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Positive nonlinear CVFE scheme for degenerate anisotropic
Keller-Segel system

Clément Cancès, Moustafa Ibrahim, Mazen Saad

Abstract In this paper, a nonlinear control volume finite element (CVFE) scheme for a degenerate Keller–
Segel model with anisotropic and heterogeneous diffusion tensors is proposed and analyzed. In this scheme,
degrees of freedom are assigned to vertices of a primal triangular mesh, as in finite element methods.
The diffusion term which involves an anisotropic and heterogeneous tensor is discretized on a dual mesh
(Donald mesh) using the diffusion fluxes provided by the conforming finite element reconstruction on the
primal mesh. The other terms are discretized using a nonclassical upwind finite volume scheme on the
dual mesh. The scheme ensures the validity of the discrete maximum principle without any restriction on
the transmissibility coefficients. The convergence of the scheme is proved under very general assumptions.
Finally, some numerical experiments are carried out to prove the ability of the scheme to tackle degenerate
anisotropic and heterogeneous diffusion problems over general meshes.

1 Introduction and model

In this paper, we are interested in degenerate nonlinear parabolic reaction–convection–diffusion systems
modeling the chemotaxis process over general mesh, with anisotropic and heterogeneous diffusion tensors.
From the numerical point of view, the convergence analysis of the finite volume scheme for this type of
systems is carried out in [3] for the isotropic case (i.e. the diffusion tensor is considered to be proportional to
the identity matrix) and under the “admissibility” assumption on the mesh used for the space discretization
in the sense of satisfying the orthogonality condition (see e.g. [14]). Although its ability to ensure stability,
the classical upwind finite volume method does not permit to handle anisotropic diffusion even if the mesh
verifies the orthogonality condition. Various ”multi-point” schemes, where the approximation of the flux
through an edge involves several scalar unknowns, have been proposed for anisotropic diffusion problems,
see for example [16, 15, 12, 10, 2, 11] for a detailed review of modern finite volume methods for diffusion
equations. However, nonlinear corrections have been proposed in [5] in order to enforce the monotony, but
no complete convergence proof have been provided for such methods yet.

Let us introduce the chemotaxis model. For that, let Ω be a connected open bounded polygonal domain
of R2, and tf > 0 be a fixed time. The modified Keller–Segel system (e.g., see [22, 23]) modeling the
chemotaxis process is given by the following set of equations
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∂tu−div(Λ (x)a(u)∇u−Λ (x)χ (u)∇v) = f (u) in Qtf = Ω × (0, tf),
∂tv−div(D(x)∇v) = g(u,v) in Qtf = Ω × (0, tf).

(1)

The system is complemented with zeros-flux boundary conditions on Σtf := ∂Ω × (0, tf) given by

(Λ (x)a(u)∇u−Λ (x)χ (u)∇v) ·n = 0, D(x)∇v ·n = 0, (2)

and the initial conditions on Ω :

u(x,0) = u0 (x) , v(x,0) = v0 (x) . (3)

In the above model, the density of the cell-population and the chemoattractant concentration are represented
by u = u(x, t) and v = v(x, t) respectively. Next, a(u) is a density-dependent diffusion coefficient, and
Λ(x) is the diffusion tensor in a heterogeneous medium. Furthermore, the function χ is the chemoattractant
sensitivity, and D(x) is the diffusion tensor for v. The function f describes the cell density proliferation and
the cell density death. The function g describes the production and the degradation of the chemoattractant
concentration; for simplicity, we assume that it is a linear function given by

g(u,v) = αu−βv, α,β ≥ 0. (4)

α and β represent respectively the production and the degradation rate of the chemical concentration.
Let us state the main assumptions made about system (1)–(3):

(A1) The cell-density diffusion coefficient a : [0,1]−−→R+ is a continuous function such that, a(0) = a(1) =
0, and a(u)> 0 for 0 < u < 1.

