
HAL Id: hal-01119231
https://hal.science/hal-01119231v1

Submitted on 9 Nov 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Timetabling of sorting slots in a logistic warehouse
Antoine Jouglet, Dritan Nace, Christophe Outteryck

To cite this version:
Antoine Jouglet, Dritan Nace, Christophe Outteryck. Timetabling of sorting slots in a logistic ware-
house. Annals of Operations Research, 2016, 239 (1), pp.295-316. �10.1007/s10479-013-1499-9�. �hal-
01119231�

https://hal.science/hal-01119231v1
https://hal.archives-ouvertes.fr

Noname manuscript No.

(will be inserted by the editor)

Timetabling of sorting slots in a logistic warehouse

Antoine Jouglet · Dritan Nace ·

Christophe Outteryck

Abstract We study a problem that occurs at the end of a logistic stream in a
warehouse and which concerns the timetabling of the sorting slots that are used
to accommodate the prepared orders before they are dispatched. We consider a
set of orders to be prepared in a certain number of preparation shops over a given
time horizon. Each order is associated with the truck that will transport it to
the customer. A sorting slot is an accumulation area where processed orders wait
to be loaded onto a truck. For a given truck a known number of sorting slots is
needed from the time the first order for this truck begins to be prepared, right
up until the truck’s scheduled departure time. Since several orders destined for
different trucks are processed simultaneously, and since the number of sorting
slots is limited, the timetabling of these resources is necessary to ensure that all
orders can be processed over the considered time horizon. In this paper we describe
the general industrial context of the problem and we formalize it. We state that
some particular cases of the problem are polynomially solvable while the general
problem is NP-complete. We then propose optimization methods for solving the
problem.

Keywords warehouse management · sorting slots · scheduling · timetabling

1 Introduction

Logistic warehouses are becoming more and more complex installations: flows are
continually increasing, systems are becoming more automated and logistic pro-
cesses globalized. In an increasingly competitive environment, warehouse manage-
ment software (comprising Warehouse Management Systems (WMS) and Ware-

Antoine Jouglet, Dritan Nace
Université de Technologie de Compiègne, UMR CNRS 7253 Heudiasyc
60200 Compiègne, France
E-mail: {antoine.jouglet,dritan.nace}@utc.fr

Christophe Outteryck
a-sis, 8, rue de la Richelandière, 42000 Saint-Etienne, France
E-mail: christophe.outteryck@a-sis.com

house Control Systems (WCS)) is becoming a vital part of operational decision
making.

Since the introduction of automation systems in production and distribution
environments a large number of research studies into operational decision systems
have been published (see for example [3–5, 8, 9] for surveys in this area). In this
paper we study a sub-problem which occurs at the end of a logistic stream in a
warehouse and concerns the timetabling of sorting slots. To our knowledge, this
problem has so far not been studied in the literature.

We consider a warehouse composed of several order preparation shops and a
set of orders to be prepared over a given time horizon. Each order is composed
of several order lines. An order line corresponds to a quantity of work to be pro-
cessed in one of the preparation shops. Each order is associated with the particular
transportation truck that is to transport it to its final customer. This makes it nec-
essary for the subset of all orders for a given truck to be totally processed before
the truck’s scheduled departure.

W
C

S

launch of
order lines

preparations shops

truck C

truck B

truck A

Fig. 1 Preparation of order lines in a warehouse

Once an order has been prepared it is dispatched to a sorting slot, that is
to say an accumulation area where the order waits to be loaded onto the truck.
The difficulty of the sorting slot timetabling problem is due to a specific resource
constraint: for a given truck, from the time the first order destined for the truck
begins to be prepared, and up until the truck’s scheduled departure, a precise
number of sorting slots must be allocated. Since several orders corresponding to
different trucks are prepared simultaneously, and since the number of sorting slots
is limited, timetabling the use of sorting slots is essential. The WCS dynamically
makes decisions concerning the order lines to be processed in each preparation
shop, and it needs to know which of these order lines can be started at a given
time without adversely affecting the processing of other order lines by using up
available sorting slots (see Figure 1). In other words, sorting slots need to be
timetabled to ensure that all orders can be processed over the considered time
horizon.

For instance, consider a simple example with only one preparation shop, 3
trucks and a capacity of 5 sorting slots. Truck 1 needs 3 sorting slots to process its
orders and must leave the warehouse at time 100. Truck 2 needs 2 sorting slots to
process its orders and must leave the warehouse at time 80. Truck 3 needs 2 sorting

2

slots to process its orders and must leave the warehouse at time 50. Suppose that

preparation
shopol1 ol2 . . .

0 1 50 80 100

5

sorting

slots

Fig. 2 A non-optimal use of sorting slots, illustrating why a timetable for sorting slots needs
to be established.

the WCS has no timetable for the use of sorting slots and that it begins (at time 0)
to start an order line ol1 destined for truck 1 and, immediately afterwards (at time
1), an order line ol2 associated with truck 2. This means that 5 sorting slots are
entirely allocated to trucks 1 and 2 at least from time 1 to time 80 (the departure
time of truck 2) (see Figure 2). Unfortunately, this makes it impossible to process
order lines for truck 3, scheduled to depart earlier.

preparation
shopol3 ol2 . . . ol1 . . .

0 1 50 80 100

5

sorting

slots

Fig. 3 Correct dynamic decisions by the WCS when the use of sorting slots is timetabled

Suppose now that a timetable for using sorting slots has been established,
stipulating that 2 sorting slots are to be used by truck 2 from time 0 to time 80, 2
are to be used by truck 3 from time 0 to time 50, and 3 are to be used by truck 1
from time 50 to time 100. This timetable must make it possible for all order lines
to be processed. The WCS knows which order lines it is authorized to dynamically
start at a given time t, and which order lines belong to the trucks using sorting
slots over an interval of time including t. In this example, order line ol1 cannot be
started before time 50 (see Figure 3).

Note that it is not our concern to schedule the order lines in the preparation
shops. That is the role of the WCS, which must make this kind of decision according
to the current state (not precisely predictable) of the whole system. Most of the
time, a preparation shop is a very complex system involving several subsystems.
One of the functions of the WCS is to start the appropriate order lines at the right
time in order to balance the work between all its subsystems. This is why we shall
not be assuming below that we have complete information about the set of orders.
Instead, we have access to macro-information corresponding to the amount of work

3

related to each truck in each preparation shop. Thus, as we will see in the next
section, the orders corresponding to a particular truck can be described by a set
of operations (one for each preparation shop) whose processing times correspond
to these amounts of work. However, it should be remembered that the schedule of
these operations is not really of any importance. We simply need to be certain that
for an established timetable there exists a possible scheduling of these operations.
In other words, we have to find a timetable for the use of sorting slots, given an
operation scheduling feasibility constraint.

The remainder of the paper is organized as follows. We first define the problem
in Section 2. Two operational cases are considered: the non-preemptive case in
which order lines for the same preparation shop and for the same transportation
truck must be processed in a single operation, and the preemptive case in which this
constraint is released. We then provide a study of the complexity of the problem
in Section 3: we state that some particular cases of the problem are polynomially
solvable, while the general problem is NP-complete [6]. In the remaining sections,
we propose optimization methods to solve it. Thus, in Section 4, we describe a
dominance rule allowing integer linear programming formulations and constraint-
based scheduling methods [1] to be built to solve the problem in practice. These
methods are described in Section 5 for the non-preemptive case and in Section 6
for the preemptive case. Some experimental results are provided in Section 7 and
we conclude in Section 8.

2 Problem definition

The problem in hand can be formalized as follows. Let n be the number of trucks
and let m be the number of preparation shops in the warehouse. From a scheduling-
based modeling point of view, a truck is assimilated to a job and a preparation
shop is assimilated to a machine. Thus, let N = {1, . . . , n} be the set of jobs
(trucks) and let M = {1, . . . ,m} be the set of machines (preparation shops).

