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[1] Data assimilation combines a physical model with sparse observations and has become an
increasingly important tool for scientists and engineers in the design, operation, and use of satellites and
other high‐technology systems in the near‐Earth space environment. Of particular importance is
predicting fluxes of high‐energy particles in the Van Allen radiation belts, since these fluxes can damage
spaceborne platforms and instruments during strong geomagnetic storms. In transiting from a research
setting to operational prediction of these fluxes, improved data assimilation is of the essence. The
present study is motivated by the fact that phase space densities (PSDs) of high‐energy electrons in the
outer radiation belt—both simulated and observed—are subject to spatiotemporal variations that span
several orders of magnitude. Standard data assimilation methods that are based on least squares
minimization of normally distributed errors may not be adequate for handling the range of these
variations. We propose herein a modification of Kalman filtering that uses a log‐transformed,
one‐dimensional radial diffusion model for the PSDs and includes parameterized losses. The proposed
methodology is first verified on model‐simulated, synthetic data and then applied to actual satellite
measurements. When the model errors are sufficiently smaller then observational errors, our
methodology can significantly improve analysis and prediction skill for the PSDs compared to those
of the standard Kalman filter formulation. This improvement is documented by monitoring the
variance of the innovation sequence.

Citation: Kondrashov, D., M. Ghil, and Y. Shprits (2011), Lognormal Kalman filter for assimilating phase space
density data in the radiation belts, Space Weather, 9, S11006, doi:10.1029/2011SW000726.

1. Introduction and Motivation
1.1. Data Assimilation and Operational Prediction
[2] In the process of moving from research to operations

in the study of the Van Allen radiation belts, it is of the
essence to properly understand and further improve data
assimilation methodology—as applied to the filtering,
smoothing, and prediction of electron fluxes and phase
space density (PSD) fields. The modern uses of data
assimilation in the geosciences go back to the introduction
of meteorological satellites and their application to numer-
ical weather prediction (NWP) in the late 1960s and the
1970s [Charney et al., 1969]. It was Bjerknes [1904], following
the earlier ideas of H. Helmholtz and others, who formu-
lated the NWP problem as an initial‐value problem for the

partial differential equations that govern large‐scale atmo-
spheric flow.
[3] As soon as the research group around J. vonNeumann

at the Institute for Advanced Studies in Princeton started
working on experimental NWP [Charney et al., 1950], it
became apparent that the initial state of the atmosphere at
any given time was known only very partially and inaccu-
rately. TheWorldWeatherWatch introduced by theWorld
Meteorological Organization after World War II was
designed to provide as good a state of the atmosphere as
possible twice a day, at noon and midnight Greenwich
mean time, the so‐called synoptic times. These synoptic
(i.e., simultaneous) observations, however, were too costly
or impractical to provide adequate coverage of the weather
over the entire globe. The advent of asynchronous obser-
vations, via satellites and other unconventional observing
platforms and instruments, sharpened the need for the
time‐continuous, rather than intermittent, blending of
observations and models [Ghil et al., 1979; Bengtsson et al.,
1981].
[4] To better understand this new point of view, con-

sider a sequence of observations at discrete times {tk: t0 ≤
tk ≤ tK} of a scalar or vector variable x(tk) or x(tk). The vector
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variable x(tk) will represent the spatially discretized values
of a geophysical field, such as temperatures in NWP or
PSD values in the radiation belts. Wiener [1949] defined
filtering, smoothing, and prediction of this variable x(tk) as
its estimate at (1) the final observing time tK; (2) at all tk
over the observation interval t0 ≤ tk ≤ tK; and (3) at any time
after the final observation, tK < tk.
[5] In the real‐time prediction problem, it is pretty easy

to convince oneself that—under fairly general hypotheses
on the process to be predicted and given observations up
to time tK—the best use one can make of the observations
is to estimate as well as one can, with the knowledge one
has, the state at the initial prediction time, i.e., at tK. This is
precisely how the so‐called forecast‐assimilation cycle
proceeds in NWP; such an operational NWP cycle is
illustrated in Figures 1a and 1b.
[6] Figure 1a shows the traditional blending of data and

model, at the synoptic times, used from the beginnings of
data assimilation in the 1960s until the late 1970s and early
1980s; such data windows are still used in so‐called vari-
ational methods of data assimilation [e.g., Courtier and
Talagrand, 1987]. Figure 1b outlines the more recent
approach, in which data are assimilated at any model time
step at which they become available; this sequential
approach includes a great variety of methods that gener-
ally fall these days in the broad class of Kalman‐type fil-
ters (e.g., Jazwinski [1970] or Gelb [1974]).
[7] In space physics, given the total absence—at any

