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[1] A synergetic scheme refers to an algorithm that simultaneously or hierarchically
uses the observations of two or more spectral ranges in order to obtain a more accurate
retrieval than the independent retrievals put together. This study is composed of two
companion papers; this first part introduces some theoretical considerations. The goal
of this study is, first, to identify the various forms of synergy for remote sensing
applications. Simple linear models are used to introduce concepts such as additive,
unmixing, indirect, or denoising synergies. The second objective of this paper is to develop
a methodology to measure, in real‐world applications, these different synergies. For
this purpose, some experiments are conducted using the classical information content
analysis which is often used in the context of assimilation or to design new instruments.
This technique is tested on a real‐world application where the microwave and infrared
observations from the Atmospheric Microwave Sounding Unit‐A, Microwave Humidity
Sounder, and Improved Atmospheric Sounding in the Infrared instruments are used
to retrieve the atmospheric profiles of temperature and water vapor over ocean, under
clear‐sky conditions. This approach will show its limitation to measure synergy and stress
the need for other tools. In the companion paper, statistical retrieval schemes will show
their potential to measure and exploit existing synergies, for the same application.

Citation: Aires, F. (2011), Measure and exploitation of multisensor and multiwavelength synergy for remote sensing:
1. Theoretical considerations, J. Geophys. Res., 116, D02301, doi:10.1029/2010JD014701.

1. Introduction

[2] A wealth of Earth satellite observations is now available,
covering the entire globe, and providing a large diversity of
information over a broad frequency range (UV, visible, infrared,
microwave), in order to obtain a global and continuous moni-
toring of the state of the atmosphere. Space agencies have
designed satellite platforms that include instruments from the
different regions of the electromagnetic spectrum. In parallel,
accurate Radiative Transfer Models (RTM) have been devel-
oped to simulate the responses of these multispectral observa-
tions to atmospheric changes in composition or temperature.
However, the retrieval accuracy of key variables such as tem-
perature or water vapor profiles is still not always satisfying.
[3] The radiation measured by an instrument on board a

satellite often results from the combination of contributions
from the different atmospheric constituents, including gases,
aerosols, and hydrometeors, as well as possibly from the
Earth surface. Disentangling the various effects in order to

quantify a given atmospheric or surface variable can be very
challenging. Historically, methodologies have been devel-
oped to use one type of wavelengths to derive one atmo-
spheric parameter. To suppress ambiguities related to the
contribution from other effects, these algorithms exploit for
instance the complementarity of close frequency bands
measured by the same instrument or use ancillary informa-
tion from independent sources. Simultaneous observations
of the atmospheric state in different wavelength ranges
could help separate the different contributions in order to
obtain better estimates of a given parameter. However,
despite the availability of multifrequency satellite observa-
tions, limited efforts have been invested so far to design
retrieval schemes that benefit from the potential synergy
between the measurements from different wavelength ran-
ges. In the work by Cho and Staelin [2006], Atmospheric
Microwave Sounding Unit (AMSU) data are used to per-
form a cloud clearing of the AIRS infrared radiances.
MODIS and AIRS measurements are exploited in a varia-
tional retrieval scheme for cloud parameters [Li et al., 2004],
and Susskind et al. [2003] combine AIRS/AMSU/HSB data
for the retrieval of atmospheric and surface parameters in the
presence of clouds. Most of the time, retrievals from dif-
ferent instruments are combined a posteriori, and the
potential synergy between the observations is not exploited.
A synergetic scheme refers to an algorithm that uses
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simultaneously or hierarchically the observations of two or
more spectral ranges in order to obtain a more accurate
retrieval than the independent retrievals together. The defi-
nition of synergy is extended here to the inversion schemes
that combine information (observations, a priori information
or retrieved parameters) in order to improve their retrievals.
We define the synergy factor of a retrieval scheme using R
sources of information (x1,…,xR), each one can be multi-
variate, as the ratio of the errors of the retrieval using the
best single information, min

i¼1;...;R
E(xi) with the errors of the

retrieval using all the sources of information, E(x1,…,xR):

Fsyn ¼
min

i¼1;...;R
E xið Þ

E x1; . . . ; xRð Þ :

There is synergy when this ratio is >100%. How are dif-
ferent sources of information used efficiently for a better
final product? The retrieval scheme has to merge different
satellite observations, to optimize the use of complementary
observations, and to exploit potential a priori information.
Numerical Weather Prediction (NWP) assimilation models
are able to use multispectral observations. However, it is
difficult with this approach to actually assess and evaluate
the potential synergy and thereby identify measurement
improvements. There is still place for improvement in the
retrieval of key atmospheric variables such as temperature,
water vapor, or ozone profiles if synergy is used even under
clear sky conditions. The efficient use of simultaneous
observations in various wavelength ranges makes it neces-
sary to develop new retrieval strategies.
[4] In order to develop new approaches to perform sat-

ellite data fusion, it is necessary first to understand the basic
concepts behind synergy. To illustrate the various types of
synergy, it is a good strategy to use a simple schematic model.
Then, a methodology needs to be put in place to measure the
synergy. Since assimilation is the most widely used technique
to merge data, the traditional information content analysis is
the first candidate. To test the potential of this method, we
apply it to selected atmospheric parameters and wavelength
bands under specific instrument geometry for the MetOp‐A
satellite. This platform provides coincident observations in
the infrared, with the Improved Atmospheric Sounding in the
Infrared (IASI) instrument, and in the microwaves, with
AMSU‐A and Microwave Humidity Sounder (MHS). We
concentrate on the major atmospheric parameters, namely
temperature and water vapor profiles, for which the selected
MetOp‐A instruments are particularly sensitive.
[5] Section 2 presents various synergy mechanisms and

illustrates them by using classical information content theory
and a simple linear model. Section 3 introduces the simulated
databases that are used in this study and by Aires et al.
[2011]. The use of the classical information content analy-
sis is illustrated using the MetOp application in section 4.
Finally, conclusions and perspectives are drawn in section 5
and the companion paper is introduced.