Each job i is composed of m operations {oi1, oi2, . . . , oim}. The processing time
pij of operation oij corresponds to the duration of the whole set of order lines
which have to be processed by the machine (preparation shop) j that corresponds
to truck i, i.e. to the total amount of work which has to be done by shop j for
truck i. Each of the m machines therefore has to process n operations (one per
job). Let di be the known departure date of truck i. In a feasible solution of the
problem, each job i is then considered to have finished by time di, while the start-
time si of i is to be determined such that all operations of i can be performed. The
set of sorting slots is assimilated as a cumulative resource of capacity E, E being
the number of sorting slots available in the warehouse. Thus, job i needs a given
number ni of sorting slots from among E, from time si up until time di. Note
that the period over which the resource constraint applies depends only on the
start-time of the job, in contrast to classical scheduling problems where it depends
on periods during which the job is actually being processed.

Let sij and cij be the variables representing the start time and the completion
time respectively of operation oij in a particular solution. In a feasible solution,
each operation oij can start after the start of job i and has to be completed before
the departure time of the associated truck: sij ≥ si and cij ≤ di. Each machine
is disjunctive and can process only one operation at a time. Note that unlike in a

4

scheduling shop problem (see e.g. [2]), operations for the same job can be processed
simultaneously (and, in fact, very often will be).
Two cases are considered:

– The non-preemptive case where, once it has begun to be processed by a ma-
chine, an operation oij must be continued until its completion (sij+pij = cij).
This implies that all order lines in a preparation shop associated with a truck
will be dealt with sequentially.

– The preemptive case, where interruptions to the processing of operations are
possible. Such interruptions are useful, since they can allow part of another
more urgent operation associated with another truck to be executed. This may
be desirable when more flexibility is preferred in preparation shops. In this
case sij is taken as the first time an element of operation oij is processed by
machine j, while cij is the date at which the operation is completed. Thus we
have sij + pij ≤ cij .

The problem is to determine the values of variables {s1, . . . , sn} such that
no more than E sorting slots can be used at a time, while the scheduling of
operations is feasible. If variables {s1, s2, . . . , sn} can be fixed such that all the
previous constraints hold, it follows that ni sorting slots from among E will be
used from si to di for truck i. Thus, the values of variables {s1, s2, . . . , sn} and
data {d1, . . . , dn} provide the timetable for the use of the sorting slots. From now
on we shall refer to this problem as "the search problem".

Of course, if several solutions exist, we should like to find the best solution
from an operational point of view. In this context, the longer the span of time
over which a truck can use sorting slots, the more flexibility the WCS has for
processing the orders for the truck in question. Greater overall versatility is thus
ensured by using the sorting slots for as long as possible, i.e. by leaving as few idle
times as possible in the use of sorting slots. Let H = maxi∈{1,...,n} di be the time
horizon of an instance of the problem. One interesting objective is therefore to
minimize H×E−

∑
i∈N ni(di−si), which is equivalent to minimizing

∑
i∈N nisi.

From now on we shall refer to the search for a solution that minimizes
∑

i∈N nisi
as "the optimization problem".

We shall be using the following additional notation. Let T = {di|i ∈ N}∪{0} =
{t0 = 0, . . . , tw = H} be the set of departure dates, their values ti being indexed in
non-decreasing order, i.e. t0 = 0 < t1 < . . . < tw = H. Moreover, for all i ∈ N , let
[i] be the position of di in the ordered set T , i.e. [i] = k such that k ∈ {1, . . . , w}
and di = tk.

3 Some complexity results

In this section we propose several complexity results for the general problem and
for some of its special cases.

The special preemptive case where we have
∑n

i=1 ni ≤ E is polynomially solv-
able. The resource constraint according to the number of sorting slots disappears
in this case, and it only remains to determine whether the scheduling of the op-
erations is feasible, which will enable us to solve m single-machine scheduling
problems with deadlines (1|d̄i|_) which are polynomially solvable [6].

5

The other special case in which any pij = 1 is also polynomially solvable. Here
the operations can be scheduled identically on all the machines. The problem is
thus reduced to a problem with m = 1. We then have to determine whether the
operations can be scheduled without violating the resource constraint on sorting
slots. To this end we iteratively schedule operations from H to 0 in decreasing
order of departure times. When several operations have the same departure time,
they are scheduled in decreasing order of the number of sorting slots. The process
stops when all operations are scheduled or when the resource constraint on the
sorting slots is no longer satisfied. If the latter is the case, then the instance is not
feasible.

Proposition 1 The preemptive case with m = 1 is NP − complete.

Proof To prove this result, we state that the KNAPSACK problem [6] can be re-
duced to the preemptive case with m = 1. The KNAPSACK problem can be stated
as follows:
INSTANCE: A positive integer B. Two sets {ai|i ∈ I = {1, . . . , u}} and {bi|i ∈
I = {1, . . . , u}} of u strictly positive integers. Two positive integers A and B.
QUESTION: Is there a subset I′ ⊆ I such that

∑
i∈I′ ai ≥ A and

∑
i∈I′ bi ≤ B

?
The decision version of the preemptive sorting slot problem with m = 1 can be
stated as follows:
INSTANCE: A set N = {1, . . . , n} of n jobs and a positive number E of sorting
slots. Each job i ∈ N has a completion time di, requires ni sorting slots in order
to be processed and has one operation whose processing time is pi.
QUESTION: Is there a preemptive single-machine schedule of the operations
such that no more than E sorting slots are used at any one time, and such that
each operation is completed before the completion time of its job?

Consider an instance of the KNAPSACK problem. We build an instance of the
preemptive sorting slot problem with n = u + 1 jobs, E =

∑
i∈I ai and we set

H = 1 +
∑

i∈I
bi. For i ∈ {1, . . . , u} we set di = H, pi = bi and ni = ai. We set

dn = H −B, pn = 1 and nn = A. Note that this reduction is polynomial.
Suppose that there exists a subset I′ ⊆ I such that

∑
i∈I′ ai ≥ A and

∑
i∈I′ bi ≤

B. We process the operations as follows. Operations of jobs i ∈ I′ are processed
from time H−

∑
i∈I′ pi to time H in any order. Operations of jobs i ∈ I ∪{n} \ I′

are processed from time 0 to time H−
∑

i∈I′ pi. These jobs need
∑

i∈I\I′ ai+A ≤∑
i∈I ai sorting slots to be processed. Since jobs in I′ are totally processed after

time H −
∑

i∈I′ pi ≥ H − B (since
∑

i∈I′ pi =
∑

i∈I′ bi ≤ B), job n has released
A sorting slots. Hence, there remain at most

∑
i∈I\I′ ai occupied sorting slots and

there are still
∑

i∈I′ ai sorting slots available to be used from jobs in I′.
Now suppose that there exits a valid preemptive schedule for the built instance

of the preemptive sorting sort problem. Since job n requires at least A sorting slots
from time H −B− 1 to time H −B, then a subset I′ ⊆ I is totally processed after
time H −B letting at least A available sorting slots. This subset I′ of jobs is then
such that

∑
i∈I′ ai ≥ A and

∑
i∈I′ bi ≤ B.

Proposition 2 The non-preemptive case with m = 1 is strongly NP−complete.

Proof To prove this result, we first establish that the 3-PARTITION problem [6]
can be reduced to the general non-preemptive case with m = 1. The 3-PARTITION

6

problem can be stated as follows:
INSTANCE: A positive integer B. A set A = {ai|i ∈ I = {1, . . . , 3q}} of 3q
integers with

∑
i∈I

ai = qB and ∀i ∈ I, B/4 < ai < B/2.
QUESTION: Is there a partition of I into q subsets {I1, . . . , Iq} of cardinal 3
such that ∀k ∈ {1, . . . , q},

∑
j∈Ik

aj = B ?
The decision version of the non-preemptive sorting slot problem with m = 1 can
be stated as follows:
INSTANCE: A set N = {1, . . . , n} of n jobs and a positive number E of sorting
slots. Each job i ∈ N has a completion time di, needs ni sorting slots to be processed
and has an operation whose processing time is pi.
QUESTION: Is there a non-preemptive single-machine schedule of the operations
such that no more than E sorting slots are used at a time and that each job is
completed before the completion time of its job?