given time of day or night—of synoptic data that cover the
entire domain of interest, it is natural to start relying on
the time‐continuous approach of data assimilation. This
approach can address two types of applications that are of
primary interest for the satellite design and operations
community: nowcasting and short‐term forecasting, as
well as long‐term reanalysis. For both types of applica-
tions, be it in a research or operational mode, data should
be assimilated from the operating space platforms and
instruments, when and where they become available.
[8] The nowcasting applications help address issues

linked to the state of the space environment’s radiation
properties at a given time and location, and thus provide
post facto insight into the possible causes of particular
anomalies. Moreover, a satellite operator could take pre-
ventive action, based on a reliable short‐term forecast of
the space environment, if a satellite is threatened; given
the current lack of such reliable forecasts, such action is
not a widespread practice at this time.
[9] In a research mode, one can also consider the

smoothingproblem,which produces “movies” of the plasma
properties, particle distribution functions, the magnetic
and electric fields, or the wave environment over the entire
lifetime of a satellite or of a group of spacecraft, which may
last over several solar cycles. Such a movie can help
determine the average state and extreme conditions in a
certain part of the space environment, and can be turned
into satellite specifications. Our proposed improvement of
assimilation methodology should thus help both opera-

tional and research aspects of space physics by providing
better estimates of the radiation environment whenever
observations are available.

1.2. The Need for a Log‐Density Formulation
[10] A striking feature of the radiation belts is that values

of observed electron fluxes and modeled PSD vary by
several orders of magnitude, and that the corresponding
error distributions are therefore not Gaussian. Still, stan-
dard data assimilation methods, such as the Kalman filter
and its various adaptations to large‐dimensional and
nonlinear problems, are essentially based on least squares
minimization of Gaussian errors.
[11] Even though this mismatch between the nature of

the data and that of the method leads to substantial pro-
blems when applying standard assimilation methods to
the radiation belts, there have been very few investiga-
tions to address these issues; we cite here the two that we
are aware of: First, Naehr and Toffoletto [2005] relied on a
log‐based transformation of the PSD and on an extended
Kalman filter to study sequential filter performance on
synthetic data. Next, O’Brien and Guild [2010] proposed a
variational data assimilation method based on a maximum
likelihood ensemble filter (MLEF [Zupanski, 2005]) that
also uses a log‐based transformation for both the mea-
surements and the model state vector.
[12] In the spirit of these two studies, we explore alter-

native ways to make Kalman filter–type methods more
efficient for use in PSD assimilation for the radiation belts
by relying on an one‐dimensional (1‐D) version of the
UCLA Versatile Electron Radiation Belt (VERB) diffusion
model (Shprits et al. [2005] and Subbotin and Shprits [2009];
see also section 2 herein) and on observations from mul-
tiple satellites (section 3). We introduce a lognormal PSD
transformation in the UCLA VERB 1‐D code to derive an
analytical model equation for the transformed variable
(section 5) and use it in our extended Kalman filter for-
mulation of section 4.
[13] First, we analyze the performance of the lognormal

Kalman filter so derived on synthetic data in the “fraternal‐
twin” experiments of section 6.1, and then apply it to
spacecraft PSD measurements in section 6.2. We conclude
in section 7 by analyzing under which conditions this log-
normal formulation improves the accuracy of the reanalysis
and prediction of the PSD field, as inferred from the vari-
ance of the Kalman filter’s innovation sequence. The main
factor influencing the performance of the lognormal filter is
the ratio of the model error to the observational error.
When this ratio is sufficiently small but not negligible, the
lognormal formulation produces a more efficient modifi-
cation of the model forecast in observation‐void regions
and better prediction, too.

2. The UCLAVERB Code
[14] The version of the UCLA VERB code that we use

here provides a 1‐D description of the time evolution of
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the PSD f = f(L*, t; m, J) in the Van Allen radiation belts, at
fixed values of the adiabatic invariants m and J. The radial
variable L* is the distance—in the equatorial plane, mea-
sured in Earth radii RE—from the center of the Earth to the
magnetic field line around which the electron moves at

time t, assuming that the instantaneous magnetic field is
adjusted adiabatically to a pure‐dipole configuration. In
this study, the Tsyganenko [1989] (T89) magnetic field
model has been used to derive electron fluxes at a par-
ticular L* value. For simplicity from now on in the text and