2. Theoretical Considerations

2.1. Model

[6] Synergy (from the Greek syn‐ergo, working together)
refers to the phenomenon in which two or more discrete

influences or agents acting together create an effect greater
than that predicted by knowing only the separate effects of
the individual agents.
[7] Let f1 and f2 be two geophysical variables, and TB1

and TB2 two measurements from two instruments. We
suppose that the radiative transfer model can be linearized:

TB1

TB2

� �
¼ A � f1

f2

� �
þ "1

"2

� �
ð1Þ

where A =

�
a11 a12
a21 a22

�
is the linearized radiative transfer

operator and ("1,"1) is the measurement noise on (TB1,TB2)
that follows a Gaussian distribution with covariance matrix

S" =

�
1 0
0 2

�
. We suppose that a priori information on

(f1, f2) exists and that its uncertainty is given by an unbiased
Gaussian distribution with covariance matrix Sf. Of course,
the following discussion can be extended to more geo-
physical variables, more observations or nonlinear models
and non‐Gaussian distributions.
[8] The solution of this simple linear and Gaussian inverse

problem is given by:

f ¼ fg þ At � S"�1 � Aþ Sf
�1

� ��1 � At � S"�1 � F" � Fg

� � ð2Þ

where fg is the First Guess (FG), e.g., from a NWP model, Sf
is the FG covariance error, A is the Jacobian matrix (i.e.,
first derivative of satellite observations with respect to
geophysical variables f ), S" is the covariance of measure-
ment errors, F" are the satellite observations, and Fg = A · fg
[Rodgers, 1990]. The uncertainty on this solution is given by:

Q ¼ At � S�1
" � Aþ S�1

f

� ��1
ð3Þ

This two‐dimensional formulation of uncertainty is valid for
the simultaneous use of both TB1 and TB2. For the use of only
one satellite measurement, the formula has the same shape but
is one‐dimensional (i.e., with scalars instead of matrices).
[9] This simple theoretical radiative transfer and its

associated retrieval model will allow illustration of the dif-
ferent types of synergies that can act in an observing system.
In particular, in the context of remote sensing, we can
identify four main types of synergy (Figure 1): additive
(Figure 1a), unmixing (Figure 1b), indirect (Figure 1c), and
denoising (Figure 1d). These four synergy cases are ana-
lyzed using this simple model in sections 2.2–2.6. This list
is not exhaustive, and all the details cannot be treated in this
paper (Figure 1b can also consider the case where a single
measurement TB1 is sensitive to two geophysical variables f1
and f2 but we will not discuss this case). Nonlinear synergy
will also be discussed, but qualitatively only. We will con-
sider the retrieval of f1 when using only TB1, only TB2 or
both of them simultaneously.

2.2. No Synergy

[10] For this example, let: A =

�
0:8 0:0
0:0 0:9

�
and suppose

no correlation exists between the two geophysical variables,

cor(f1, f2) = 0, with: Sf =

�
3 0
0 4

�
.The coefficients 0.8 and
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0.9 in matrix A are close to a sensitivity of one brightness
temperature observations to an atmospheric temperature,
@TB
@T . Using equation (3), it can be estimated that:

qTB1
f1

¼ 0:8 � 1ð Þ�1 � 0:8þ 3�1
� ��1

¼ 1:0274

qTB2
f2

¼ 0:9 � 2ð Þ�1 � 0:9þ 4�1
� ��1

¼ 1:5267

q TB1;TB2ð Þ
f1; f2ð Þ ¼ 1:0274 0

0 1:5267

� �

where qf
TB1 is the uncertainty on the retrieval of f using TB1

only and q( f1, f2)
(TB1,TB2) is the uncertainty matrix for the retrieval

of ( f1, f2) using (TB1,TB2). As can be seen in these compu-
tations, there is no improvement in the retrieval when using
both measurements compared to using them independently
(i.e., the retrieval uncertainty remains identical). Since there
is no relationship between TB1 and f2 and between TB2 and
f1, there is no additive or unmixing synergies. Since no cor-
relation exists between f1 and f2, the indirect synergy does
not apply either.

2.3. Additive Synergy

[11] Suppose now that both instruments provide direct

information on f1, so A =

�
0:8 0
0:9 0

�
but each one adds a

contribution to the retrieval. Matrix Sf is here just equal to 3.

The uncertainty on the retrieval of f1 using only TB1, only
TB2 or both is given by:

qTB1
f1

¼ 0:8 � 1ð Þ�1 � 0:8þ 3�1
� ��1

¼ 1:0274

qTB2
f1

¼ 0:9 � 2ð Þ�1 � 0:9þ 3�1
� ��1

¼ 1:3544

q TB1;TB2ð Þ
f1

¼ At � S"ð Þ�1 � Aþ 3�1
� ��1

¼ 0:7255

Even if the second measurement TB2 has more noise than
TB1 and therefore is, when used independently, less precise,
adding TB2 helps reduce the uncertainty. The additive syn-
ergy is the direct consequence of the central limit theorem:
using multiple measurements of the same variable reduces
the uncertainty of the estimation.
[12] In Figure 2, the impact of the strength, a21, i.e., the

coefficient in A linking f1 and TB2 on the retrieval accuracy,
is measured. The retrieval accuracy using only TB1 is con-
stant and equal to 1.0274. For a21 = 0, the accuracy of 3 for
the retrieval using only TB2 is just the result of the a priori
on f1. As expected, the accuracy increases for increasing a12.
The synergy is always positive (i.e., factor bigger than 1),
and qf1

(TB1,TB2) is always lower than the best estimate from
TB1 or TB2.
[13] The impact of instrument noise "2 in TB2 is measured

in Figure 3. When this noise is equal to zero, TB2 gives a
perfect retrieval, as expected. The retrieval from TB2 only
gets less accurate when "2 increases. Again, there is no
impact in the accuracy level for the retrieval from TB1 only.
The synergy is always positive, and qf1

(TB1,TB2) is always lower
than the best estimate from TB1 or TB2. This proves that the
additive synergy takes into account the instrument noise level
in each instrument.
[14] As an example of such additive synergy, we can

mention that microwave and infrared measurements can

Figure 2. Sensitivity experiment for the additive synergy:
standard deviation for the error in f1 retrieval with respect
to coefficient a21 in model matrix A (equation (1)) using
only TB1 (solid line), only TB2 (dashed line), and both TB1

and TB2 (dotted line).

Figure 1. Four synthetic types of synergy: (a) additive syn-
ergy, (b) unmixing synergy, (c) indirect synergy, and (d)
denoising synergy. TB1 and TB2 are the satellite observa-
tions, "1 and "1 are the corresponding instrument noise,
and V1 and V2 are the geophysical variables to retrieve.
Arrows represent dependencies of one variable to another,
in the forward or inverse model. This scheme is valid for
linear or nonlinear models.
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provide information on temperature. The signal‐to‐noise
ratio is different, the weighting functions peak at different
altitudes, the vertical resolution can also be different but
combination of information on the atmospheric temperature
profile provides better estimation. Adding multisource
information can transform an underconstrained problem into
a well‐posed problem.