(A2) The chemosensitivity χ : [0,1] −−→ R+ is a continuous function such that, χ(0) = χ(1) = 0. Further-

more, we assume that there exists a function µ ∈C ([0,1] ;R+), such that µ (u)=
χ (u)
a(u)

for all u∈ (0,1)

and µ(0) = µ(1) = 0.
(A3) The diffusion tensors Λ and D are two bounded, uniformly positive symmetric tensors on Ω , that is:

∀w 6= 0,0 < T− |w|2 ≤ 〈T (x)w,w〉 ≤ T+ |w|2 < ∞, T = Λ or D.
(A4) The cell density proliferation f is a continuous function such that f (0)≥ 0 and f (1)≤ 0.
(A5) The initial function u0 and v0 are two functions in L2 (Ω) such that, 0≤ u0 ≤ 1 and v0 ≥ 0.

In the sequel, we use the Lipschitz continuous nondecreasing function ξ : R−−→ R defined by

ξ (u) :=
∫ u

0

√
a(s)ds, ∀u ∈ R. (5)

We recall the definition of a weak solution of system (1)–(3).

Definition 1.1 (weak solution) Under the assumptions (A1)–(A5), we say that the couple of measurable
functions (u,v) is a weak solution of system (1)–(3) if

0≤ u(x, t)≤ 1, 0≤ v(x, t) for a.e. in Qtf ,

ξ (u) ∈ L2 (0, tf;H1 (Ω)
)
,

v ∈ L∞ (Qtf)∩L2 (0, tf;H1 (Ω)
)
,

and for all ϕ,ψ ∈D
(
Ω × [0, tf)

)
, one has

−
∫

Ω

u0 (x)ϕ (x,0)dx−
∫∫

Qtf

u∂tϕ dxdt +
∫∫

Qtf

√
a(u)Λ (x)∇ξ (u) ·∇ϕ dxdt

−
∫∫

Qtf

Λ (x)χ (u)∇v ·∇ϕ dxdt =
∫∫

Qtf

f (u)ϕ (x, t)dxdt, (6)

−
∫

Ω

v0 (x)ψ (x,0)dx−
∫∫

Qtf

v∂tψ dxdt +
∫∫

Qtf

D(x)∇v ·∇ψ dxdt =
∫∫

Qtf

g(u,v)ψ dxdt. (7)
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A standard weak formulation uses the Kirchhoff transform κ(u) as a primitive of the function a(u).
According to [7, 6], we approximate the degenerate diffusion term in its original form in (1). Next, we
use the specific form of the chemoattractant function to propose a new scheme preserving the positivity of
solutions and convergent.

Schemes with mixed conforming piecewise linear finite elements on triangles for the diffusion term and
finite volume on dual elements were proposed and analyzed in [4, 9, 1] for fluid mechanics equations,
and in [21] for a degenerate nonlinear chemotaxis model. The convergence analysis for these schemes is
carried out for the case of anisotropic and heterogeneous diffusion problems under an essential assumption
that all the transmissibility coefficients are nonnegative. However, there is no sufficient conditions for
nonnegativity of transmissibility coefficients and therefore the schemes do not permit to tackle general
anisotropic diffusion problems. Nevertheless, in [8] the authors propose a combined nonconforming finite
elements finite volumes scheme for which they add a monotone regularization permitting positiveness of
discrete solution; the convergence of the scheme, introduced in [5], is ensured under a numerical condition
depending on the mesh size and on the discrete solutions.

