit was followed by a layer of coarse sands, containing numerous coarse bioclasts, that was 

likely deposited by a quick, strong and energetic backwash heading towards the SW. A second uprush-

deposited sub-sequence, slightly discordant with the layer below, was likely deposited by a flow heading 

towards the NW. The latter uprush was subsequently interrupted by a backwash flow, heading towards 

the SW, which deposited medium sands. Capping these Ts2 layers, dark muds were likely emplaced by a 

lower-energy landward-moving flow, the velocity of which progressively decreased as attested by the 

magnetic foliation pole (K3) coming close to the vertical. This sequence end corresponds to a slackening 

of wave energy. The two Ts2 sub-sequence ‘pulses’ described are also clearly evident on the CM diagram, 

which shows the processes dominating the first pulse evolved from ‘rolling’ to ‘rolling and ground 

suspension’ while those at the end of the second pulse evolved to ‘gradual suspension’.  



Ts3 was the thinnest tsunami sequence. It started with sands and silts deposited by a flow that was likely 

travelling towards the NE. The azimuth data for this layer must be interpreted with caution because the 

sampling was made difficult by the close matrix of sands and silts. The uprush, most likely guided by the 

gutter shape of the pond, emplaced a layer of sands, indicating high energies, but this material appears 

to have been mixed in with, and capped by, a 10 cm thick layer of coarse, dark, rip-up of muddy-silt 

texture. The latter, 10 cm layer is by far the thickest single layer in the core and was emplaced by a 

relatively slow flow heading landward (NW). The Passega’s CM diagram for this sequence indicates that it 

likely corresponds to a single pulse, characterised by a clear decrease in energy levels from the base of 

Ts3, where ‘rolling’ type processes dominated, towards the top of Ts3, where ‘uniform suspension’ 

dominated. The very top of Ts3 is characterized by indications of a short recovery of energy levels (point 

17), dominated by ‘gradual suspension’ processes, followed by a penultimate drop in energy levels. 

Ts4, the Tohoku-oki tsunami sequence was not investigated using AMS techniques since the upper part of 

the core became altered during transport to the laboratory. Ts4 was composed of a 5 cm thick sandy 

layer, containing abundant rip-up clasts of dark mud. The rip-up clasts were 1 cm thick and often 

elongated with an undulating disposition. The top of this layer was covered by a continuous 1 cm deposit 

of dark silts. Above, a thin layer of fine grey sands was capped by another 6 cm of dark silts. The CM 

diagram shows a three-stage evolution of dominant processes within Ts4: from ‘rolling and ground 

suspension’ at the base to ‘gradual suspension and rolling’ towards mid-sequence, finally to ‘gradual 

suspension’ at the top of Ts4. 

 

4.2 Deciphering the historical tsunami events that emplaced the core sequences 

Using existing research conducted along and near the Sendai coast, and the results of core analyses from 

this paper, we can try to attribute the observed sedimentary sequences to historical tsunami events. 

While deposition of the last sequence, Ts4, is indisputably related to the Tohoku-oki tsunami event, 

determining the events which deposited the three lower (earlier) tsunami sequences in Agawa Pond is 

slightly more complicated. While numerous papers have been written about the Sendai and nearby 

coasts, most proved unhelpful in decoding our tsunami event records. Goto et al. (2012), for example, 



suggest that no historical records exist of large tsunami events impacting the Sendai and adjacent plains 

over the last thousand years, with the exception of one possible event (the 1611 Keicho tsunami). This 

finding contrasts with well-known seismically-active nature of the region and the records of several 

smaller tsunamis having occurred in the area (http://www.bo-sai.co.jp/chirijisintunami.html, 

http://showa.mainichi.jp/news/1960/05/post-9900.html). The magnitudes of some historical 

earthquakes known to have occurred in this region, and the likely sizes of associated tsunamis, have been 

estimated based on the known geological record augmented by numerical modeling studies (Satake et 

al., 2008; Namegaya et al., 2010; Sugawara et al., 2012, 2011). In their work focused on Rikuzentakata in 

Iwate Prefecture, Liu et al. (2013) compared the characteristics of the Tohoku-oki tsunami with those of 

the three previous historical tsunamis known to have impacted the wider east coast of Japan: the Meiji 

tsunami in 1896, the Showa tsunami in 1933 and the Chilean tsunami in 1960.  