Consider an instance of the 3-PARTITION problem. We build an instance of
the sorting slot problem with n = 5q jobs, E = 3q and we set H = qB + 2q. For
i ∈ {1, . . . , 3q} we set di = H, pi = ai and ni = 1. For k ∈ {0, . . . , q − 1}, we set
d3q+2k+1 = (B+2)k+1, d3q+2k+2 = (B+2)k+2, p3q+2k+1 = p3q+2k+2 = 1 and
n3q+2k+1 = n3q+2k+2 = 3(q − k), and so on. This reduction is polynomial.

Suppose that there exists a partition of I into q subsets {I0, . . . , Iq−1} of car-
dinal 3 such that ∀k ∈ {0, . . . , q − 1} we have

∑
j∈Ik

aj = B. We build a feasible
schedule as follows.

For k ∈ {0, . . . , q − 1}, operation of job 3q + 2k + 1 is scheduled from time
(B + 2)k to time (B + 2)k + 1 and operation of job 3q + 2k + 2 is scheduled from
time (B + 2)k + 1 to time (B + 2)k + 2. Note that the departure time of each
of these jobs is then respected. Moreover, the constraint on sorting slots holds,
since these jobs are totally processed on disjoint intervals and never use more
than 3q = E sorting slots. Next, let k iteratively take values in {0, . . . , q − 1}.
Operations of jobs of indices in Ik are scheduled in any order within the interval
[(B+2)k+2, (B+2)(k+1)[. Note that the machine is never idle during this interval,
since

∑
j∈Ik

pj =
∑

j∈Ik
aj = B and (B+2)(k+1)− (B+2)k−2 = B. Moreover,

at least 3(q − k + 1) sorting slots are available from time (B + 2)k + 2, since job
3q+2k+2 has just finished. 3 of these sorting slots are used by jobs in Ik up until
time H, leaving the 3(q− k) other slots for the processing of jobs 3q+2(k+1)+ 1
and 3q + 2(k+ 1) + 2 within the interval [(B + 2)(k+ 1), (B + 2)(k+ 1) + 2[.

Now suppose that there exists a feasible non-preemptive schedule for the jobs.
This implies that the machine is never idle on interval [0,H[since

∑i=5q
i=1 pj =∑i=3q

i=1 aj + 2q = qB + 2q = H. Recall that during interval [H − 1, H[all sort-
ing slots are necessarily used by jobs {1, . . . , 3q}. Job 5q requires at least n5q =
n3q+2(q−1)+2 = 3(q − (q − 1)) = 3 sorting slots in order to be processed during
the interval [H − B − 1, H − B[. Thus, at least 3 operations from jobs among
{1, . . . , 3q} must start during the interval [H − B,H[(see Figure 4). Moreover,
no more than 3 operations can be processed over this interval of size B, because
∀i ∈ {1, . . . , 3q}, pi = ai > B/4 and preempting is not possible. As the ma-
chine is never idle, there is no other choice for job 5q − 1 but to use the same 3
sorting slots as job 5q. Since d5q−1 = H −B − 1 and d5q = H −B, the operation
of job 5q is necessarily scheduled from time H − B − 1 to time H −B. Therefore
exactly 3 operations from jobs x, y and z such that px+ py + pz = B are necessar-
ily processed by the machine in interval [H −B,H[. We then set Iq−1 = {x, y, z}.

7

machine. 5q − 2 . . . 5q − 1 . . . 5q Iq−1 = {x, y, z}

H − 2B − 2 H − B − 1 H − B H

B + 1 B

3q

sorting

slots
3

3

. . .

. . .

. . .

. . .

Fig. 4 Reducing the 3-PARTITION problem to the sorting slot problem (the part above the
time-axis represents the schedule of jobs on the machine, while the part below represents the
use of the sorting slots over the time horizon). Case of Iq−1

Note that unlike job 5q, job 5q − 1 can use these 3 sorting slots starting at a date
earlier than H −B − 2 if no other job requires them.

machine. 3q + 2k
+1

. . . 3q + 2k
+2

part of {x, y, z}
3q + 2k
+3

part of
{x,y,z}

3q + 2k
+4

. . .

(B + 2)k + 1 (B + 2)k + 2 (B + 2)(k + 1) + 1 (B + 2)(k + 1) + 2

B + 1

3q

sorting

slots

.

.

.

.

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

3(q − k)

3(q − k − 1)

Fig. 5 Reducing the 3-PARTITION problem to the sorting slot problem (the part above the
time-axis represents the schedule of jobs on the machine while the below part represents the
use of the sorting slots over the time horizon). General case.

Consider k ∈ {0, . . . , q−2} and let us assume that, for all z ∈ {k+1, . . . , q−1},
job {3q + 2z + 2} starts at (B + 2)z + 1 and is completed at (B + 2)z + 2, that
3(q − z) operations of jobs in {1, . . . , 3q} are totally processed during the interval
[(B+2)z+2, H[and that job 3q+2z+1 uses 3(q− z) sorting slots from its start
to its departure time (B+2)z+1. Note that this assumption is true for k = q− 1,
as previously shown.

Job 3q + 2k + 2 needs at least 3(q − k) sorting slots over the interval [(B +
2)k+ 1, (B + 2)k + 2[for its execution to be possible. Exactly 3(q − k − 1) jobs in
{1, . . . , 3q} are totally processed after time (B+2)(k+1)+ 2, leaving 3(q− k− 1)
sorting slots which are all used by job 3q+2(k+1)+2 = 3q+2k+4 over the interval
[(B+ 2)(k+ 1)+ 1, (B + 2)(k+ 1)+ 2[and by job 3q+ 2(k+ 1)+ 1 = 3q+2k+ 3
from its start time to its departure time (B+2)(k+1)+1 (see Figure 5). At most
4 operations belonging to jobs from among {1, . . . , 3q} may be executed over the

8

interval [(B+2)k+2, (B+2)(k+1)+1[of size B+1 (the total processing time for
5 operations belonging to these jobs is necessarily strictly greater than B+1). This
means that at most 4 sorting slots may be freed for job 3q + 2k + 2, which is not
sufficient, since 3(q−k) >= 6. The only way that 3(q−k) sorting slots might become
available for job 3q+2k+2 before time (B+2)k+2 would be for 3 jobs to start in
{1, . . . , 3q} and for job 3q+2(k+1)+1 to start during [(B+2)k+2, (B+2)(k+1)+1[,
which would leave exactly the 3+3(q−k−1) = 3(q−k) sorting slots needed by job
3q+2k+2. However, there is no alternative to processing the operations belonging
to job 3q+2k+2 from time (B+2)k+1 to time (B+2)k+2, because job 3q+2k+1
needs the same available sorting slots before its departure time (B+2)k+1. Since
job 3q + 2k + 3 needs one unit of time to process its operation on the machine
during [(B + 2)k + 2, (B + 2)(k + 1) + 1[, we must have 3 operations of jobs x, y
and z in {1, . . . , 3q} such that px+py+pz = B being processed on the B remaining
unit times of this interval, thus giving the subset Ik = {x, y, z}.

This shows that there exists a partition of I into q subsets {I0, . . . , Iq−1} of
cardinal 3 such that for all k ∈ {0, . . . , q − 1} we have

∑
j∈Ik

aj = B.

4 Dominance rules

Proposition 3 Let S be a feasible solution of an instance of the problem in which
a job i is executed from si to di. It is possible to transform S into a feasible solution
S′ in which job i uses ni sorting slots from s′i = max{tk|tk ∈ T ∧ tk ≤ si} and
where the processing of operations is not modified.