Recently, Cancès and Guichard proposed and analyzed in [6] a nonlinear Control Volume Finite Element
(CVFE) scheme for solving degenerate anisotropic parabolic diffusion equations modeling flows in porous
media. The convergence analysis is carried out without any restriction on the transmissibility coefficients,
and the efficiency of the scheme is tested using anisotropic diffusion tensors over an unstructured mesh.
Our aim is to elaborate a general approach, inspired from [6] and [21], to approximate a nonlinear degen-
erate parabolic system modeling the chemotaxis process over general mesh, with anisotropic and heteroge-
neous diffusion tensors. Especially, the diffusion terms are discretized by means of a conforming piecewise
linear finite element method on a primal triangular mesh and using the Godunov scheme to approximate the
diffusion fluxes provided by the conforming finite element reconstruction. The others terms are discretized
by means of a nonclassical upwind finite volume method on a dual mesh (Donald mesh or Median dual
mesh).

The rest of this paper is organized as follows. In section 2, we define a primal triangular mesh and its cor-
responding Donald dual mesh, next, we define standard P1 finite element and finite volume reconstructions.
Then, we introduce the nonlinear CVFE scheme and specify the discretization of the degenerate diffusion
and convection terms. In Section 3, we prove the existence of a discrete solution to the CVFE scheme
based on the establishment of a priori estimates on the discrete solution as well as the discrete maximum
principle. In Section 4, we give estimates on differences of time and space translates for the approximate
solutions. In Section 5, using the Kolmogorov relative compactness criterion, we prove the convergence of
a subsequent of discrete solutions to the weak solution (Definition 1.1). Finally, some numerical simula-
tions are carried out, in Section 6, to show the effectiveness of the scheme to tackle degenerate anisotropic
and heterogeneous diffusion problems over general unstructured mesh.

2 The numerical scheme and main result

In this section, we describe the space and time discretizations of Qtf , define the approximate spaces, intro-
duce useful properties on discrete H1-norms stemming from finite elements discretizations as well as the
nonlinear CVFE scheme, and state the main result.

2.1 Space-time discretization and notations

2.1.1 Space discretizations of Ω .

In order to discretize problem (1)–(3), we perform a finite element triangulation T of the polygonal domain
Ω , consisting of open bounded triangles such that Ω =

⋃
T∈T T and such that for all T,T ′ ∈ T , T ∩T ′ is

either an empty set or a common vertex or edge of T and T ′. We denote by V the set of vertices of the
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discretization T , located at positions (xK)K∈V , and by E the set of edges of T joining two vertices of V .
The edge joining two vertices K and L is denoted by σKL.

For a given triangle T ∈T , we denote by xT the centre of gravity of T , by ET the set of the edges of T ,
by hT the diameter of T , and by ρT the diameter of the largest ball inscribed in the triangle T . We denote
by h the size of the triangulation T defined by h := max

T∈T
hT and and by θT the shape regularity of the

triangulation T , defined by θT := max
T∈T

hT

ρT
.

For K ∈ V , we denote by EK the set of the edges having K as an extremity, and by TK the subset of
T including the triangles having K as a vertex. We also define a barycentric dual mesh M (known as

K

L

σKL xT

Fig. 1 Triangular mesh T and Donald dual mesh M : dual volumes, vertices, interfaces.

Donald dual or Median dual mesh) generated by the triangulation mesh T . There is one dual element
ωK associated with each vertex K ∈ V . We construct it around the vertex K by connecting the barycenter
xT of each surrounding triangle T ∈ TK with the barycenters xσ of the edges σ ∈ EK . We refer to Fig.
1 for an illustration of the primal and the barycentric dual mesh in a two-dimensional space. Note that
Ω =

⋃
K∈V ωK . The 2-dimensional Lebesgue measure of ωK is denoted by mK .

2.2 Discrete finite elements space HT , control volumes space XM .

We define two discrete functional spaces associated with each mesh of the above meshes. The first one,
denoted by HT , is the usual P1-finite element space corresponding to the triangular mesh T , consisting
of piecewise affine finite elements.

HT :=
{

ϕ ∈ C 0 (
Ω
)

; ϕ|T ∈ P1 (R) , ∀T ∈T
}
⊂ H1 (Ω) .