Even if the data are scarce and sometimes difficult to compare, a rough classification of historical tsunami 

events as evidenced by existing literature can be attempted. The Meiji tsunami occurred on June 1896 

and was triggered by an earthquake of Mw 8.2 to 8.5. This event coincided with a high tide and was 

dominated by strong inland-flowing uprush. According to Liu et al. (2013), the Meiji and Tohoku-oki 

tsunamis can be considered roughly equivalent in intensity. This similarity includes flow depths and run-

up levels measured along the coast, with the more recent tsunami representing a slightly larger event: 

run-ups of 40 m for Tohoku-oki versus 20 to 35 m for Meiji (see Unohana and Oota’s 1988 compilation of 

observations from Iki, 1896; and Yamana, 1896). The Showa tsunami occurred in March 1933, and was 

generated by a Mw 8.4 earthquake. Run-up levels measured after the event reached 20.3 m in elevation 

above sea level according to Otuka (1934). With its bore-like waveform, the highly turbulent wave front 

from this event is reported to have caused severe coastal infrastructure damage (CFICT, 1961). In May 

1960 a Mw 9.0 earthquake off the coast of South America generated the so-called ‘Chile tsunami’, which 

travelled for 22h and 17 000 km across the Pacific Ocean to the Japanese coast. Due to its extremely long 

wavelengths, the water flooding the area of Sendai during this tsunami appeared more like a rapidly-

cycling, high tide than a series of sea-surface waves. The area of Rikuzentakata, on the Sanriku coast, 

flooded during this event was more extensive and deeper (5.25 km2/ 3 km) than that of the Meiji (1.56 

http://www.bo-sai.co.jp/chirijisintunami.html
http://showa.mainichi.jp/news/1960/05/post-9900.html


km2) or Showa (1.34 km2 / 1.3 km) tsunamis. With its recorded flood extent of 13.45 km2 and upriver 

maximum inundation of 8.1 km, the 2011 Tohoku-oki event is easily the largest tsunami to have occurred 

on the east coast of Japan over the 120 last years (Table 2).  

Table 2, Overview of likely origins of the tsunami deposits in the Agawa Pond core. 

 

In the Agawa Pond core, we believe that the basal sequence is likely related to Meiji tsunami. The AD869 

Jōgan tsunami might have been another possible origin for the sequence except that the volcaniclastic 

ash layer, called the “AD915 Towada-a tephra”, which generally overlies this tsunami deposit elsewhere, 

making it relatively easy to identify (Goto et al., 2012), did not occur in our Agawa pond core. Given that 

the pond feature has been shown to be highly effective at preserving deposits, we judge it unlikely that 

Tsunami event TOHOKU-OKI CHILEAN SHOWA MEIJI 

Date 11 March 2011 22 May 1960 
(far-field tsunami 
reached Japan’s 

coasts after 
traversing 17 000 

km of Pacific Ocean) 

3 March 1933 15 June 
1896 

Earthquake magnitude 9 9,5 8,1 7,2 

Deposit thickness in Agawa 
Pond (Wassmer et al., this 
study) 

14 cm 17.5 cm 27 cm >41.5 cm 

Inundation area at 
Rikuzentakata (Liu et al., 
2013) 

13.45 km2 5.25 km2 1.34 km2 1.56 km2 

Up-river maximum 
inundation (Liu et al., 2013) 

8.1 km 3 km 1.3 km  

Flow height at 
Rikuzentakata (bay 
entrance) 

~ 15 m 
2-3 m 11.8 m 

~ 4.6 m 

Flow height at 
Rikuzentakata (bay head) 

4-5 m 3.5 m 

Wave period extreme peak: 8 
mn superimposed 

to  
30 mn elevated 
water (Liu et al., 

2013) 

60-80 mn 

(CFICT, 1961) 

10 mn  

(Matsuo, 1933) 

 

Characteristics   Highly 
turbulent front  
(CFICT, 1961) 

Coincided 
with high 
tide level 

     



the tephra layer was deposited within pond’s sediments and subsequently eroded. If our interpretation 

of the origin of Ts1 is correct, then Ts2 may be attributed to the Showa tsunami and Ts3 likely 

corresponds to a Chilean tsunami origin  

Although less documented by the international scientific community, the 1960 Chilean tsunami invaded 

the Sendai plain as well. Houses were destroyed and flooded like the historical photographs of Oofunato 