Proof In a feasible solution S, note that the times at which some sorting slots
become free after use can occur only at points {t1, . . . , tk} of the considered time
horizon. If the cumulative constraint on sorting slots for a job i is satisfied from

preparation
shops

oi2

oi1

t0 = 0 t1 s′i = tx si /∈ T di = ty H = tw

5
sorting
slots

Fig. 6 Starting times for sorting slots correspond to the different values in set T

si to di, then the corresponding sorting slot ni can start to be used at time s′i =
max{tk|tk ∈ T∧tk ≤ si} without violating the cumulative constraint (see Figure 6).

We can deduce the following dominance rules.

Proposition 4 There exists at least one solution of the search problem in which
the starting times for sorting slots for the different jobs correspond to the values
in set T .

Proof This proposition is a direct consequence of Proposition 3.

9

Proposition 5 All optimal solutions of the optimization problem are such that
the starting times for sorting slots for the different jobs correspond to the values
in set T .

Proof Consider an optimal solution of the optimization problem in which the start
time si of job i is not in T . As shown in Proposition 3, if the cumulative constraint
on sorting slots is respected from si to di for a job i, then the corresponding sorting
slot ni can start to be used at time s′i = max{tk|tk ∈ T ∧ tk ≤ si} without violating
the cumulative constraint. Since s′i < si, we obtain a new solution with a smaller
value of the objective function (

∑
i∈N nisi), contradicting the hypothesis that the

initial solution was optimal.

The previous two propositions can be used in several ways. From a practical point
of view, they offer a way of simplifying the timetabling of the sorting slots, since
timetables can be established in terms of periods whose time points correspond
to the departure times of the different trucks. Of course, the additional use (in
principle, futile) of sorting slots by a job can be seen as additional versatility in
the preparation process. From the point of view of the problem resolution, these
dominance rules may be used to establish efficient models, as shown in the following
sections.

5 Models and approaches for the non-preemptive case

5.1 A mixed integer linear programming approach

In this section, we propose a first mixed integer linear programming model which
allows the problem to be solved.

We could have proposed a classical time-indexed mixed-integer formulation for
modeling the use of sorting slots by the jobs, where, for example, some binary
variables xi,t are used to determine at any time t whether or not job i is using
sorting slots. However, thanks to the dominance rule presented in the previous
section, we know that if a job i uses sorting slots at time t, then it can use the
same sorting slots at time t − 1, if t − 1 is not the departure time of a job. It is
consequently possible to avoid taking the constraint on sorting slots into account,
other than at each interval [tk, tk+1[, with k ∈ {0, . . . w − 1}.

This can be achieved through the use of binary variables xi,k for each job
i and each interval [tk, tk+1[, which are equal to 1 if job i uses ni sorting slots
on [tk−1..tk[, and 0 otherwise. The constraints linked to these variables can be
formulated as follows.

xi,k = 0, ∀i ∈ N, ∀k ∈ {[i] + 1, . . . , w − 1} (1)

xi,[i] = 1, ∀i ∈ N (2)

xi,k ≤ xi,k+1, ∀i ∈ N, ∀k ∈ {0, . . . , [i]− 1} (3)
∑

i∈N

xi,kni ≤ E, ∀k ∈ {0, . . . , w − 1} (4)

Equation (1) ensures that job i cannot use sorting slot after the departure di.
Equation (2) means that job i should use sorting slots in the period [t[i]−1, t[i][(in

10

the interval just before departure of truck i). Equation (3) ensures that there is no
interruption in the use of sorting slots from the start of job i until the departure
time di. Equation (4) ensures that in each interval [tk, tk+1[, the total number of
used sorting slots is at most E. Note that these equations are also valid in the
preemptive case and will be used in the next section.

To compute possible values for the starting times si of the jobs we can introduce
variables {si|i ∈ N} into the MIP by adding the following constraints, implying
that the starting time of a job i that does not use sorting slots in interval [tk, tk+1[
with tk+1 < di is greater than or equal to tk+1:

si ≥ (1− xi,k)tk+1, ∀i ∈ N, ∀k ∈ {0, . . . , [i]} (5)

We note that an operation oij can be processed only in the periods in which
job i is active, i.e. in intervals [tk..tk+1[such that xi,k = 1. We then need to show
that the scheduling of operations is possible according to the values of the job
start times. For this we use a classical scheduling model, with binary variables
bjil ∈ {0, 1}, j ∈ M, i, l ∈ N, i < l such that bjil = 1 if operation oij starts before

operation olj on machine j, otherwise bjil = 0. The search version of the problem
can be mathematically formulated as follows:

sij + pij ≤ di, ∀i ∈ N, ∀j ∈ M (6)

si ≤ sij , ∀i ∈ N, ∀j ∈ M (7)

sij + pij ≤ slj +Ω × (1− bjil), ∀j ∈ M, ∀i, l ∈ N, i < l (8)

slj + plj ≤ sij + Ω × bjil, ∀j ∈ M, ∀i, l ∈ N, i < l (9)

bjil ∈ {0, 1}, ∀j ∈ M, ∀i, l ∈ N, i < l (10)

Ω is an arbitrary big number which can be H. Equations (6) and (7) ensure that
an operation oij starts after si and ends before di. Equations (8) and (9) deal
with the disjunctive constraints of operations on each machine and ensure that
operations can be non-preemptively scheduled. If bjil = 1, then operation oij starts
before operation olj on machine j, sij + pij ≤ slj and slj + plj ≤ sij + Ω. If, on

the other hand, bjil = 0, then operation olj starts before operation oij on machine
j, sij + pij ≤ slj +Ω and slj + plj ≤ sij .

The optimization version of the problem is obtained by setting the minimiza-
tion of

∑
i∈N nisi as objective function.

5.2 A constraint-based scheduling approach

Constraint programming has been widely applied in the area of scheduling [1]. In
our constraint-based scheduling model, an activity of duration pij is associated
with each operation oij and two variables sij and cij represent respectively its
start time and its completion time. The constraint sij + pij = cij is maintained
(since we are in the non-preemptive case). Let Dom(V) be the set of values which
can be taken by a variable V . The minimum and maximum values of the domain
of sij are respectively denoted as:

– estij = minv∈Dom(sij) v: the earliest starting time of operation oij ,
– lstij = maxv∈Dom(sij) v: the latest starting time of operation oij .

11

Similarly, the minimum and maximum values of the domain of cij are respectively
denoted as:

– eetij = minv∈Dom(cij) v = estij+pij : the earliest completion time of operation
oij ,

– letij = maxv∈Dom(cij) v = lstij + pij : the latest completion time of operation
oij .

Thus, each operation oij has to be executed within the time window [estij , letij)
whose bounds can be initialized with estij = 0 and letij = di.

Each machine j is modeled with a disjunctive unary resource, each operation
oij requiring the resource from its start time to its completion time. Edge-finding
propagation techniques [1] which are able to adjust the time-windows of operations
according to the disjunctive constraints between operations and their possible
starting times are used. Each job i is also represented by an activity whose start
time is denoted by the variable si (its completion time being already fixed at
di). In contrast to the activities corresponding to the operations, the durations of
the activities corresponding to the jobs are not fixed, and these are denoted by
the variable pi. The constraint si + pi = di is maintained. The sorting slots are
represented by a discrete resource of capacity E. Each job i requires ni units of
this resource from its start time to its completion time. Note that the domains
of variables si, pi, sij and cij will be reduced through the use of propagation
algorithms as the search proceeds.

In the optimization problem an additional variable Φ represents the objective
function Φ =

∑n
i=1 nisi to be optimized. To find an optimal solution we use a

branch and bound algorithm solving successive variants of the decision problem.
At each iteration we try to improve the best known solution and to this end we
add an additional constraint stipulating that Φ is lower than or equal to the best
solution minus 1. At each new iteration the search resumes at the last-visited node
of the previous iteration.