Figure 1. Operational forecast‐and‐assimilation cycle of a typical weather service that combines
the prediction and data assimilation processes. (a) Data are gathered from a “window” of near‐past
and near‐future data, at the synoptic times, 12 h apart. (b) Data are assimilated as they become
available, at any model time step. In Figure 1b the T stand for the locations at which temperature
profiles become available from an infrared satellite sounder at a particular model time step, while
the plus signs indicate grid points that will be affected by those soundings due to the particular
sequential filter applied to the soundings. Figure 1a adapted from Ghil [1989], and Figure 1b
adapted from Ghil et al. [1979].
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figures we drop the superscript and refer to this variable
simply as L: Both the radiation belt model and all satellite
data are computed in L*.
[15] The PSD evolution in time is then governed by the

following parabolic partial differential equation [Shultz and
Lanzerotti, 1974; Walt, 1994]:

@f
@t

¼ L2
@

@L
L�2DLL

@f
@L

� �
� f
�L

: ð1Þ

The radial diffusion term in equation (1) represents the
violation of the third adiabatic invariant, while the net
effect of sources and losses due to violations of the m and
J invariants is modeled in this equation by the linear decay
with a characteristic lifetime tL.
[16] The parameters DLL and tL in equation (1) vary

rapidly in space and time, and depend on the background
plasma density, as well as on the spectral intensity and
spatial distribution of various plasma waves; all of these
conditions are extremely difficult to specify accurately
from limited point measurements. In this study, we adopt
a commonly used empirical relationship from Brautigam
and Albert [2000] which is based on the magnetic field
measurements at L = 4 [Lanzerotti and Morgan, 1973] and
L = 6.6 [Lanzerotti et al., 1978], between the radial diffusion
coefficient DLL and the geomagnetic activity index Kp:

DLL Kp; L
� � ¼ 10 0:506Kp�9:325ð ÞL10; ð2Þ

this equation applies throughout the outer radiation belt.
[17] For the lifetime parameter tL, we consider different

parameterizations inside and outside the plasmasphere.
The latter is a region of the inner magnetosphere that
contains relatively cool and dense plasma at low energies;
it is populated by the outflow of ionospheric plasma along
the magnetic field lines, and consists of closed equipo-
tential surfaces. The plasmapause that separates it from
the regions of open equipotential surfaces lies, under
quiet conditions, within the outer belt, at LPP = 5–6 RE,
where RE is the Earth’s radius. Under quiet conditions, the
outer belt lies at about 3.5–6 RE and the inner belt at about
1–2.5 RE, starting just above the ionosphere. Magneto-
spheric storms deplete the plasmasphere and LPP can sink
to 3 or, for particularly strong storms, even 2 RE [Baker
et al., 2004].
[18] As described by Kondrashov et al. [2007], distinct loss

processes operate inside and outside of the plasmasphere,
and so we account for them separately in the physical
model. Inside we assume that tLI = 10 days is constant in
time, while outside we take

�LO ¼ �=Kp tð Þ: ð3Þ

To discretize numerically equation (1), we use standard
second‐order centered difference approximations for

spatial derivatives. We also utilize a fully implicit
numerical method to advance the solution in time, which
allows one to use much larger time steps than explicit
schemes do.

3. Spacecraft Observations
[19] This study covers a time interval of 120 consecutive

days that starts on 30 July 1990 and includes measure-
ments from four space missions: the Combined Release
and Radiation Effects Satellite (CRRES), GEO‐1989
(hereafter referred to as GEO), GPS NS18 (hereafter GPS),
and Akebono. To perform data assimilation of the PSD
distribution derived from the electron flux observations
measured by the various spacecraft instruments, we need
first to calculate the PSD in the appropriate phase space
coordinates (m, K, L; here m is the first adiabatic invariant,
while K is a combination of the first two adiabatic invar-
iants that is independent of the particle mass and charge).
[20] The Kp data set is taken from the World Data

Center for Geomagnetism in Kyoto, Japan, http://swdcdb.
kugi.kyoto‐u.ac.jp/aedir/. The T89 model is specified by
the Kp value and is valid only for relatively modest activity
levels. Recently, Ni et al. [2009] have compared and
mutually calibrated PSD data from the CRRES Medium
Electron A (MEA) observations and those from the polar‐
orbiting Akebono Radiation Monitor (RDM) by using the
T89 model; they found, in general, good agreement
between the PSD values inferred from the two sets of
observations.
[21] Recent, improved models of the magnetic field

include parameterizations that use also Dst and solar
wind measurements. Though the latter are not generally
available for the CRRES time period, Kondrashov et al.
[2010] showed that Singular Spectrum Analysis can be
used to fill in large gaps in past solar wind and IMF
data.