The canonical basis of HT is spanned by the shape functions (ϕK)K∈V , such that

ϕK (xK) = 1, ϕK (xL) = 0 if L 6= K, ∀K ∈ V .

On the other hand, we denote by XM the discrete control volumes space consisting of piecewise constant
functions on the dual mesh M .

XM = {ϕ : Ω −→ R measurable; ϕ|ωK
∈ R is constant, ∀K ∈ V }.
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Given a vector (uK)K∈V ∈ R#V (resp. (vK)K∈V ∈ R#V ), there exists a unique function uT ∈HT (resp.
vT ∈HT ) and a unique uM ∈XM (resp. vM ∈XM ) such that

uT (xK) = uM (xK) = uK , ∀K ∈ V ,

vT (xK) = vM (xK) = vK , ∀K ∈ V .
(8)

For all (K,L) ∈ V 2, we define the transmissibility coefficient TKL by

TKL =−
∫

Ω

T (x)∇ϕK (x) ·∇ϕL (x)dx = TLK , T (x) = Λ (x) or D(x) . (9)

We have TKK =− ∑
L 6=K

TKL, since ∑
K∈V

∇ϕK = 0. As a consequence, one has

∫
Ω

T (x)∇uT ·∇vT dx = ∑
σKL∈E

TKL (uK−uL)(vK− vL) , T (x) = Λ (x) or D(x) .

2.3 Time discretization of (0, tf).

For the time discretization of the interval (0, tf), we consider a uniform time discretization, and we do not
impose any restriction on the time step. In addition, we assume that the spatial meshes do not change with
the time step. We note that all the results presented in this paper can be extended to the case of general time
discretization.
Let N be a nonnegative integer, we define the uniform time step ∆ t = tf/(N +1), and tn = n∆ t for all
n ∈ {0, . . . ,N +1}, so that t0 = 0, and tN+1 = tf.

2.4 Space-time discretization of Qtf .

Here, we define the space and time discrete spaces HT ,∆ t and XM ,∆ t as the set of piecewise constant
functions in time with values in HT and XT respectively.

HT ,∆ t = {ϕ ∈ L2 (0, tf;H1 (Ω)
)
,ϕ (x, t) = ϕ

(
x, tn+1) ∈HT , ∀t ∈ (tn, tn+1]},

XM ,∆ t = {ϕ : Qtf −→ R measurable,ϕ (x, t) = ϕ
(
x, tn+1) ∈XM , ∀t ∈ (tn, tn+1]}.

For a given (un
K)n∈{0,··· ,N+1},K∈V ∈ R(N+2)#V (resp. (vn

K)n∈{0,··· ,N+1},K∈V ), there exists a unique function
uT ,∆ t ∈HT ,∆ t (resp. vT ,∆ t ∈HT ,∆ t ) and a unique uM ,∆ t ∈XM ,∆ t (resp. vM ,∆ t ∈XM ,∆ t ) such that

uT ,∆ t (xK , t) = uM ,∆ t (xK , t) = un+1
K , ∀K ∈ V , ∀t ∈ (tn, tn+1],

vT ,∆ t (xK , t) = vM ,∆ t (xK , t) = vn+1
K , ∀K ∈ V , ∀t ∈ (tn, tn+1].

(10)

2.5 The nonlinear CVFE scheme

The discretizations of the initial data u0
K and v0

K , K ∈ V are defined by

u0
M (x) = u0

K =
1

mK

∫
ωK

u0 (y) dy, ∀x ∈ ωK , (11)
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v0
M (x) = v0

K =
1

mK

∫
ωK

v0 (y) dy, ∀x ∈ ωK , (12)

2.5.1 Discretization of the first equation of system (1)

For all K ∈ V , and n ∈ {0, . . . ,N}, we define the discretization of the diffusion term by

∑
σKL∈EK

an+1
KL ΛKL

(
un+1

K −un+1
L
)
,

where,

an+1
KL =


max

u∈In+1
KL

a(u) if ΛKL ≥ 0,

min
u∈In+1

KL

a(u) if ΛKL ≤ 0,
(13)

and In+1
KL denotes the interval defined by

In+1
KL =

{[
un+1

K , un+1
L

]
if un+1

K ≤ un+1
L ,[

un+1
L , un+1

K

]
otherwise.