At each node of the enumeration procedure, the operation which can be sched-
uled at the latest time is scheduled at its latest start time. When the created branch
fails, the operation is backward-postponed pending modification of its latest start
time following the propagation of decisions. When all operations have been sched-
uled, the job which can start the earliest among the others, is scheduled at its
earliest start time. When the created branch fails, the job is forward-postponed
pending modification of its earliest start time following the propagation of deci-
sions.

To improve the behavior of the enumeration procedure, we try to limit the
enumeration of (partial) equivalent solutions. Consider a machine j, and suppose
that 3 operations oxj , oyj , ozj are consecutively scheduled on machine j (i.e. cxj =
syj and cyj = szj). Suppose also that over the interval [sxj, czj [jobs x, y and z
use sorting slots (i.e. sx ≤ sxj , sy ≤ sxj , sz ≤ sxj and dx ≥ czj , dy ≥ czj ,
dz ≥ czj . Then clearly operations oxj , oyj and ozj can be permuted (in any order)
and scheduled from the initial value of sxj without changing the validity (or the
optimality, in the case of the optimization problem) of the solution (see Figure 7).

The following dominance rule can therefore be established:

Proposition 6 There is at least one (optimal) solution in which ∀j ∈ M and
∀x, y ∈ N such that cxj = syj, at least one of the 3 conditions holds:

12

machine j. . . oxj oyj ozj . . .

sxj czj

sorting

slots

Fig. 7 Equivalent solutions when permuting operations oxj , oyj and ozj .

1. x < y;
2. sy > sxj;
3. dx < cyj .

Proof Consider a solution in which there exist two operations oxj and oyj sched-
uled on machine j such that y > x, sy ≤ sxj and dx ≥ cyj. It is possible to build
an equivalent solution in which operation oyj is scheduled at the initial time sxj
and where operation oxj is scheduled immediately after oyj and is completed at the
initial value of cyj. Since in the new schedule operations oxj and oyj are scheduled
in the interval during which their jobs are using sorting slots, and since the sched-
ule of the other operations does not change, the obtained schedule remains valid.
Moreover, the start time of jobs x and y does not change. Therefore, if the initial
solution was optimal, the obtained solution is also optimal.

This dominance rule is implemented as a propagation algorithm to ensure that
only solutions belonging to the dominant subset of solutions are enumerated.

6 Models and appoaches for the preemptive case

In the previous section the start times of operations were computed simply in
order to establish these operations could be scheduled. The values of the start
times obtained were not really required. In the preemptive case this computation
is unnecessary. Ensuring that no more than tk+1 − tk units of jobs are processed
on each machine j ∈ M and within each interval [tk, tk+1[is sufficient to ensure
that such a schedule exists. We now propose two models based on this property.

6.1 A flow-based mixed integer linear programming approach

In this model we propose a flow-based mixed integer linear programming. Just like
in Section 5.1, this is implemented using binary variables for each job i and for each
interval [tk, tk+1[. The variable xi,k is equal to 1 if job i uses ni sorting slots on
[tk−1..tk[, otherwise it is 0. The same constraints described by equations (1-4) are
used on these variables to manage the constraint regarding the number of available
sorting slots. In addition we use the set of variables {si|i ∈ N} to represent the
start time of jobs, along with the set of constraints described by Equation (5).

Now, suppose that the values of variables xik are known.The problem of the
feasibility of operations on each machine j can then be seen as a kind of max flow

13

problem. From this point of view, the network flow corresponding to each machine
j is a connected, directed graph G(X,U), where X is the set of vertices and U the
set of edges. Set X is composed of a vertex Source, a vertex Sink, n vertices oij
with i ∈ {1, . . . , n} associated with the operations to be processed by machine j,
and w vertices Ik with k ∈ {0, . . . , w−1} corresponding to the consecutive intervals
I0 = [t0, t1[, I1 = [t1, t2[, . . . , Iw−1 = [tw−1, tw = H[that partition interval [0,H[
(see Figure 8).

t0 = 0 tk tk+1 tw = H

I0 Ik = [tk, tk+1[Iw−1

Fig. 8 Intervals I0, I1, . . . , Iw−1

Source Sink

o1j

. . .

oij

. . .

onj

I0

. . .

Ik

. . .

Iw−1

pij ∞

tk+1 − tk

Fig. 9 A network flow representation of the preemptive problem (each edge is labeled with
its capacity).

Vertex Source is connected to each vertex oij by an edge of capacity pij . Each
vertex Ik is connected to vertex Sink by an edge of capacity tk+1 − tk. Finally,
each vertex oij is connected to vertex Ik by an edge of infinite capacity if tk+1 ≤ di
(see Figure 9). It is easy to see that the preemptive scheduling of the operations
on machine j is feasible if and only if the maximal flow which can be sent through
the network is equal to

∑
i∈N pij.

This flow-max subproblem is modeled using variables fijk, ∀i ∈ N, ∀j ∈
M, ∀k ∈ {0, . . . , w − 1} corresponding to the quantity of operation oij which is

14

processed by machine j during interval [tk, tk+1[. This subproblem is mathemati-
cally formulated by adding the following constraints:

fijk ≤ xik(tk+1 − tk), ∀i ∈ N, ∀j ∈ M, ∀k ∈ {0, . . . , w − 1} (11)
∑

k∈{0,...,w−1}

fijk = pij , ∀i ∈ N, ∀j ∈ M (12)

∑

i∈N

fijk ≤ tk+1 − tk, ∀j ∈ M, ∀k ∈ {0, . . . w − 1} (13)

Equation (11) ensures that an operation oij cannot be processed during an interval
[tk, tk+1[in which job i does not use sorting slots. Equation (12) ensures that
operation oij is totally processed in [0,H[. Equation (13) ensures that machine j
processes at most tk+1 − tk unit of operation on interval [tk, tk+1[.

The optimization version of the problem is obtained by adding the minimiza-
tion of

∑
i∈N nisi.

6.2 A multiperiod approach

In this model we propose a kind of multiperiod approach. In the flow-based model
described above, although we do not know exactly how the component parts of
operations are scheduled in each interval [tk, tk+1[, we nevertheless know what
quantity of each operation oij is scheduled. Actually, we can go further in the
non-knowing thing by verifying only that the amount of operations processed by
each machine j on each interval [tk, tl[(with tk < tl) is less than or equal to tl−tk.

To implement this idea, we use binary variables yi,k, ∀i ∈ N, ∀k ∈ {0, . . . w−1}
such that yik is equal to 1 if job i begins to use sorting slots in interval [tk, tk+1[
and to 0 in the other case. Note that yik = 1 means that job i will use ni sorting
slots in interval [tk, t[i][. The search version of the problem can be mathematically
formulated as follows:

∑

k∈{0,...,w−1}

yik = 1, ∀i ∈ N (14)

∑

i∈N|di>tk∧di≤tl

pij

l∑

z=k

yiz ≤ tl − tk, ∀j ∈ M,

∀k ∈ {0, . . . , w − 1},

∀l ∈ {k + 1, . . . , w} (15)

∑

i∈N|di>tk

ni

k∑

l=0

yil ≤ E ∀k ∈ {0, . . . , w − 1} (16)

Equation (14) ensures that job i begins to use sorting slots in only one interval.
Equation (15) ensures that within each interval [tk, tl[such that (tk, tl) ∈ T 2 (with
tk < tl), the amount of operation which is processed by each machine j is less
than or equal to tl − tk. Note that on machine j, the operations which are totally
processed within interval [tk, tl[belong to the jobs whose start times are in [tk, tl[
(i.e. those where

∑l
z=k yiz = 1) and whose completion times are in]tk, tl] (i.e. jobs

i such that di > tk ∧ di ≤ tl). Equation (16) ensures that the jobs which start at a

15

date less than or equal to tk (i.e. the jobs i such that
∑k

l=0 yil = 1) and which end
after tk (i.e. jobs i such that di > tk) use at most E sorting slots on [tk, tk+1[. In
conventional multiperiod models some term introduced in some constraint (period)
will appear in all subsequent constraints (periods). In our model, the multiperiod
aspect is to be found essentially in constraint (16), where each constraint indexed
at k involves the previous one (indexed at k− 1), subject to some condition on di.