4. The Extended Kalman Filter (EKF)
[22] In this section, we review the Kalman filter as

applied to data assimilation in the radiation belts, fol-
lowing Kondrashov et al. [2007], Shprits et al. [2007], Ni
et al. [2009], Koller et al. [2007], and Daae et al. [2011].
The summary here uses the filter’s presentation for partial
differential equations in the geosciences, as introduced by
Ghil et al. [1981] and reviewed by Ghil and Malanotte‐
Rizzoli [1991]; in this presentation, both time and space
have been discretized by finite differences.
[23] The time evolution of the state vector xk

f,t = xf,t (k, Dt)
is assumed to be governed by the numerically discretized
system of equations whose right‐hand side (RHS) is
denoted by F = F(x); here superscript “t” refers to true,
“f” refers to model forecast, and k is a discretized time
index. If the system is nonlinear, F = F(x) has to be lin-
earized to yield the model matrix M that will be used in
advancing the forecast error covariances. Furthermore,
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the true state differs from the model forecast by a random
error �m:

xfk ¼ Fk xfk�1

� �
; ð4Þ

xtk ¼ Fk xtk�1

� �þ �mk ; ð5Þ

M ¼ @F
@x

: ð6Þ

[24] For the radiation belt model of equation (1), the
components of the state vector xk are the PSD values at
the discretized grid points in the independent variable L;
since the partial differential operator in (1) is linear, no
linearization, as in equation (5), seems to be required. In
section 5, though, we will encounter a nonlinear version
of this equation, thus justifying the use of the full set of
equations (4)–(6).
[25] The model noise �m accounts for the net errors due to

inaccurate model physics, such as errors in forcing, bound-
ary conditions, numerical discretization, and subgrid‐scale
processes. Commonly, the column vector �m is assumed to
be a Gaussian white‐noise sequence, with mean zero and
model‐error covariance matrix Q, E[�k

m] = 0 and E[�k
m�l

mT] =
Qkdkl, where E is the expectation operator, superscript “T”
denotes the transpose, and dkl is the Kronecker delta.
[26] The observations yk

o of the true system, where
superscript “o” refers to “observed,” are also perturbed
by Gaussian white noise �k

o with mean zero and given
covariance matrix R, E[�k

o�l
oT] = Rkdkl:

yok ¼ Hkxtk þ �ok : ð7Þ
The observation matrix Hk accounts for the fact that usu-
ally the dimension of yk

o is less than the dimension of xk
t ,

i.e., at any given time observations are not available for all
grid points. It is often also the case that the values of the
PSD or other state variable are not directly observable,
and it is only some linear or nonlinear combination of
such variables, such as weighted integrals over phase
space, that can be measured.
[27] The Kalman filter and its variants are sequential

data assimilation methods. For given model and obser-
vation error covariances, Q and R, the filter combines the
model forecast with the observations so as to obtain the
analysis that is closest in a least squares sense to the truth.
The gain matrix Kk in equation (8) represents the optimal
weights given to the observations in updating the model
forecast, based on this least squares minimization:

xak ¼ xfk þK yok �Hxfk
� �

; ð8Þ

K ¼ PfHT HPfHT þ R
� ��1

; ð9Þ

Pf
k ¼ MkPf

k�1M
T
k þQ; ð10Þ

Pa
k ¼ I�KHð ÞPf

k: ð11Þ

[28] The error‐covariance matrices Pf,a are the time‐
dependent error estimates for the forecast and the analy-

sis, respectively. One expects, from equations (10) and (11),
that the analysis error be smaller than the forecast error [cf.
Ghil et al., 1981; Carrassi et al., 2008]. The sequential esti-
mator for nonlinear systems that uses the linear dynamics
operator Mk in the quadratic equation (10) for advancing
the model covariances Pk

f in time, while preserving the
nonlinear evolution (4) of the state itself, is called the
extended Kalman filter (EKF [Jazwinski, 1970; Gelb, 1974;
Miller et al., 1994]). To estimate poorly known parameters of
the system, Kalman filter can be applied to state vector
augmented with the parameters values [Kondrashov et al.,
2007, 2008].
[29] It is logical to assume that the PSD is lognormally

distributed since it is always positive, and generally its
variations—as measured, for instance, by the standard
deviation—increase as its mean value increases. Normally
distributed variables, on the other hand, can be negative
and have a standard deviation that does not change as the
mean changes. Lognormal errors arise when variation
sources accumulate multiplicatively, whereas normal
errors arise when these sources are additive [Crow and
Shimizu, 1988].
[30] By assuming a lognormal distribution of errors at

each location and errors that are uncorrelated between
different locations, both Q and R can be specified as diag-
onalmatrices, and their diagonal terms can be taken simply
as ao,mfo,m