City in the province of Iwate (http://www.bo-sai.co.jp/chirijisintunami.html). In the province of Miyagi, 

there are report of 312 houses destroyed, 653 partly flooded, 500 houses transported by the tsunami and 

41 death (Yoshimura, 2004) 

 

5. Conclusion 

 

The recordings in Agawa Pond allowed us to reconstruct the behaviour of the predecessors of the 2011 

Tohoku-oki tsunami. The significance of these findings concerning the flow direction and the recording of 

backwash sequences must be restricted to the local topographic context of the pond itself and its 

surroundings.  

The main conclusions are as follows:  

- i) the topography controls the sedimentation processes that construct tsunami deposits, with the 

best preservation occurring in depressions (Wassmer et al., 2010). This is confirmed at Agawa Pond that 

recorded and preserved sedimentary signature of the four tsunami events that surge on Sendai Plain 

during the last 120 years while Goto et al., (2012) consider that there is only one possible historical 

record of large tsunamis over the last thousand years on the Sendai and adjacent plains (1611 Keicho 

tsunami). 

- ii) thanks to the AMS technique, we show that within the tsunami sequences recorded, three 

sub-sequences have been identified for the Meiji tsunami and two for the Showa tsunami, indicating 

multiple energy pulses occurred during these events. A single pulse has been evidenced for Chilean 

tsunami. The Tohoku-oki tsunami deposit is much thinner relative to its predecessors and does not show 

sub-sequences or indicates multiple energy pulsations characterizing this event. 

http://www.bo-sai.co.jp/chirijisintunami.html


- iii) the double origin of the sands evidenced by Szczucioski et al. (2012) and Goto et al. (2012) for 

the Tohoku-oki tsunami is confirmed and this origin and the evolution of the relative proportions of 

seashore and dunes / terrigenous material evolved in the same way for the past tsunamis according to 

the different sequences recorded. 

- iv) the foraminifera assemblage found in the deposits indicates an origin from Inner and Middle 

Sub-littoral Zone (ISZ and MSZ). The deposit of theses foraminifera is strongly related to the deposit of 

the fine sands. 65.1% of the total amount of foraminifera are deposited within sands of mean grain size 

ranging from 200 to 400 µm. 

- v) The sediment supply being considered as constant for the successive events, the thickness of 

the deposits seems to be more related to the efficiency with which the pond plays a sediment trap role 

than to the relative energy of the event. Regarding the magnitude of the tsunami events, the 

classification from largest to smallest is as follows: (1) Tohoku-oki; (2) Meiji; (3) Chilean; and (4) Showa. In 

contrast, the Agawa Pond tsunami sequences may be classified according to decreasing deposit thickness 

as follows: Meiji (42 cm); Showa (27 cm); Chilean (17); and Tohoku-oki (14 cm). This may, in part, be 

explained by the sediment trapping efficiency of the pond decreasing with increasing sediment infill over 

time. The thickness of the deposits is, thus, affected by the antecedent conditions within the pond.  

- Another aspect this study has revealed, is potentially the importance of the stock of material 

defining the importance of the tsunami deposit. Indeed, often tsunami deposits are associated with the 

magnitude of tsunamis, but for paleo-tsunami researchers don’t take into account the evolution of the 

shore-line and the availability of material that can have an important impact on the amount of sediment 

that can be remobilized and consequently deposited. For Agawapond, a diachronic analysis of the 

evolution of the shoreline and the coastal plain shows that during the 20th century the environment has 

rapidly changed from a rice-field environment with sparse villages into a semi-urban mesh with denser 

road network and most especially a large international harbour, which disturbed the lagoon and the 

shoreline where a large amount of sediment could be collected by tsunami. Subsequently, the 

progressive reduction of tsunami deposit thickness with time is certainly to be attributed to the change in 



the depositional environment around Agawa-pond during the last decade (Fig. 8), certainly providing with 

a point of caution for future research on tsunami deposits and paleo-tsunami deposits. 

 

As mentioned above in the text, the Meiji tsunami sequence is not complete in the core. A further 

investigation would be useful to find the base of this sequence and, may be, some older tsunami deposits 

recorded in Agawa Pond and some other ponds in the same area. 
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