2.4. Unmixing Synergy

[15] In this example, suppose A =

�
0:8 0:2
0:4 0:9

�
so both TB1

and TB2 have a sensitivity to f1 but they also have a sensitivity
on f2 so there is a mixing of the f signals on the satellite
observations. Suppose also that f1 and f2 are uncorrelated and

for example Sf =

�
3 0
0 4

�
. The coefficients 3 and 4 in matrix

Sf are close to the uncertainties of an a priori atmospheric
temperature. Again, using similar Bayesian estimation of the
uncertainty using only TB1, only TB2 or both, we obtain:

qTB1
f1

¼ 1:1299

qTB2
f1

¼ 2:7483

q TB1;TB2ð Þ
f1

¼ 1:1274

Even if TB2 has almost no information on f1 (only a slight
decrease in the uncertainty compared to the a priori equal
to 3), we can observe a slight decrease (0.212%, from 1.1299
to 1.1274) of the retrieval uncertainty when using both TB1

and TB2. The impact of the synergy is not important in this
case because the mixing between the variables is limited: the
term a12 in matrix A that controls the impact of f2 in mea-
surement TB1, at the origin of one mixing in the problem, is
small, equal to 0.2. However, it is important to note that this
decrease in retrieval uncertainty is not an additive synergy
from the three sources of information (TB1, TB2, and the a
priori on f1) that, if simply estimated as a sum of informa-

tion, would underestimate the real uncertainty. Furthermore,
the retrieval error covariance matrix for (f1, f2) will have off‐
diagonal elements (even if their a priori covariance matrix
does not). So, if both are retrieved together, one gets a bit
more information, namely, how the retrieved f1 and f2 are
correlated.
[16] In Figure 4, the three terms qf1

TB1, qf1
TB2, qf1

(TB1,TB2) are
represented when varying parameter a12. The retrieval
uncertainty from the TB2 is constant at 2.7483. The uncer-
tainty from TB1 increases when a12 increases because its f1
information gets corrupted by the influence of f2. The un-
mixing gets more and more important when the mixing
increases. For a12 = 0.76 (i.e., corresponding to a rather large
mixing), qf1

TB1 = 1.8987 and qf1
(TB1,TB2) = 1.8196 which rep-

resents a synergy factor of more than 4%. As a consequence,
if the retrieval methodology is able to untangle the informa-
tion on TBs that mixes the contribution of the geophysical
parameters f1 and f2, the estimation can benefit from this
unmixing synergy. The higher the mixing is, the more ben-
eficial the synergy becomes. This unmixing process is the
equivalent of introducing new constrains in the inverse
problem.
[17] An example of such synergy is given by microwave

and infrared measurements that provide information on sur-
face temperature, but this signal is mixed with information on
surface emissivity. By using a combination of microwave and
infrared observations, it is easier to assess the respective
contribution of the surface temperature and emissivities and
therefore to untangle the information mixture. The partial
“decontamination” of the emissivity signal allows for a more
accurate retrieval of surface temperature [Aires et al., 2001].

2.5. Indirect Synergy

[18] In this case, the direct model is driven by the matrix

A =

�
0:8 0:0
0:0 0:9

�
so TB1 gives information only on f1 and

Figure 3. Sensitivity experiment for the additive synergy:
standard deviation for the error in f1 retrieval with respect
to TB2 noise level "2 using only TB1 (solid line), only TB2

(dashed line), and both TB1 and TB2 (dotted line).

Figure 4. Sensitivity experiment for the unmixing synergy:
standard deviation for the error in f1 retrieval with respect to
coefficient a12 in model matrix A (equation (1)) using only
TB1 (solid line), only TB2 (dashed line), and both TB1 and
TB2 (dotted line). Parameter a12 controls the impact of state
variable f2 on TB1; the higher a12, the higher the mixing.
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TB2 only on f2 but it is supposed that f1 and f2 are cor-

related to the 0.5 level: Sf =

�
3:00 1:73
1:73 4:00

�
. The retrieval

of f1 using only TB2 makes no sense. The uncertainty on
the retrieval of f1 using only TB1 or both measurements
(TB1,TB2) is given by:

qTB1
f1

¼ 1:0274

q TB1;TB2ð Þ
f1

¼ 0:9664

The indirect information TB2 → f2 → f1 allows for the
improvement by still 6% of the estimation of f1. We refer,
in this case, to an “indirect synergy.”
[19] Channels from different infrared or microwave

instruments provide information on temperature. Since
temperature and water vapor atmospheric profiles are related
physically and statistically, it is possible to use this depen-
dency inside the retrieval process. This is done routinely in
assimilation by using the temperature/water vapor covari-
ance matrix. This can also be used in a neural network
retrieval [Aires et al., 2002; Karbou et al., 2005].
[20] In Figure 5, the two terms qf1

TB1 and qf1
(TB1,TB2)

representing the retrieval accuracy for TB1 only or for both
TBs is represented for increasing correlation C( f1, f2) that
impacts matrix Sf. When the correlation C( f1, f2) = 0 the
information comes only from TB1 and none from TB2 so
qf1
TB1 = qf1

(TB1,TB2) = 1.0274. The indirect synergy appears

when this correlation increases and qf1
(TB1,TB2) gets much lower

than qf1
TB1 and its minimum equals to 0.6 for C( f1, f2) = 1

representing more than 40% synergy.

2.6. Denoising Synergy

[21] The direct model is driven by the matrix A =�
0:8 0:0
0:0 0:9

�
so TB1 gives information only on f1 and TB2

only on f2. Suppose f1 and f2 are uncorrelated: Sf =

�
3 0
0 4

�
but we consider a correlation cor("1,"2) = 0.5 between the
two instrument noises.
[22] The retrieval of f1 using only TB2 or the retrieval of

f2 using only TB1 still makes no sense. The uncertainty of
the retrieval of f1 using only TB1, the retrieval of f2 using
only TB2 and the uncertainty on the retrieval of ( f1, f2) by
using both measurements (TB1,TB2) is given by:

qTB1
f1

¼ 1:0274

qTB2
f2

¼ 1:5267

q TB1;TB2ð Þ
f1; f1ð Þ ¼ 0:9608 0:41128

0:41128 1:4432

� �

There is a strong synergy: when using both measurements,
the synergy (i.e., decrease of the uncertainty when using
both measurements together) is 6.5% for the estimation of
f1, and 5.47% for the estimation of f2. Note also, when
looking at matrix q(f1, f1)

(TB1,TB2), that there is an advantage to
retrieve simultaneously f1 and f2: the correlation on the
retrieval uncertainty can be directly estimated. The correla-
tion is here 0.41128/

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
0:9608*1:4432

p
= 0.3493’ 35%. This

type of uncertainty correlation structure can be provided by
most of the inversion algorithms. This is an extremely valu-
able information that can be exploited when the retrieval is
used, for example, in a variational assimilation scheme.
[23] In Figure 6, the sensitivity of the synergy is measured

with respect to the correlation between instrument noise
measurements. The constant level for the retrieval uncertainty
is represented when TB1 and TB2 are used independently.
When the correlation cor("1,"2) increases, this uncertainty
decreases significantly, for the retrieval of f1 and f2. This
type of synergy is referred to as a “denoising synergy.” An

Figure 5. Sensitivity experiment for the indirect synergy:
standard deviation for the error in f1 retrieval with respect
to correlation coefficient C(f1,f2) using only TB1 (solid line),
only TB2 (dashed line), and both TB1 and TB2 (dotted line).

Figure 6. Sensitivity experiment for the denoising synergy:
standard deviation for the error in f retrieval with respect to
correlation coefficient C("1,"2) for f2 retrieval using only
TB2 (dashed line), f2 retrieval using only both TB1 and TB2

(dot‐dashed line), f1 retrieval using only TB1 (continuous
line), and f1 retrieval using both TB1 and TB2 (dotted line).
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example of a denoising situation can be mentioned here
because it will be pertinent in the following: TB1 and TB2

can be two consecutive channels in a IASI spectrum. Since
the IASI spectrum is a convolution by an instrument func-
tion, the instrumental noise is correlated from one channel
to another and of course, there input error correlation have
an impact on the retrieval.