2 , where fo,m
2 is the observed or modeled PSD

value, and ao,m is a specified factor that corresponds to
observational or model error. Note that the exact values of
ao,m are not important: It is their respective ratio that
determines the weights given to the observations versus
the model solution in the analysis, or update, step of the
data assimilation. In this study, we follow the approach of
Ni et al. [2009] with the value of ao depending on the
intercalibration of satellite data; we use ao = 200 for Ake-
bono and ao = 400 for GEO, while am = 25.
[31] Because of their reliance on least squares minimi-

zation, the EKF and other Kalman‐type filters may not be
efficient inmodifying themodel forecast at locations where
the observations and forecast differ by several orders of
magnitude. In section 5 we use a lognormal transformation
of variables to derive the model equation for log( f ) and
the corresponding EKF. We then study in section 6.1 the
performance of the lognormal EKF for synthetic data in
“fraternal‐twin” assimilation experiments—when the true
evolution of the system is known—and next, in section 6.2,
for actual spaceborne observational data.

5. Lognormal Model and Filter
[32] By introducing the new variable S = log( f ) in

equation (1) and using the chain rule for partial deriva-
tives in time and space, one can easily obtain the following
evolution equation for the log‐transformed PSD:

@S
@t

¼ L2
@

@L
1
L2

DLL
@S
@L

� �
� 1
�L

þDLL
@S
@L

� �2

: ð12Þ
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The first two terms on the RHS of the log‐transformed
equation (12) correspond to radial diffusion and losses,
respectively, as in equation (1). Even though the original
equation (1) is linear, the last term on the RHS of equation
(12), (∂S/∂L)2, is due to the nonlinear transformation of
variables and requires special attention in the numerical
solution. This term becomes important in locations where
strong PSD gradients occur; it can be understood as
nonlinear advection of S with a velocity that depends on
its gradient.
[33] Note that our methodology is distinctly different

from that of Naehr and Toffoletto [2005], where a lognormal
transformation is applied to the numerically discretized
equation for f. We derive instead the analytical equation
(12) for the evolution of S = log(f); this equation does not
depend on the details of a particular numerical scheme for
solving the f‐equation (1).
[34] Note that the log‐transformed equation (12) and

the original equation (1) should both yield the same
solution f(t, L)—to within the accuracy of the spatial dis-
cretization and time integration scheme—when solved
numerically. The numerical solution of the original
equation (1) is typically a smooth monotone function in
space, but “naive” approximation in space of the quadratic
term in equation (12), for example, by using centered
differences, will result in spurious local extrema when
integrated numerically. This Gibbs phenomenon ulti-
mately leads to unstable solutions, and, in order to avoid
such numerical instabilities and preserve the monotonic-
ity of the solutions of the log‐transformed equation (12),
we use an upwind approximation of (∂S/∂L)2 that is
second‐order in space and total‐variation diminishing
(TVD [Harten, 1983]). TheTVDscheme,when combinedwith
the implicit time integration, guarantees stable numerical
solutions of equation (12). To solve numerically either
equation (1) or equation (12), we use a uniform grid of
100 points in L; the number of grid points also determines
the dimension of the state vector in the Kalman filter
formulation.
[35] Steep gradients are key features of the radiation

belts, and there is therefore an additional improvement in
numerical performance obtained by recasting the diffusion
problem of equation (1) in terms of the transformed vari-
able S = log(PSD); doing so helps avoid nonphysical neg-
ative values, which may arise in numerical schemes that
solve equation (1) in the original variable f = PSD. There is
of course a trade‐off in difficulty, since the lognormalmodel
requires one to solve the nonlinear equation (12); this will
also present a special challenge when applying the pro-
posed methodology to the 3‐D VERB code [Subbotin and
Shprits, 2009] that describes diffusion in energy, pitch
angle, and L.
[36] Since equation (12) is nonlinear in S, we also need to

linearize the model in order to implement the EKF of
equations (4)–(11). Moreover, for the EKF implementation,
observational and model errors for f are modified in a
manner appropriate for log‐transformed variables by

setting the diagonal elements Q and R equal to log(1 + am)
and to log(1 + ao), respectively [Crow and Shimizu, 1988].