Recall that yik = 1 means that job i will begin to use sorting slots at time
tk. The optimization version of the problem is therefore obtained by adding the
minimization of

∑
i∈N

ni(
∑

k∈{0,...,w−1} tkyik).

7 Experimental results

7.1 Generating benchmarks

All experimental results described in this paper were computed on a Dell Precision
M2400 PC with an Intel(R) Core(TM) 2 Duo T9900 3.06Ghz, running Windows
7. The constraint programming model has been implemented on the top of IBM
Ilog Scheduler 6.7. The MIP algorithm of IBM Ilog CPLEX 12.1 has been used to
solve the mixed integer linear programming approaches. In aim to fairly compare
the CP and MIP approaches and to obtain reproducible results, the parallelization
option of Cplex has been disabled (Scheduler is not parallelized and parallelizing
Cplex leads to important computational time variations when running on the same
instances).

The methods have been successfully tested on a small number of industrial
instances. However, it is well known that practical cases are often less of a challenge
than benchmarks that have been generated specifically to test the limits of solvers.
In this section we propose two schemes for generating instances. As shown in the
following sections, these test instances would appear to be much harder to solve
than instances encountered in practice.

7.1.1 Generating instances using the proof of complexity

In the first generation scheme, we propose drawing inspiration from the proof
of the NP-completeness of the problem (see Section 3) with the 3-PARTITION
problem for the non-preemptive version of the problem.

In this case, we have only one machine (m = 1). For given values of q and
B, an instance has n = 5q jobs with 1 operation, and the number of sorting
slots is equal to E = 3q. The time horizon is fixed at H = qB + 2q. For i ∈
{1, . . . , 3q} we set di = H and ni = 1 and the processing time of the sole operation
oi1 of job i is randomly generated in]B/4,B/2[. For k ∈ {0, . . . , q − 1}, we set
d3q+2k+1 = (B+2)k+1, d3q+2k+2 = (B+2)k+2, p3q+2k+1 = p3q+2k+2 = 1 and
n3q+2k+1 = n3q+2k+2 = 3(q − k).

We generated two types of instance (feasible and unfeasible) using this scheme.
In a first generation scheme (instances of this type will be referred to below as
“3PART_F”), we make sure that there is a solution to the problem by randomly
generating buckets of 3 operations, the sum of whose processing times is equal to
B. Let lb and ub respectively be the smallest and largest integers in]B/4,B/2[. For
each bucket (a, b, c) of processing times, a is generated from a uniform distribution

16

on interval [lb,min(B − 2lb, ub)], then b is generated from a uniform distribution
on interval [lb,min(B − a− lb, ub)], and finally c is set to B − a− b.

In a second generation scheme (instances of this type will be referred to below
as “3PART_U”), the processing times are randomly generated from a uniform
distribution on interval]B/4,B/2[(without applying a control as for instances of
type 3PART_F). Then we keep only instances which are proved unfeasible by a
solver.

For each type (3PART_F and 3PART_U), for each q ∈ {2, 4, 6} (i.e. n ∈
{10, 20, 30}) and for each B ∈ {28, 52, 100,140} we generate 5 instances.

7.1.2 Generating more general instances

In this section we propose a more general generation scheme used both for the
non-preemptive and the preemptive cases, and which can be either feasible or
unfeasible (instances of this type will be referred to below as “GEN_F&U”).

For each n ∈ {10, 20, 30, 40, 50}, m ∈ {1, 2, 5, 10}, we generated 1000 instances
as follows.

For each instance, we randomly generate a number E of available sorting slots
from the uniform distribution on interval [10, 20]. A maximum processing time P
is randomly generated from the uniform distribution on interval [10, 50] and the
processing times of operations oij with i ∈ {1, . . . , n} and j ∈ {1, . . . ,m} are then
randomly generated from a uniform distribution on interval [0, P]. We fix the time
horizon H to (1 + γ)maxj∈M {

∑
i∈N pij}, where γ is randomly generated from

a continuous distribution on interval [0, 0.25] and used to tighten or loosen the
scheduling of operations on the bottleneck machine (i.e. the most loaded).

The completion time of the first job is fixed to H and its required number
of sorting slots is generated from a decreasing triangular distribution on [1, 1

2E],
i.e. the required number of sorting slots can take a value in [1, 1

2E], but the proba-
bility that any integer in this interval will be generated linearly decreases according
to the value of that integer.

We then iteratively generate the completion time and the number of sorting
slots required by the other jobs i as follows. Considering that jobs in {1, . . . i− 1}
(jobs with already computed departure times) are re-indexed in non-decreasing
order of departure time, let k be the first index such that tk = maxj∈{1,...m} pij +∑k

l=1 plj ≤ dk. Thus tk corresponds to the earliest possible completion time that
does not obviously lead to an unfeasible instance with respect to the departure
times already generated (see for example the algorithm for solving 1||

∑
Ui in [7]).

A completion time di is then randomly generated from the increasing triangular
distribution [tk, H] (higher values in the interval have a higher probability of being
generated). Then, knowing that each job l ∈ {1, . . . , i − 1} requires sorting slots
at least from time dl − maxj∈{1,...,m} plj to time dl, we look at an upper bound
of the maximum number

n̄i = E − max
t∈[di−maxj∈{1,...,m} pij ,di]

∑

{l|t∈[dl−maxj∈{1,...,m} plj ,dl]}

nl

of sorting slots which could be still available from time di −maxj∈{1,...,m} pij to
time di (corresponding to the smallest interval of time over which job i will require
its sorting slots). If n̄i = 0, another completion time di is randomly generated

17

as previously described. Otherwise, the number of sorting slots ni is randomly
generated from a decreasing triangular distribution on interval [1,max(1, 1

2 n̄i)]
(lower values in the interval have a higher probability of being generated).

7.2 Results for the non-preemptive case

In Table 1 results are shown for 3PART_F and 3PART_U instances tested with
different methods proposed for the non-preemptive case. The results obtained with
the mixed integer linear programming approach described in Section 5.1 are shown
in column “MIP”. To show the usefulness of the dominance rule described in Sec-
tion 4, in column “ti_MIP” we also provide the results obtained by the same
method but in a time-indexed version (that is without using the above dominance
rule) where a variable xit is introduced for each t ∈ {0, 1, . . . , di} meaning that job
i uses sorting slots at time t if xit = 1. The results obtained with the constraint-
based scheduling approach described in Section 5.2 are provided in column “CP”.
To show the usefulness of dominance rule described in Proposition 6, we also give
(in column “CP_no_DR”) the results obtained by the same method but without
using the dominance rule. For 3PART_F and 3PART_U instances, we give results
for the search problem. For 3PART_F instances, we also provide results for the
optimization problem.

Note that when generating instances 3PART_U with n = 30, either the in-
stances were feasible (and then not retained for the set of instances 3PART_U),
or our approaches were not able to prove the feasibility (or the infeasibility) of
the instances even after several hours of computation. This indicates that there
is a clear limit to the size of unfeasible instances that can be solved within the
time limit, and it explains why we provide results only up to n = 20 for instances
3PART_U.

The average number of generated nodes (“nodes”) and the average computation
time in milliseconds (“cpu”) over the 5 generated instances are shown for each type
of instance and each solution context (for 3PART_F instances, for each method,
and for each couple (q,B)). A time limit of 100 seconds was used. The number of
instances over 5 which were not solved within the time limit is given in column
“uns”. For unsolved instances, the number of nodes and the computation times
were not taken into account in the computation of the averages. Then “_” in a
column means that no instance over the 5 ones was solved within the time limit.