2.7. Nonlinear Synergy

[24] We will not enter into details in this section: it would
require the introduction of a nonlinear extension of the model
in equation (1) and the development of a new experimental
procedure to measure synergy since equation (3) would not
be valid anymore. We introduce here two points that illustrate
nonlinear difficulties that can be solved when synergy is used.
[25] The first of these points concerns saturation effects.

Consider a model where TB1 and TB2 are two satellite
observations related to a geophysical variable f and suppose
that the instrument providing these measurements saturate
(i.e., no significant response to an increase in f after some
threshold). TB1 and TB2 can saturate at a different threshold
and as a consequence, each measurement would give an
information on f but for a different range or variability.
When used together, TB1 and TB2 can characterize f in a
range which is the sum of the two initial ranges.
[26] Another nonlinear model difficulty occurs when

interactions act in the measurement (this is a particular case
of unmixing synergy). Let us consider the following model:

TB1

TB2

� �
¼ a1 0

0 a2

� �
� f1 � f2

f2

� �
þ "1

"2

� �

It is clear that TB1 only cannot allow the retrieval of f1. This
problem can only be solved by using both TB1 and TB2. An
example of such problem concerns the simultaneous retrieval
of surface temperature and emissivity, already mentioned: in
the microwave domain, for surface sensitive channels, the
satellite observation can be approximated by the product of
these two geophysical variables and disentangling them
requires the combination of multiple satellite observations at
different frequencies.
[27] It is important to point out that in real world appli-

cations, it is difficult to identify cases where only one single

type of synergy exists. For example, where there is corre-
lation between the variables to retrieve f1 and f2, it is most
likely that there is mixing in the A direct model: the corre-
lations in the geophysical space can introduce “indirect
correlations” between observations and geophysical vari-
ables. As a consequence, an observation can be correlated to
multiple geophysical variables even if it is physically sen-
sitive to only one of them, in terms of radiative transfer
function. Since most of the inversion algorithms use this
type of correlation information, it is convenient to consider
these “indirect correlations.” Figure 7 represents a general-
ization of some of the basic synergy processes. This type of
configuration is closer to what can be found in nature in
general, and in remote sensing problems in particular.

3. Geophysical and Satellite Observation
Databases

[28] Most retrieval techniques require a data set of surface
and atmosphere variables (e.g., surface and atmospheric
temperature, water vapor and ozone profiles) representing
the natural meteorological/climatic variability, with corre-
sponding satellite observations (real or simulated). Here we
use the analysis data set from ECMWF for most of the geo-
physical variables needed for radiative transfer simulations.
Associated simulations will be performed using the radiative
transfer models for MetOp‐A instruments: AMSU‐A, MHS
and IASI. The corresponding synthetic data set will represent
ten thousand situations (i.e., a sample of the geophysical
database corresponding to particular surface and atmospheric
conditions), enough to calibrate the inversion techniques, and
in particular to train the Neural Network (NN) models. The
global data set will be divided into a training database (to
calibrate the inversion) and a testing database (to evaluate
the generalization capacities of the inversion models).
[29] In this application, only cloud‐free situations over the

ocean are considered, with nadir viewing geometry.

3.1. ECMWF Operational Analyses

[30] The atmospheric profiles and surface properties from
the 6‐hourly operational global analyses from the Integrated
Forecasting System (IFS) of the European Center for
Medium Range Forecasting (ECMWF) [Simmons and
Gibson, 2000] are at the origin of the data sets that will be
constructed in this section. In order to run accurate radiative
transfer simulations, the following information is kept: the
temperature, water vapor (relative humidity in % hereafter)
and ozone profiles on 43 pressure levels ranging from 1000
to 1 hPa (these levels have been interpolated for the initial
21 levels in order to be used with the RTTOV code) and
surface properties such as the 10 m horizontal wind, 2 m
pressure and temperature and surface temperature.
[31] Selecting cloud‐free oceanic cases over a year

yields on the order of a few million atmospheric and
surface situations.

3.2. High‐Dimensional Sampling Procedure

[32] Retrieval algorithms cannot handle this huge amount
of data. In order to reduce the size of the previous geo-
physical data set while keeping its spatial and temporal
variability, a sampling procedure is required. This sampling
should work efficiently in high‐dimensional space, i.e., the

Figure 7. General synthetic synergy scheme: TB1 and TB2

are the satellite observations, and V1 and V2 are the geophys-
ical variables to retrieve. This scheme is valid for linear or
nonlinear models.
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space of the geophysical variables which represents 3 × 43 =
129 (three profiles: temperature, T, water vapor, H2O, and
ozone, O3, over 43 atmospheric layers), this defines the
GEO space. Furthermore, since we are interested in retrieval
algorithms exploiting synergy, the sampling procedure
should be able to process truly multivariate samples. In the
work by Aires and Prigent [2007], a clustering approach
was proposed to perform this sampling. A clustering algo-
rithm is a statistical method that extracts, from a large
database, a set of prototypes that describe, as well as pos-
sible, the variability in the original data set.
[33] A major advantage of this clustering technique is that

the resulting distributions are close to the original one. This
means that the highly populated parts of the state space
would be represented by a large number of prototypes, and
that the low‐population density parts of the state space will
have less prototypes. This is not the case, for example, for
the uniform sampling that obtains by definition more “uni-
form” distributions. Obtaining realistic distribution can be
an advantage (a uniform sampling can also be preferred,
depending on the application, the extreme events are
favored and this can be more efficient for the learning of
retrieval scheme): for example to perform Bayesian statis-
tics, the distributions must respect the natural variability.
Another advantage of clustering is that the number of
clusters K is defined a priori, contrarily to the uniform
sampling approach.
[34] The K means algorithm [Lloyd, 1992] is an example

of clustering method and it is selected here to sample a large
and high‐dimensional data set (other clustering algorithm
could be used). This clustering method has been used in the
atmospheric science disciplines: for example, in the work by
Jakob et al. [2005], K means were used to relate radiative,
cloud, and thermodynamic properties. The K means algo-
rithm has also been used to validate GCM cloud properties
compared to satellite observations [Chéruy and Aires,
2009]. In the work by Aires and Prigent [2007], this tool
was used to construct atmospheric databases. The K means
algorithm steps are simple:

[35] 1. First, K prototypes are selected in the data space to
be clustered (GEO space in our case). They are generally
randomly chosen.
[36] 2. Assign each sample of the data set to its closest

prototype by using the data distance. This cluster allocation
determines K clusters of points.
[37] 3. When all samples have been assigned, calculate the

mean for each of the K clusters. These cluster centers
become the new prototypes. To add stability, a “learning
rate” can be adopted so that the new mean is a linear
combination of the previous mean and its new estimate
[Moody and Darken, 1989].
[38] 4. Repeat steps 2 and 3 until the convergence is

reached. A criterion checks this convergence: In our case,
the training phase is stopped when the relative change in the
prototypes is small. This is done by monitoring the relative
change curves.
[39] The Kmeans clustering is sensitive to the metric being

used. Few possible distances can be used (Euclidean, min
or max, Mahalanobis), each one with its own advantages
and inconveniences. The Euclidean distance is preferred
here because the retrieval methods that will be described in
section 4 use the least square criterion.
[40] Clustering approaches are time consuming when used

to sample databases from large and high‐dimensional data
sets [Aires and Prigent, 2007]. In order to use this technique
for this particular application, we designed a novel hierar-
chical clustering strategy: In a first stage, the clustering is
used to extract 100 first‐generation prototypes. Each pro-
totype is associated to a cluster of data in the original data
set. In the second stage, a new clustering is performed in
each of the 100 clusters of data in order to find 100 second‐
generation prototypes. With this approach, 100 × 100 =
10.000 prototypes are extracted from the original data set
and the procedure is very computationally efficient. (Fur-
thermore, the fact that the extracted database is structured
hierarchically can be a very interesting feature. As an
example, when a Bayesian algorithm uses a precipitation
database to retrieve rain, for each new observation a search
for the closest situations in the database needs to be done,
and this step can be extremely time consuming. With the
hierarchical feature, the search for the closest situations
could first identify the closest first‐generation prototype,
and then search in its associated second‐generation proto-
types for the closest situations.)
[41] Some statistics on the atmospheric temperature and

water vapor profiles are shown in Figure 8. The range of
variability in this geophysical space covers all types of
situations and is adequate for the training of retrieval tech-
niques since by definition, all the atmospheric situations
from one year of ECMWF analysis can be represented by
one of the clusters of the database. Another quality check
of the generated database is to verify the location of the
extracted samples. Note that the clustering does not use any
geographical information: the sampling is performed using
only temperature and water vapor information. In Figure 9,
the atmospheric temperature of the near‐surface atmospheric
layer is represented. This shows the ocean areas covered by
our data set. The longitude and latitudinal coverage is good.
The coastal areas seem to be more represented, the reason is
that the coastal situations are submitted to the continental
atmospheric behavior that is more variable and complex

Figure 8. Statistics for the atmospheric data set. Minimum,
maximum, and mean atmospheric profiles are represented
for (top) temperature and (bottom) water vapor.
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than the situations in open sea. Overall, this check of the
specifically designed database confirms that it is as a good
calibration database for retrieval algorithms.

3.3. Satellite Instruments

[42] Launched on 19 October 2006, MetOp is Europe’s
first polar‐orbiting satellite dedicated to operational meteo-
rology. It is a series of three satellites to be launched
sequentially over 14 years, forming the space segment of
EUMETSAT’s Polar System (EPS). MetOp carries a set of
“heritage” instruments provided by the United States and a
new generation of European instruments that offer improved
remote sensing capabilities to both meteorologists and cli-
matologists. The new instruments increase the accuracy of
temperature humidity measurements, wind speed and
direction, and atmospheric ozone profiles. MetOp flies in a
polar orbit corresponding to local “morning.”
[43] In this study, simulated observations from the fol-

lowing instruments will be used. The Advanced Microwave
Sounding Unit‐A (AMSU‐A) measures the oxygen band
between 50 and 60 GHz, for the retrieval of atmospheric
temperature profiles [Mo, 1996]. It is a cross‐track scanning
radiometer, with ± 48.3° from nadir with a total of 30 Earth
fields of view of 3.3° per scan line, providing a nominal
spatial resolution of 48 km at nadir. The instrument com-
pletes one scan every 8 s. The swath width is approximately
2000 km. AMSU‐A is divided into two separate modules:
(1) AMSU Module A1 with channels 3 to 15 (12 sounding
channels in the 55 GHz O2 band and one at the 89 GHz
window) and (2) AMSU Module A2 with channels 1 and 2
at 23.8 and 31.4 GHz. AMSU‐A is used in conjunction with
the High‐resolution Infrared Sounder instrument to estimate
the global atmospheric temperature and humidity profiles
from the surface to the upper stratosphere (’50 km).
AMSU‐A measurements also provide precipitation and
surface information including snow cover, sea ice concen-
tration and soil moisture.
[44] The Microwave Humidity Sounder (MHS) is

designed to measure the atmospheric water vapor profile,

with 3 channels in the H2O line at 183.31 GHz plus two
window channels at 89 and 150 GHz [Hewison and
Saunders, 1996]. MHS scans the Earth from left to right,
in a vertical plane. Each swath is made up of 90 contig-
uous individual pixels sampled every 2.67 s. The scan is
also synchronized with the AMSU‐A1 and AMSU‐A2
instruments.
[45] The Infrared Atmospheric Sounding Interferometer

(IASI) is a state‐of‐the‐art Fourier transform spectrometer
based on a Michelson interferometer coupled to an inte-
grated imaging system that observes and measures infrared
radiation emitted from the Earth [Chalon et al., 2001]. It has
been developed by the French space agency CNES. The
optical interferometry process offers fine spectral samplings
of the atmosphere in the infrared band between the 3.2 and
15.5 microns representing 8461 channels. This enables the
instrument to retrieve temperature and water vapor profiles in
the troposphere and the lower stratosphere, as well as measure
concentrations of ozone, carbon monoxide, methane and
other compounds. For optimum operation, the IASI mea-
surement cycle is synchronized with that of the AMSU‐A1
and AMSU‐A2. This instrument was designed to reach
accuracies of 1 K in temperature and 10% in water vapor with
vertical resolutions of 1 km and 2 km, respectively, for cloud‐
free scenes.
[46] IASI, together with AMSU‐A and MHS, has led to

important improvements in the accuracy of remotely sensed
temperature and humidity profiles and ozone amount.

3.4. Radiative Transfer Simulations

[47] The RTTOV‐8.7 radiative transfer model is used to
simulate the AMSU‐A and MHS channels from the
description of the atmosphere given by the geophysical
database described in sections 3.1 and 3.2. This model,
originally developed at ECMWF [Eyre, 1991] and now
supported by the EUMETSAT NWP‐SAF (Numerical
Weather Prediction‐Satellite Application Facility) [Saunders
et al., 1999; Matricardi et al., 2004], provides rapid simu-
lations of radiances for satellite infrared and microwave

Figure 9. Spatial location of the 10,000 atmospheric situations over the ocean used to train and test
the retrieval methods. The grey shades represent the temperature (K) at the surface layer for illustration
purposes.
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radiometers for a given atmospheric state vector. Over
ocean, the emissivities are computed by the FASTEM‐3
[Deblonde and English, 2001] surface emissivity model.
[48] The Automatized Atmospheric Absorption Atlas

(4A) is a fast and accurate Radiative Transfer Model
(RTM) for the infrared codeveloped by LMD and Noveltis
with the support of CNES [Scott and Chédin, 1981]. The
4A computes transmittance and radiance, using a com-
prehensive database (atlases) of monochromatic optical
thicknesses for up to 43 atmospheric molecular species.
Precomputed once and for all, the atlases are derived from
a line‐by‐line and layer‐by‐layer model, Stransac (i.e., a
line‐by‐line radiative transfer) [Scott, 1974], with up‐to‐
date physics. It uses spectroscopy from the GEISA spectral
line data catalog but other spectroscopy data banks can be
used as well. 4A/OP (OPerational) is chosen here to per-
form the IASI simulations because it is the reference RTM
for the EUMETSAT IASI level 1 cal/val and level 1
operational processing.
[49] Both of these RTM provide analytical Jacobians, i.e.,

first derivative of the satellite observations with respect to
the geophysical RTM inputs: TB

@x for example. Brightness

temperatures (K) are used in this study instead of radiances
because, in this way, ranges of variability of each channels
can be compared more easily.