6. Numerical Results
6.1. “Fraternal‐Twin” Experiments
[37] To compare the lognormal EKF scheme of section 5

with the standard EKF implementation of section 4, we
conduct so‐called “fraternal‐twin” experiments in which
both the “true” solution, from which the observations are
drawn, and the forecast are produced by the same model,
but with different values of the lifetime parameters in
equations (1) and (12). This type of experiment is a harder
test for a given assimilation method than a so‐called
“identical‐twin” experiment, in which the model used for
the assimilation of partial data is identical to the one used
to generate the data, and only the initial state may differ.
[38] We obtain our true PSD distribution from a model

run with tLI = 10 days and z = 5 days (compare equation (3)
and Figure 2a); this run is also used to generate synthetic
observations along the tracks of the GPS and GEO satel-
lites with a 10 min resolution, as plotted in Figure 2c. Our
goal is to recover the true solution by assimilating these
observations into a model simulation with an “incorrect”
set of parameters, equal to tLI = 10 days and z = 1 day;
these values correspond to higher losses, as shown in
Figure 2b.
[39] The results of assimilating the synthetic data from

Figure 2c by applying the standard EKF formulation are
plotted in Figure 3a. The plot shows that even though
assimilating this data set drives the model forecast with
the wrong parameter values toward the true model’s
solution, significant differences remain (compare with
Figure 3c). These differences are largest for 4 ≤ L ≤ 6, i.e.,
in the heart of the outer radiation belt, where the PSD
gradients are strongest in Figure 2b.
[40] When using the lognormal EKF of section 5, on the

other hand, our data assimilation reduces the model
forecast error much more efficiently in the region of strong
PSD gradients. This can be clearly seen by comparing
Figures 3b and 3d with Figures 3a and 3c; it is also con-
firmed by the time‐averaged analysis error in PSD values,
for the standard EKF formulation and the lognormal one,
as shown in Figure 4b.
[41] Since both the original model equation (1) and the

log‐transformed equation (12) yield identical solutions for
the PSD field in the absence of data assimilation, the dif-
ference in the results can only be due to the change in the
data assimilation scheme, as outlined and explained in
section 5.
[42] In addition to comparing the analysis errors, as

discussed above, another useful and readily available
means for assessing an assimilation scheme is studying
the innovation sequence:

zk � yok �Hxfk; ð13Þ
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which appears in the updating equation (8). The impor-
tance of considering the innovations zk in sequential
estimation, i.e., the time series of the differences between
the observations and the model forecast, was noted
already by Kailath [1968] and was emphasized recently
by Fukumori [2006] in the geophysical context.

[43] The innovation vector represents the filter’s cor-
rection to the model dynamics. For a linear system with
known coefficients and known noise covariances, the
innovation property of the Kalman filter states that the
innovation sequence has zero mean and is white in time,
i.e., E[zk

Tzl] = 0 for k ≠ l; this means simply that the filter

Figure 2. “Fraternal‐twin” experiment using synthetic observations from a model simulation with
different parameter values. The radiation belt model employs a Kp‐dependent lifetime parameter-
ization outside the plasmasphere, with tLO = z/Kp(t) (see equation (3). (a) “Truth” given by the
model solution with z = 5 days, also called the control run or nature run. (b) Model simulation
assuming higher losses, with z = 1 day. (c) Synthetic observations taken from the control run in
Figure 2a.

Figure 3. Assimilation results for “fraternal‐twin” experiment with forecasts from the model in
Figure 2b and data from the control run in Figure 2c: (a) using the standard EKF formulation of
section 4; (b) same as in Figure 3a but for the lognormal EKF of section 5; (c) difference between the
assimilation results in Figure 3a and the control run of Figure 2a; (d) difference between the
assimilation results in Figure 3b and the same control run.
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extracts, at each time step, any and all useful information
from the observations. Dee et al. [1985], for instance, have
used systematically deviations from this property to infer
unknown error covariances Q and R in the shallow‐water
model of Ghil et al. [1981]. In the space plasma context,
Koller et al. [2007] and Shprits et al. [2007] showed how the
nonzero time mean of the innovation sequence can point
to missing physics in the model’s competing processes of
losses and local acceleration.
[44] Here we show how inspection of the innovation

sequence can be used to diagnose the performance of a
data assimilation scheme, even in the case of a nonlinear
problem, like equation (12). As the forecast yk

f does not yet
utilize the upcoming observations yk

o, the variance of the
sequence zk provides an objective measure of prediction
skill with respect to independent observations: A perfect
model would predict exactly the incoming observation
vector, so that yk

o = Hxk
f , while a particularly poor model

might differ from the observations more than their long‐
term mean, i.e., than the climatology of the system.
[45] The prediction skill is thus defined here as the