Let us focus on the discretization of the convection term, and recall that the function χ (u) is defined to
be the product of the continuous functions µ (u) and a(u). To handle the discretization of the convection
term in order to obtain a robust and stable scheme, we perform a nonclassical upwind finite volume scheme
which consists of considering an upwind scheme for the function µ (u) according to the discrete gradi-
ent of v, and an upwind finite volume scheme for the function a(u) with respect to u. These choices of
discretization are crucial to ensure the discrete maximum principle as well as the energy estimates on the
approximate solutions.

We are now in a position to introduce what we call nonlinear control volume finite element (CVFE)
scheme. For all K ∈ V , and all n ∈ {0, . . . ,N},

un+1
K −un

K
∆ t

mK + ∑
σKL∈EK

ΛKLan+1
KL
(
un+1

K −un+1
L
)
− ∑

σKL∈EK

ΛKLµ
n+1
KL an+1

KL
(
vn+1

K − vn+1
L
)
= f

(
un+1

K
)

mK , (14)

where, the transmissibility coefficients ΛKL and DKL are given by equality (9), and µ
n+1
KL denotes an ap-

proximation of µ (u) on the interfaces of ωK with respect to the discrete gradient of v. We give here two
examples on the construction of µ

n+1
KL . The first example consists of taking the Engquist-Osher scheme and

the second example consists of taking the Godunov scheme (see e.g. [20, 24]).

Engquist-Osher scheme

• µ
n+1
KL =

{
µ↓
(
un+1

K

)
+µ↑

(
un+1

L

)
, if ΛKL

(
vn+1

K − vn+1
L

)
≥ 0,

µ↑
(
un+1

K

)
+µ↓

(
un+1

L

)
, if ΛKL

(
vn+1

K − vn+1
L

)
< 0.

The functions µ↑ and µ↓ are given by

µ↑ (z) :=
∫ z

0

(
µ
′ (s)
)+ ds, µ↓ (z) :=−

∫ z

0

(
µ
′ (s)
)− ds.

Herein, s+ = max(s,0) and s− = max(−s,0).

Godunov scheme
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• µ
n+1
KL =



max
[un+1

K ,un+1
L ]

µ (u) , if ΛKL
(
vn+1

K − vn+1
L

)
≥ 0,

min
[un+1

L ,un+1
K ]

µ (u) , if ΛKL
(
vn+1

K − vn+1
L

)
≥ 0,

max
[un+1

L ,un+1
K ]

µ (u) , if ΛKL
(
vn+1

K − vn+1
L

)
< 0,

min
[un+1

K ,un+1
L ]

µ (u) , if ΛKL
(
vn+1

K − vn+1
L

)
< 0.

Remark 1 The approximate function µ
n+1
KL = z

(
un+1

K ,un+1
L

)
must be nonincreasing (resp. nondecreasing)

with respect to the first variable un+1
K and nondecreasing (resp. nonincreasing) with respect to the other

variable un+1
L when ΛKL

(
vn+1

K − vn+1
L

)
≥ 0 (resp. ΛKL

(
vn+1

K − vn+1
L

)
≤ 0). We also have z

(
un+1

K ,un+1
K

)
=

µ
(
un+1

K

)
.