4. Theoretical Information Content

[50] The most widely used technique exploiting synergy
among Earth observation instruments is, without any doubt,
the assimilation [Kalnay, 2003]: a wide spectrum of visible,
infrared and microwave satellite observations are combined
with model forecasts and in situ measurements to better
characterize and predict the state of the atmosphere, conti-
nental surfaces or oceans. In association to the assimilation
technique, various tools have been designed to estimate the
theoretical quality of retrievals. Since we are interested in
this study in the synergy, it is essential to test this approach
first. Assimilation and information content analysis share
the same theoretical hypothesis: Gaussian character of the
stochastic variables, linearization around the First Guess
(FG), same observation, radiative transfer and a priori
uncertainties. See Tarantola [1987] for a general textbook

Figure 10. Mean and standard deviation of the Jacobian of theMHS observations with respect to (a and b)
water vapor and (c and d) temperature over the ocean.
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on inverse problems and Rodgers [2000] for dedicated
remote sensing theory.
[51] One of the most useful formula from the information

content analysis is given in equation (3) that was previ-
ously used in section 2. This formula is a direct conse-
quence of the Bayes rule and allows for the estimation of
retrieval uncertainties. This quantity depends only on the
Jacobians of the RTM, the observational noise and the a
priori uncertainty. The central questions of this section
are the following: (1) Are these estimations reliable?
(2) Can this tool be used to measure the synergy between
measurements?

4.1. RTM Jacobians

[52] In order to use equation (3), the Jacobian of the RTM
needs to be estimated for the three instruments that are
considered here, namely MHS, AMSU‐A and IASI. Both
RTTOV and 4A radiative transfer models (section 3.4)
provide analytical Jacobians. 4A provides Jacobians in
specific humidity. Relative humidity Jacobians are preferred
here because the retrieval is performed on this unit. As a
consequence, and for practical reasons, the Jacobians are

estimated using RTM simulations on perturbed input pro-
files. The perturbations are chosen to be 1 K for temperature
and 10 % for relative humidity.
[53] Figures 10, 11, and 12 represent the temperature and

relative humidity mean Jacobians, together with the standard
deviation of these Jacobians for MHS channels, ASMU‐A,
and IASI, respectively. The mean and standard deviation of
Jacobians are estimated using a diverse set of 100 atmo-
spheric situations from the database described in section 3.2.
It appears that MHS instrument is as expected more sensi-
tive to changes in relative humidity than to changes in
temperature (±0.4 K compared to 0.1 K on average).
AMSU‐A provides higher magnitudes of Jacobians for both
temperature and water vapor but MHS provides good sen-
sitivity in the lower atmosphere (below 300mb) for tem-
perature and a better vertical coverage for water vapor. Note
nevertheless that, for the temperature, the standard deviation
of the MHS Jacobians is very large compare to the one from
AMSU‐A, meaning that other factors, likely relative
humidity in this case, also contaminate the signal. The
magnitudes of Jacobians are comparable for the three
instruments, including the infrared from IASI. However, the

Figure 11. Mean and standard deviation of the Jacobian of the AMSU‐A observations with respect to
(a and b) water vapor and (c and d) temperature over the ocean.
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vertical resolution for IASI is higher for water vapor in the
upper troposphere, and for the temperature for the whole
troposphere. Furthermore, the IASI instrument possesses
a lot of channels, this has a lot of consequences for the
retrievals (i.e., computation time for the retrieval, necessity
to perform a dimension reduction on the observed spectra,
redundancy considerations for the denoising, etc.). It should
be noted that the water vapor Jacobians are positive for the
lower troposphere but are negative above 500 hPa. This is
true for the three instruments. It should also be noted that,
for temperature, the standard deviation (STD) of Jacobians
is much lower than the mean Jacobian values but that for
water vapor, the STD is very high compared to the mean
Jacobian. The Jacobian sign can even change from a situa-
tion to another. It is expected that this will have a strong
impact on the retrieval uncertainty estimates.

4.2. A Priori Information

[54] An essential element of the information content esti-
mation of the retrieval uncertainties is the a priori informa-
tion: first, the a priori is an additional “virtual” observation
[Rodgers, 1990, 2000] which improves the retrieval. Second,
equation (3) supposes that the RTM, that is strongly non-
linear by nature, is linearized around a FG. Third, the
introduction of this additional information regularizes the

inverse problem and without it, the inversion matrix of
the first term in equation (3) is often ill conditioned.
[55] Covariance matrices Sf with a simple structure can be

used and are often chosen to be diagonal (or tridiagonal, i.e.,
a matrix that has nonzero elements only in the main diag-
onal, the first diagonal below this, and the first diagonal
above the main diagonal), with some specified variance
error for the a priori information. Another proxy for the a
priori covariance matrix is produced in operational meteo-
rological centers by using the departure of the analysis with
respect to the prediction [Rabier et al., 1998]. This can be
considered as being the FG error if the analysis is the true
solution.
[56] In order to obtain a realistic a priori covariance

matrix, the data set of 10000 atmospheric situations pre-
sented in section 3.2 is divided in two data sets, D1 and D2.
The first data set, D1, is composed of 2000 situations that
are kept to perform a pattern recognition; the other data set,
D2, is composed of 8000 situations and is used to test the
pattern recognition. Each situation in D2 is described by its
geophysical variables and its associated TBs (i.e., the sat-
ellite observations). The TBs are compared to each TBs in
D1 using a regular Euclidian distance on MHS, AMSU‐A
and IASI TBs. The geophysical profile of the closest situa-
tion in D1 is chosen to be the FG for the retrieval. (This
pattern recognition procedure is a very simple retrieval

Figure 12. Mean and standard deviation of the Jacobian of the IASI observations with respect to (a and
b) water vapor and (c and d) temperature over the ocean.
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scheme that will be tested by Aires et al. [2011].) The dif-
ference between the real situation in D2 and the FG in D1 is
used to built the a priori statistics, in particular the Sf
covariance matrix. It should be noted that since this FG is
dependent on the observations, it is not a regular a priori but
this is nonetheless a good estimation of it: the improvement
resulting from the use of the observations is compensated, in
practice, by better a priori from a prediction model. In order
to obtain realistic statistics, synthetic observational noise is
introduced in the TBs during the pattern recognition process.
[57] Figure 13 represents the covariance of the a priori

errors for temperature (Figure 13a) and water vapor
(Figure 13b). The matrix in Figure 13c is the correlation
matrix between the a priori errors on temperature and water
vapor. For temperature, diagonal values, representing the
variance of a priori uncertainties, are between 5 and 10 K
which means that the uncertainty is around 2 or 3 K. The
diagonal element on the water vapor covariance matrix can
reach 0.03 which represents a standard deviation for the
uncertainty of about 0.17 (17%). The correlations between
the temperature and water vapor a priori errors range
between ‐0.2 and 0.2, this could seem insignificant but
when integrated over few layers, the significance increase.