variance E[zk
Tzk] and is plotted in Figure 4a for both the

standard EKF formulation (red curve) and the lognormal
one (blue curve); for the latter, equation (13) has been
converted into PSD space to make the two estimates
comparable. In addition, the straight model simulation of
Figure 2b (dashed black curve), without data assimilation,
has been plotted as well. The prediction skill of these three
types of forecast is compared in turn to the total variance

of the PSD observations obtained from the control run of
Figure 2a; the latter should be reduced by the forecast
model’s interpolating the sparse data, even though this
model is not perfect.
[46] In practice, we see that for our fraternal‐twin

experiments, the model simulation with the wrong
parameter value of z = 1 day does not yield any useful
prediction skill, as the variance of its innovation sequence
is even higher than the variance of the “observations,” i.e.,
of the control run. On the other hand, both EKF for-
mulations reduce the variance of the innovation sequence,
while the lognormal formulation has a substantially better
prediction skill than the standard EKF at all L‐shells
(compare Figure 4a). In addition, the analysis obtained by
the lognormal formulation has a substantially lower time‐
averaged error with a truth (compare Figures 3c and 3d) at
all L‐shells (compare Figure 4b).
[47] The results in Figures 2–4 have been obtained with

observational errors set much larger than the model error:
am = 25 and ao = 100 am. In this situation, the EKF can
more easily correct the model forecast’s state‐vector
components at grid points away from the observation sites
[Ghil and Malanotte‐Rizzoli, 1991]: When the model is
assumed to be more accurate than the observations, then
the EKF’s weights in equation (9) for such locations are
nonnegligible, due to the spatial correlations inferred from
the error covariance matrix. The lognormal formulation,
due to its capability to capture better very large variations

Figure 4. (a) Prediction skill of the models and the sequential estimation methods, defined as var-
iance E[zk

Tzk] of the innovation sequence with zk given by equation (13); see text for details.Black
solid curve, variance of the synthetic PSD observations sampled from the control run, see Figure 2c;
black dashed, model simulation with incorrect parameter values and no data, see Figure 2b; red,
standard EKF; blue, same for the lognormal EKF but converted into PSD values. Data assimilation
clearly improves the models’ forecasting ability of the data for all L‐values, with the smallest
variance of the innovation sequence for the lognormal formulation. These results are for obser-
vationerrors much larger than the model errors; see text for details. (b) Error computed as time
mean of the squared difference between assimilation results and control, given in both cases in
terms of PSD values: for the standard EKF (red curve, see Figure 3c) and lognormal EKF (blue
curve, see Figure 3d.)
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in PSD values, allows for much larger corrections of the
model forecast where the gradients are steepest.
[48] When the observational and model errors are

comparable, say, am = ao, both formulations yield very

similar data assimilation results, with but small differ-
ences in prediction skill: The smallness of the differences
apparent in Figure 5 is largely because the model forecast
is modified to a much lesser extent at grid points away

Figure 5. Same as in Figure 4 but assuming equal model and observational errors; see text for details.
In this case, the performance of the standard EKF and the lognormal EKF are quite comparable.

Figure 6. Data assimilation results using real spacecraft data. (a) CRRES PSD observations;
(b) assimilated Akebono observations; (c) assimilation results with the standard EKF; (d) assimila-
tion results with the lognormal EKF. The lognormal formulation provides better agreement of the
assimilation results with the CRRES observations in the inner belt, L < 3, where the PSD gradients
are strong.
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from the observation sites. Finally, when the model error
is much larger than the observational error, the EKF
approximates the “direct‐insertion method,” in which the

observations simply replace the model forecast at all the
points where observations are taken. In this case (not
shown), the EKF results are the same, regardless of the
formulation chosen. At the opposite end of the error ratio
scale, when the model errors are negligible, the EKF will
ignore the observations completely.
[49] These results suggest that there is a certain range of

ratios between observational and model errors within
which the lognormal EKF formulation will perform better
than the standard one. In particular, based on our frater-
nal‐twin experiments with synthetic data, the lognormal
formulation of the EKF is expected to perform better when
the observational errors are larger than the model errors.
In section 6.2, we verify these results by assimilating actual
satellite data, whose errors are quite large.