As expected, dominance rules are effective in reducing computation time and
enabling a greater number of instances to be solved within the time limit. We can
see that the CP method appears to be more efficient than the MIP method for
these instances. We also remark that unfeasible instances are much more difficult
to solve than the feasible ones, due to the proof of infeasibility to be established
for these instances. Thus, from n = 20 and m = 1 onwards, the MIP method was
unable to solve any of the unfeasible instances. Note that from n = 30 onwards
we also begin to find unsolved instances for method CP.

In Table 2, we provide results obtained using the GEN_UF instances for the
MIP and CP methods, for both the search and the optimization problems. For
each method, for each resolution context, and for each couple (n,m), the average
number of generated nodes (“nodes”) and the average computation time in mil-
liseconds (“cpu”) over the generated instances are shown (1000 in the case of the

18

Table 1 Test of methods and dominance rules in the non-preemptive case on 3PART_U and
3PART_F instances search and optimization problems.

3PART_U, search problem
ti_MIP MIP CP_no_DR CP

q n B uns nodes cpu uns nodes cpu uns nodes cpu uns nodes cpu
2 10 28 0 335 118 0 362 31 0 103 3 0 35 3

52 0 293 165 0 302 28 0 101 9 0 34 3
100 0 225 293 0 265 25 0 96 3 0 33 0
140 0 198 389 0 247 25 0 95 3 0 33 3

4 20 28 5 _ _ 5 _ _ 5 _ _ 0 23349 1154
52 5 _ _ 5 _ _ 0 2260940 44117 0 4767 315

100 5 _ _ 5 _ _ 0 1174739 22326 0 2742 184
140 5 _ _ 5 _ _ 0 419399 11681 0 1409 56

3PART_F, search problem
ti_MIP MIP CP_no_DR CP

q n B uns nodes cpu uns nodes cpu uns nodes cpu uns nodes cpu
2 10 28 0 24 46 0 17 12 0 1 6 0 1 0

52 0 14 81 0 26 9 0 3 3 0 3 3
100 0 28 137 0 15 6 0 5 0 0 4 0
140 0 33 196 0 28 9 0 2 0 0 1 0

4 20 28 0 1861 20298 0 7967 2957 0 37592 727 0 302 12
52 3 2342 22425 0 63116 22189 0 537 12 0 45 0

100 3 1202 15319 1 16050 8213 0 16892 321 0 189 3
140 2 411 38022 2 6438 13525 0 38673 742 0 437 53

6 30 28 4 529 10498 4 203 234 1 190480 5815 1 933 43
52 5 _ _ 5 _ _ 1 319 43 0 147328 4617

100 5 _ _ 5 _ _ 1 65 19 0 29584 954
140 5 _ _ 5 _ _ 3 5200 640 0 21674 1351

3PART_F, optimization problem
ti_MIP MIP CP_no_DR CP

q n B uns nodes cpu uns nodes cpu uns nodes cpu uns nodes cpu
2 10 28 0 46 99 0 109 15 0 121 3 0 41 0

52 0 42 143 0 10 9 0 113 0 0 39 0
100 0 84 549 0 69 18 0 112 0 0 39 3
140 0 112 1198 0 68 15 0 105 3 0 36 0

4 20 28 5 _ _ 0 16988 11606 5 _ _ 0 67163 3981
52 5 _ _ 0 836 2003 5 _ _ 0 18435 798

100 5 _ _ 2 58034 42765 3 2607247 48852 0 5572 393
140 5 _ _ 1 16983 22889 1 2641537 59198 0 5768 365

6 30 28 5 _ _ 4 25742 52260 5 _ _ 5 _ _
52 5 _ _ 5 _ _ 5 _ _ 5 _ _

100 5 _ _ 5 _ _ 5 _ _ 3 1575292 50489
140 5 _ _ 5 _ _ 5 _ _ 3 1130425 61612

search problem). Of course, whatever the method, the test on the optimization
problem is only performed on the instances which have been proved to be feasible.
Thus, column “nb” indicates the number of instances concerned. Once again, a
time limit of 100 seconds was used. The percentage of instances which were not
solved within the time limit is given in column “%uns”. For unsolved instances, the
number of nodes and the computational times were not taken into account in the
computation of the averages. It will be remarked that the difficulty of the problem
increases as the number n of jobs and the number m of machines increase. It is for
this reason that we did not perform the tests for higher parameters m or n when
more than 50% of the instances could not be solved within the time limit. In this
case “_” in a column means that no test was performed for these parameters.

These results confirm that for the search problem the CP method outperforms
the MIP method. However, this is not the case for the optimization problem,
where MIP performs much better, as shown by the results for n = 10 and m = 5.

19

Table 2 Test of methods MIP and CP (non-preemptive case) on GEN_F&U instances, search
and optimization problems.

MIP CP
search optimization search optimization

n m %uns nodes cpu nb %uns nodes cpu %uns nodes cpu nb %uns nodes cpu

10 1 0 1085 120 707 0 1200 197 0 0.95 0 707 0 2940 32
2 0.1 3430 477 698 0.72 4233 856 0 22 1 699 0 199104 2630
5 3 10350 2611 656 9 8636 2709 2 19040 453 641 77 194517 4959

10 11 9301 4251 646 16 7646 3335 10 9320 378 _ _ _
20 1 41 20221 8518 348 51 14186 23616 0 126 4 455 63 1616711 25090

2 50 11560 10006 _ _ _ _ 0.3 19545 603 _ _ _ _
5 54 3222 7079 _ _ _ _ 22 47785 2412 _ _ _ _

10 _ _ _ _ _ _ _ 47 31122 2721 _ _ _ _

Note that some instances with n = 10 and m = 5 remain unsolved for the search
problem for both methods.

In Table 3 we compare the performance of the MIP and CP methods. For
each method, we indicate the percentage of times where the method outperforms
its rival (column “%best”), i.e. the percentage of times where the method found
a solution either with a shorter computation time or where the other method
failed to find a solution at all. We also indicate this proportion with respect to
unfeasible instances (“%unf”) and to feasible instances (“%feas”). We report the
average difference in computation time (in milliseconds) when one method is better
than the other (“cpu_dist”). Where the other method failed to find a solution a
difference of 100s is taken. Column “eq” shows the percentage of instances for
which both methods are equivalent. Finally “mix” shows what the results obtained
would be, in terms of the percentage of unsolved instances (“%uns”) and of the
average computation time in milliseconds (“cpu”), if for each instance we were able
to choose the best method.

Table 3 Comparing MIP and CP methods (non-preemptive case) on GEN_F&U instances,
search problem.

MIP CP mix
n m %best %unf %feas cpu dist %best %unf %feas cpu dist %eq %uns cpu

10 1 1 0 1 15 91 89 92 131 8 0 0.18
2 0 0 0 70 95 89 97 606 5 0 1
5 6 2 8 38376 90 85 92 5835 5 0 19

10 12 7 15 81202 84 81 85 17250 4 0.4 235
20 1 0 0 0 437 98 97 100 46917 2 0 3

2 2 3 1 13739 92 88 99 58691 5 0.2 400
5 16 22 14 47467 62 65 86 66877 8 14 2778

These results show that while CP is on average better than MIP, MIP dom-
inates CP on a non-negligible set of instances, especially when the number of
machines m is increased. For example, for n = 10 and m = 10, although neither
method is able to solve more than 10% of the instances (see previous table), MIP
is better than CP for 12% of the instances, taking on average 81 seconds less com-
putational time than method CP. Then, taking the best method for each of these
instances, only 0.4% of the instances still remain unsolved and the computation
time is drastically reduced. This illustrates a certain complementarity between the
two methods. From the results it is not possible to draw any conclusions regarding
the best method and the feasibility or infeasibility of the instances.

20

7.3 Results for the preemptive case

For the preemptive case, Tables 4 and 5 give the same measures for the flow-
based mixed interger linear programming (FLOW) and the multiperiod (MULTIP)
approaches methods as given above for the non-preemptive case (see tables 2
and 3).

Table 4 Test of methods FLOW and MULTIP (preemptive case) on GEN_F&U instances,
search and optimization problems.