[58] Similarly to the Jacobians described in section 4.1,
the covariance Sf also depends on the situation: It is natural
to have higher errors for atmospheric states that are more
complex and therefore more difficult to retrieve. For
example, an atmospheric profile with a lot of inversions in
the vertical is more difficult to retrieve than a profile that is
“smooth.” It is clear also that a situation with a Jacobian that
is of lower quality (lower magnitudes, which implies a lower
signal‐to‐noise ratio) is also more difficult to retrieve. In this
study, this Sf variability is not taken into account, we are
using a global Sf , this is the case anyway for most of the
retrieval techniques.

4.3. Retrieval Error Estimate

[59] Equation (3) is used here to estimate retrieval
uncertainties using the Jacobians of section 4.1 and the a
priori of section 4.2.
[60] First, the uncertainty estimate is performed indepen-

dently for temperature and water vapor. This means that the
matrix A in equation (3) is just the Jacobian of temperature
(A = Jactemp) or just the Jacobian in water vapor (A = Jacwv).
This means that the “corruption” of the observations by the
uncertainties on the other variable is not taken into account,
but also that the link between temperature and water vapor is
not exploited either. The retrieval uncertainties are estimated
by the square root of the diagonal element in matrix Q in
Figure 14 for temperature (Figures 14a–14d) and water
vapor (Figures 14e–14h). (The covariance matrix of
uncertainties Q is not diagonal of course, but the overall
uncertainties are estimated by taking only the square root of
the diagonal elements that represent the variance of the
errors.) For temperature and water vapor, results are shown
for MHS (Figures 14a and 14e), AMSU‐A (Figures 14b
and 14f), IASI (Figures 14c and 14g), and all of them
(Figures 14d and 14h). In order to measure the impact of
the Jacobian variability, the estimation is performed on a
diverse set of 100 situations from the database of section 4.2.
The grey lines represent the stack of these 100 situations,
the black line the averaged uncertainty.
[61] It can be noted that the retrieval of temperature using

MHS is highly variable, contrarily to AMSU‐A retrievals.
Furthermore, MHS is better at around 600 hPa, and AMSU‐A
is better for pressures lower than 400 hPa. It is however
surprising that MHS gives relatively comparable retrieval
statistics for temperature compared to AMSU‐A, MHS is
dedicated to water vapor and AMSU‐A to temperature; but
this is the direct result of the Jacobians in Figures 10 and 11.
IASI is always better, this is not surprising since it has a lot
of channels with relatively comparable Jacobian magni-
tudes, which automatically increases the signal‐to‐noise
ratio. The “all” configuration that uses the three instruments
together appears to be very close to the IASI results which
would mean that there is no synergy among the three
instruments. For water vapor the conclusions are similar
except that MHS and AMSU‐A retrievals are comparable,
but again, less variable for AMSU‐A. Again, no synergy
seems to act. All these statistics can be compared to the a
priori (section 4.2) that are roughly 2–3 K for temperature
and ’17% for water vapor, depending on the atmospheric
layer. This shows that the information on temperature has
increased, but that for water vapor, only IASI instrument can

Figure 13. The covariance of the a priori errors for (a) tem-
perature and (b) water vapor. (c) The correlation matrix
between the a priori errors on temperature and water vapor.

AIRES: SYNERGY, 1 D02301D02301

12 of 16



significantly improve the a priori information (this is really
dependent on the vertical resolution that is chosen).
[62] It is important to note that these uncertainty estimates

consider only one geophysical variable, temperature or
water vapor. However, the Jacobians in section 4.1 show
that channels can be sensitive to both of them. When esti-
mating the uncertainties only for one geophysical variable at
a time, the variability of the second one, that introduces
additional uncertainties, is not taken into account. In order to
measure the impact of combining temperature and water
vapor for the estimation of retrieval uncertainty, similar
experiments have been conducted on combined formulas.
This means that the matrix A in equation (3) includes the
temperature and the water vapor Jacobians:

A ¼ @TB

@T

@TB

@WV

� �

and that the a priori Sf includes the covariance errors for
temperature and water vapor together with their correlation
(Figure 13):

Sf ¼
cov T ; Tð Þ cov T ;WVð Þ

cov WV ; Tð Þ cov WV ;WVð Þ

0
@

1
A;

where cov(T,T) is the covariance matrix of the FG errors
(i.e., a priori matrix in Figure 13a), cov(WV,WV) is in

Figure 13b, and cov(WV,T) is the covariance matrix of
the FG errors on water vapor and temperature (that
results in cov(T,T), cov(WV,WV) and the correlation matrix in
Figure 13c). The statistics are different: First, the variability
of the estimates seems to be lower in some configurations,
in particular for the retrieval of water vapor with MHS
instrument (not shown). The major impact is on the mean
uncertainties themselves: Figure 15 represents the compari-
son of the uncertainty estimates for the individual estimate for
temperature (Figure 15a), the combined estimate for tem-
perature (Figure 15b), the individual estimate for water vapor
(Figure 15c), and the combined estimate for water vapor
(Figure 15d). For each configuration, the results are provided
when using only MHS instrument, only AMSU‐A, only
IASI, and using all of them. The results represented here are
the averaged uncertainty estimates, similarly to what was
done in Figure 14.
[63] There are two essential conclusions from these

experiments: First, the impact of combining both temperature
and water vapor for the estimation of retrieval uncertainties is
very important. The uncertainties in the retrieval of temper-
ature increase relatively significantly, for IASI instrument,
by 0.1/0.3 K. The uncertainties for the retrieval of water
vapor have changed also: The IASI retrieval is degraded
again when temperature and water vapor are combined, and
the retrieval from MHS or AMSU‐A became very close.
Since we have both temperature and water vapor Jacobians,
it is possible to combine them, but in order to be exhaustive,

Figure 14. RMS error retrieval uncertainties for (a–d) temperature and (e–h) water vapor. For temper-
ature and water vapor, results are shown for MHS (Figures 14a and 14e), AMSU‐A (Figures 14b and
14f), IASI (Figures 14c and 14g), and all of them (Figures 14d and 14h). The grey lines represent these
estimations for 100 situations, and the black line represents the averaged uncertainty. The estimation is
performed independently for temperature and water vapor.
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the Jacobians for all geophysical variable impacting the
satellite measurements would be necessary (for example
ozone or N2 O for IASI instrument).
[64] Since we know that the IASI channels are dependent

on both temperature and water vapor, performing the
retrieval of only the temperature is not correct. Instead of
estimating the information content when both temperature
and water vapor are retrieved simultaneously, another
solution would be to estimate the additional noise in the
measurements coming from the errors on the water vapor.
This would be a more judicious comparison to the simul-
taneous retrieval. However, the uncertainties on the water
vapor are not independent to the uncertainties on the tem-
perature retrieval, this means that expression in equation (3)
would not apply.
[65] The second striking result provided by these com-

parisons is that there appears to be no synergy: IASI is
always better than the MW retrievals, and using all of them
together does not improve the results. The magnitude of
IASI or MW Jacobians is comparable, but IASI possesses so
many channels that the signal‐to‐noise ratio dominates and
cannot be impacted by the microwave observations.