6.2. Spacecraft Data Assimilation
[50] Here we compare the standard and the lognormal

EKF formulations by assimilating PSD data derived from
measurements on board the Akebono and GEO space-
craft. These are assimilated into the VERB‐1D code with
the loss parameters tLI = 10 days and z = 5 days; see
equation (3) and Figure 2a. Unlike in the fraternal‐twin
experiment of section 4.1, here we do not know the con-
tinuous spatiotemporal evolution of the true PSD field.
Instead, we will consider as a comparison benchmark
independent, high‐quality observations from the CRRES

Figure 7. Prediction skill for real spacecraft data. Same
color conventions as in Figures 4a and 5a: solid black,
variance of the Akebono PSD observations shown in
Figure 6b; dashed black, model simulation with no data
(again, see Figure 2a); red and blue, standard and log-
normal EKF, respectively. The Akebono data improve
the model’s forecasting ability over all L‐values, and
the lognormal formulation exhibits the smallest vari-
ance of the innovation sequence.

Figure 8. Same as in Figure 6 but for assimilating observations from the GEO satellite.
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spacecraft, with more complete coverage in time and
space, as shown in Figure 6a.
[51] On the basis of intercalibration of PSD data we

assume am = 25 for the model error in the VERB‐1D code,
while we take observational error ao = 200 for Akebono
and ao = 400 for GEO. Sucha choice of error parameters
allows the Kalman filter to modify efficiently the full state
vector, as described in section 6.1. In agreement with our
synthetic‐data results there, the assimilation results (not
shown) using the PSD data from the CRRES mission
(shown in Figure 6a) and from the GPS satellite (not
shown) do not depend on the EKF formulation, since these
two data sets are of higher quality and have smaller
observational errors than the GEO and Akebono data.
[52] First, we assimilate the AKEBONO RDM measure-

ments that do not include the near‐Earth region of steep
PSD gradients, L ≤ 3; the RDM observations are plotted in
Figure 6b. The assimilation results for the standard EKF
formulation (Figure 6c) have several nonphysical PSD
maxima at L ≈ 3; these maxima are absent from the CRRES
observations in Figure 6a. The results for the lognormal
EKF formulation in Figure 6d, on the other hand, yield a
smooth PSD field in much better agreement with the
CRRES data of Figure 6a.
[53] The prediction skill is shown in Figure 7, and it is

improved by both EKF filter formulations in comparison
with the model simulation without the benefit of data
assimilation. However, the skill for the lognormal EKF is
only modestly better at all L‐values, i.e., the innovation
variance is somewhat smaller than for the standard EKF.
[54] Unlike in the Akebono case, the GEO measure-

ments cover only a very narrow L‐range, at L ≈ 5; see
Figure 8b. Such a limited data set presents a greater
challenge for the EKF in realistically reconstructing the
PSD profile at low L‐shells, far away from the observations
points (see Figure 7c). Even in this case, the prediction skill

of the lognormal EKF is uniformly better over the L‐range
sampled by GEO, as can be seen in Figure 9.

7. Conclusions
[55] This study was motivated by the recognition that

both simulated and observed phase space density (PSD)
values in the radiation belts are subject to very large
spatiotemporal variations, and that variations over several
orders of magnitude may not be adequate for standard
data assimilation methods based on least squares mini-
mization of normally distributed errors. We formulated
therefore in section 5 a model and filter version using the
logarithm of the PSD as the dependent variable.
[56] Our “fraternal‐twin” experiments in section 6.1

showed that the proposed lognormal formulation of the
extended Kalman filter (EKF) can substantially reduce the
assimilation errors in regions of steep PSD gradients; see
Figures 2 and 3. The proposed methodology demonstrates
the most substantial improvements when model errors are
smaller than the observational errors. Such an error ratio
allows the lognormal EKF implementation to modify the
model forecast very efficiently in observation‐void regions;
thesemodifications lead tomuch better PSDpredictions, as
inferred from the variance reduction of the innovation
sequence in Figures 4 and 5.
[57] These findings have been confirmed by assimilating

PSD measurements from the GEO and Akebono satellites
(Figures 6–9), which have large observational errors
derived from intercalibration studies. In particular, the
lognormal EKF applied to Akebono observations yields an
assimilated PSD field in which nonphysical maxima are
absent, according to independent CRRES validation data.
In addition, the prediction skill of the lognormal formu-
lation is better for both the GEO and Akebono data. The
results of this study should thus be useful to researchers,
as well as to spacecraft designers and engineers, in the
transition to operational prediction of the near‐Earth
space environment of satellites and other high‐technology
systems.
[58] Our proposed rescaling methodology holds even

greater promise for the data assimilation of multiple‐
satellite measurements for sophisticated, three‐dimensional
radiation belt models. Such models describe much better
competing loss and source mechanisms than the 1‐D VERB
code used in this study, thus reducing further model errors.
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