FLOW MULTIP
search optimization search optimization

n m %uns nodes cpu nb %uns nodes cpu %uns nodes cpu nb %uns nodes cpu

10 1 0 0.12 3 750 0 28 21 0 0.00 3 750 0 2 8
2 0 0.11 4 730 0 21 23 0 0.00 5 730 0 1 9
5 0 0.19 9 683 0 19 40 0 0.00 9 683 0 1 16

10 0 0.21 19 716 0 19 76 0 0.04 17 716 0 1 29
20 1 0 20 84 558 0 1172 6614 0 0.40 48 558 0 225 339

2 0 56 419 474 1 1389 12317 0 0.40 75 474 0 366 759
5 0.3 74 1790 402 10 1256 24843 0 3 179 402 0 502 1533

10 2 77 4725 326 38 978 37469 0.1 4 424 326 0.31 557 3596
30 1 3 235 4411 327 83 2181 44586 0 2 232 327 2 2174 6998

2 8 229 9287 _ _ _ _ 0 4 399 195 8 2488 11519
5 26 80 12253 _ _ _ _ 0 7 1147 117 29 2149 22029

10 35 16 8146 _ _ _ _ 0.2 3 2637 86 42 948 33311
40 1 21 268 13270 _ _ _ _ 0 3 602 131 21 3163 24774

2 28 82 10916 _ _ _ _ 0.1 3 1046 68 54 2109 32370
5 41 7 5227 _ _ _ _ 0 2 3577 _ _ _ _

10 41 1 6516 _ _ _ _ 0.6 1 11449 _ _ _ _
50 1 40 115 12395 _ _ _ _ 0 2 1270 42 81 1630 35564

2 45 16 6623 _ _ _ _ 0 3 2853 _ _ _ _
5 42 0.30 5566 _ _ _ _ 0.1 0.38 16007 _ _ _ _

10 42 0.00 16380 _ _ _ _ 23 0.00 40863 _ _ _ _

For the preemptive case, it would appear that the MULTIP method is better
than the FLOW method. This is because this method uses fewer constraints with
respect to the feasibility of the associated scheduling problem. We note that from
n = 50 for the search problem and from n = 30 for the optimization problem, the
problem becomes very hard to solve within the time limit.

Table 5 (with the same colums as Table 3) reveals a complementarity between
the two methods. When trying to determine the best method for each instance a
certain balance can be observed. Note, however, that in cases where FLOW is bet-
ter, the computation time for MULTIP is only marginally greater. The difference
tends to be more acute for higher values of m and n. On the other hand, when
MULTIP is better, the difference in computation time between the two methods
tends to be large. Consequently, using the best method for each instance yields
only slightly better results than using MULTIP exclusively. This enables us to
solve only a small number of additional instances within the time limit, and re-
duces the computation time in only a limited number of instances and by a ratio of
not more than 2. Note also that, for higher values of m and n, the FLOW method
is of interest only for unfeasible instances.

21

Table 5 Comparing the FLOW and MULTIP methods (preemptive case) on GEN_F&U
instances, search problem.

FLOW MULTIP mix
n m %best %unf %feas cpu dist %best %unf %feas cpu dist %eq %uns cpu

10 1 20 14 22 15 20 16 21 15 60 0 0.02
2 30 20 34 15 24 16 27 15 46 0 0.18
5 31 38 28 15 31 27 33 16 38 0 4

10 29 45 23 18 33 26 35 20 38 0 12
20 1 59 64 55 32 28 24 31 196 13 0 30

2 57 58 55 46 32 28 35 1175 12 0 49
5 57 55 58 93 40 42 37 4895 4 0 126

10 51 53 48 219 47 46 49 13782 2 0.1 312
30 1 53 51 57 137 45 47 41 15085 1 0 159

2 47 47 48 232 51 51 51 31158 1 0 289
5 42 43 35 634 58 57 65 59056 0 0 881

10 43 45 21 1625 57 55 79 67482 0 0.2 1945
40 1 42 44 29 386 58 56 71 53863 0 0 440

2 46 47 29 673 54 53 71 64818 0 0.10 739
5 46 47 20 2554 54 53 80 76856 0 0 2405

10 48 49 11 7355 52 51 89 71255 0 0.6 7920
50 1 39 41 7 874 61 59 93 76165 0 0 927

2 43 43 6 2133 57 57 94 81033 0 0 1942
5 50 50 20 12267 50 50 80 70912 0 0.1 9867

10 49 58 _ 35687 36 42 _ 41595 0 15 25580

8 Conclusion and extensions

In this paper we have formalized and studied a new combinatorial problem. While
the study of this problem has a real application in warehouse management, its
combinatorial structure is interesting from a theoretical point of view. We have
shown the NP-completeness of the problem and we have proposed several methods
for solving instances of the problem in both the preemptive and non-preemptive
cases. Not only we can always determine which of the methods is better on average
for the case in question, but we have also shown a certain complementarity between
them. Moreover, although these methods are effective for instances encountered
in practice, we have shown in our experimental study that the solvers can be
challenged by theoretical instances of small dimensions.

The technical part of the paper describes some initial approaches to solving the
problems. As far as future research is concerned, these methods might be improved
by working on the branching schemes of the methods and by attempting to find
efficient lower bounds.

There are also several ways in which this research work might be extended.
First, some other objective functions could be examined. For example, seeking a
solution which balances between the different trucks the extra time available for
using sorting slots might improve the robustness of solutions. Secondly, important
questions arise when the instance in hand is not feasible. How can decision makers
be assisted in making the right choices? Several possibilities might be investi-
gated. For example, minimizing the (weighted) number of late jobs might help to
determine which trucks might be canceled (ideally, as few as possible). Similarly,
minimizing the total (weighted) tardiness can indicate which orders need to be
canceled (again, as few as possible) when all truck departures are maintained.

While the approaches have been described in the context of solving a particular
warehouse management problem, they can also be used to solve other optimization
problems in which any particular resource is required during the processing of a

22

set of operations on other resources, even if this processing is intermittent. For
instance, a special case of multi-skill project management can fall in this category.
Each project (job) is composed of tasks (operations) necessiting separated skills
and resources (preparation shops). In top of this, one should affect some special
resources (for instance, project manager, commercial agent, hotline number) from
the start of the project until its delivery (a given deadline).

References

1. Ph. Baptiste, C. Le Pape, and W. Nuijten. Constraint-based scheduling, applying constraint

programming to scheduling problems, volume 39 of International Series in Operations Re-

search and Management Science. Kluwer, 2001.
2. P. Brucker. Scheduling Algorithms. Springer Lehrbuch, 1995.
3. G. Cormier and E.A. Gunn. A review of warehouse models. European Journal of Opera-

tional Research, 58:3–13, 1992.
4. R. De Koster, T. Le-Duc, and K.J. Roodbergen. Design and control of warehouse order

picking: A literature review. European Journal of Operational Research, 182:481–501, 2007.
5. T. Ganesharajah, N.G. Hall, C. Sriskandarajah Design and operational issues in AGV-

served manufacturing systems Annals of Operations Research, 76:109–154, 1998.
6. M.R. Garey and D.S. Johnson. Computers and intractability: a guide to the theory of

NP-completeness. W.H. Freeman, 1979.
7. J.M. Moore. An n job, one machine sequencing algorithm for minimizing the number of

late jobs. Management Science, 15:102–109, 1968.
8. B. Rouwenhorst, V. Reuter, V. Stockrahm, G.J. Van Houtum, R.J. Mantel, and W.H.M.

Zijm. Warehouse design and control: Framework and literature review. European Journal

of Operational Research, 122:515–533, 2000.
9. J.P. Van den Berg. A literature survey on planning and control of warehousing systems.

IIE Transactions, 31:751–762, 1999.

23

	Introduction
	Problem definition
	Some complexity results
	Dominance rules
	Models and approaches for the non-preemptive case
	Models and appoaches for the preemptive case
	Experimental results
	Conclusion and extensions