4.4. Discussion on the Information Content Approach

[66] Two questions arise from the experiments of this
section: Are the uncertainty estimates from the Information

Content (IC) analysis realistic? Can this technique be used
to measure synergy?
[67] It has been shown that many hypotheses need to be

made to optimally use equation (3) of IC: Gaussian char-
acter of stochastic variables, linearization of the RTM
around the first guess, independence of the FG with respect
to observations, and unbiased RTM. Section 2 in this paper
uses a synthetic application with a model that is linear with
Gaussian statistics: Traditional IC is perfectly adapted to this
case because it is based on the IC assumptions. For our more
complex problem of the retrieval of temperature and water
vapor from IR/MW instrument, the classical IC does
not seem to provide realistic estimates of the retrieval
uncertainties: In the work by Divakarla et al. [2006] the
temperature and water vapor retrieved with the AIRS
(Atmospheric InfraRed Sounder) instrument, which has
similar characteristics to IASI, has been validated against
radiosonde measurements and forecasts. The results
obtained are a higher than the IC theoretical estimates,
around 1–1.5K for temperature and more than 20% for water
vapor. It is expected that results would be more positive for
cloudy situations where the microwave observations would
be more informative and complementary with respect to
infrared (this will be the subject of a forthcoming study).
One of the reasons why the classical IC appears to be
deficient in this experiment is related to the hypothesis on

Figure 15. Comparison of the RMS error retrieval uncertainty estimates for (a) the individual estimate for
temperature, (b) the combined estimate for temperature, (c) the individual estimate for water vapor, and (d) the
combined estimate for water vapor. For each configuration, the results are provided when using only MHS
instrument (dotted lines), only AMSU‐A (dash‐dotted lines), only IASI (dashed lines), and using all of them
(solid lines). The IASI results are mostly obscured by the results using all measurements (solid line).
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the IASI channel noise. It is assumed here that the instru-
ment noise is independent from one channel to another. This
is a simplification but without any official specification on
this, it is not possible to something else (some more dis-
cussion on this will be provided by Aires et al. [2011]).
[68] IC is also very sensitive to the way it is used: It has

been shown that when a Jacobian is used, the sensitivity of
the observations to other constituents is often not taken into
account, which can have strong impacts. For example,
considering temperature and water vapor at the same time
degrades the estimates, which is not a normal behavior for a
linear retrieval scheme. Even if all the required hypotheses
were verified, we have seen that all the components in
equation (3) are situation dependent: The Jacobians A, the
observational noise S" [Aires et al., 2002] and the a priori
error covariance. This is a normal behavior but it means that
in order to obtain more realistic estimates, the technique
must be used with much more care by performing statistics
in a representative sample of restitutions (i.e., what we did
here).
[69] The main advantage of IC is its simplicity; this

method allows for the comparison of different retrieval
assumptions, but it can hardly provide good absolute
uncertainty estimates. Since the retrieval estimates are not
reliable, it would be questionable to use it to measure
synergy. For example, in the IR/MW application of this
study, the IR estimates are too optimistic, and therefore, no
synergy with the MW observations is observed.
[70] Taking into account all the mentioned factors, getting

realistic estimates would considerably complicate the use of
IC and the main argument for its use, i.e., its simplicity,
would be lost. It seems to be more pertinent to measure the
synergy directly using real retrieval algorithms. This will be
the objective of the companion paper [Aires et al., 2011].

5. Conclusion and Perspective

[71] Satellite platforms (ENVISAT, MetOp) are today
equipped with an increasing number of instruments, in order
to obtain observations of a same location from multiple
sensors, at different wavelengths (from the UV to the
microwave), with different geometries (nadir or limb), and
possibly in different modes (active and passive). Succes-
sions of several platforms that follow each other very
closely, such as the A‐train, also aim at observing a given
area with even more sensors. Despite this wealth of coin-
cident (or quasi‐coincident) observations of a same atmo-
spheric state with different perspectives, there are still
limited attempts to benefit from the potential synergy
between the information. Using the synergy is often sug-
gested but rarely actually exploited. Most of the time,
retrievals are performed independently for each instrument
and the retrieved products are merged a posteriori. In this
context, there is a strong need to study the theory of syn-
ergetic processes.
[72] This paper tried to explain some synergy mechan-

isms, how they occur and how to use them. The first con-
clusions are as follows:
[73] 1. Classical information content analysis can hardly

be used to measure synergy.
[74] 2. There exist different types of synergy (additive,

unmixing, indirect or denoising); each one can have a strong

impact on the retrievals. Direct additive synergy that
exploits the central limit theorem is not the same as
unmixing synergy which is based on the introduction of a
constrain in the inverse problem or the indirect synergy that
can result sometimes in counterintuitive behaviors. It has
been shown that additive synergy was important for our
application, and that the indirect one was acting only for
water vapor retrieval, not temperature. Our taxonomy helps
formalize the inverse problems, this facilitates the elabora-
tion of the retrieval schemes and the communication around
them. The experiments performed with simple linear model
illustrated well how to use all the a priori information in the
retrieval problem.
[75] The application focused on the retrieval of the atmo-

spheric temperature and water vapor profiles using three
instruments (AMSU‐A and MHS for the microwave, IASI
for the infrared domain) all on board the MetOp platform.
Experiments were conducted over ocean and under clear sky
conditions. These conditions are not optimal to study syn-
ergy: the contribution of MW observations would be more
important for cloudy cases. However, it is important to start
this type of study with the simpler case, and increase com-
plexity in the future. We showed that information content is
very sensitive to the hypotheses that are used and that, in
order to obtain realistic uncertainty characterization, it is
necessary to obtain truly state‐dependent statistics. The
simplicity of information content analysis is lost. Since this
technique is not truly reliable to obtain absolute retrieval
uncertainties, its use to measure the synergy when combining
various satellite observations is not reliable. In our applica-
tion, no synergy between infrared and microwave observa-
tions was found because of too optimistic IR uncertainties.
[76] Aires et al. [2011] will show that it is, overall, easier

to use directly real statistical inversion schemes to measure
synergy. Furthermore, infrared and microwave observations
will show strong synergy to retrieve temperature and water
vapor even under clear‐sky conditions.
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