2.5.2 Discretization of the second equation of system (1)–(3)

Here, we focus on the discretization of the second equation of system (1)–(3). We note that a classical
discretization of this equation is given by the following form

mK
vn+1

K − vn
K

∆ t
+ ∑

σKL∈EK

DKL
(
vn+1

K − vn+1
L
)
= mK

(
αun

K−βvn+1
K
)
. (15)

However, this discretization does not guaranty the positivity of the discrete solutions without any restriction
on the transmissibility coefficients, for instance, one can get the discrete maximum principle by assuming
that all the transmissibility coefficients DKL are nonnegative (see [21]).
Here, we propose a numerical discretization in order to ensure the discrete maximum principle without any
restriction on the transmissibility coefficients. To do this, we introduce the following set of functions: η (v),
p(v), Γ (v) and φ (v) defined by

η (v) =max(0,min(v,1)) , (16)

p(v) =
∫ v

1

1
η (s)

ds =

{
ln(v) if v ∈ (0,1),
v−1 if v≥ 1,

(17)

Γ (v) =
∫ v

1
p(s)ds =

{
v ln(v)− v+1 if v ∈ [0,1),
(v−1)2

2 if v≥ 1,
(18)

φ (v) =
∫ v

0

1√
η (s)

ds =

{
2
√

v if v ∈ [0,1),
v+1 if v≥ 1.

(19)

In the sequel, we adopt the convention

η(v)p(v) = 0 if v≤ 0. (20)

We give the discretization of the second equation of system (1)–(3); specifically, we have

mK
vn+1

K − vn
K

∆ t
+ ∑

σKL∈EK

DKLη
n+1
KL
(

p
(
vn+1

K
)
− p

(
vn+1

L
))

= mK
(
αun

K−βvn+1
K
)
, (21)

where, denoting by Jn+1
KL = [min(vn+1

K ,vn+1
L ),max(vn+1

K ,vn+1
L )], we have set

η
n+1
KL =

{
maxs∈Jn+1

KL
η(s) if DKL ≥ 0,

mins∈Jn+1
KL

η(s) if DKL < 0.
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We can show that the scheme (14)–(21), whose construction is based on finite elements for the diffusion
term and a nonclassical upwind finite volume for the convection term, can be interpreted as a finite volume
scheme. Indeed, denoting by

Fn+1
KL = ΛKLan+1

KL
(
un+1

K −un+1
L
)
−ΛKLµ

n+1
KL an+1

KL
(
vn+1

K − vn+1
L
)
,

Φ
n+1
KL = DKLη

n+1
KL
(

p
(
vn+1

K
)
− p

(
vn+1

L
))

.

Then the scheme (14)–(21) rewrites

Fn+1
KL +Fn+1

LK = 0 = Φ
n+1
KL +Φ

n+1
LK , for all σKL ∈ E ,

mK
un+1

K −un
K

∆ t
+ ∑

σKL∈EK

Fn+1
KL = f

(
un+1

K
)

mK , for all K ∈ V ,

mK
vn+1

K − vn
K

∆ t
+ ∑

σKL∈EK

Φ
n+1
KL = g

(
un

K ,v
n+1
K
)

mK , for all K ∈ V .

2.6 Main result

Let (Tm)m≥1 be a sequence of triangulations of Ω such that

hm = max
T∈Tm

diam(T )→ 0 as m→ ∞.

We assume that the sequence of triangulations has a bounded regularity, i.e., there exists a constant θ > 0
such that

θTm ≤ θ , ∀m≥ 1.

As before, a sequence of dual meshes (Mm)m≥1 is given.
Let (Nm)m be an increasing sequence of integers, then we define the corresponding sequence of time

steps (∆ tm)m such that ∆ tm→ 0 as m→∞. The intention of this paper is to prove the following main result.

Theorem 2.1 Let
(
uMm,∆ tm ,vMm,∆ tm

)
m be a sequence of solutions to the scheme (14)–(21), such that 0 ≤

uMm,∆ tm ≤ 1 and 0≤ vMm,∆ tm for almost everywhere in Qtf , then

uMm,∆ tm → u and vMm,∆ tm → v a.e. in Qtf as m→ ∞,

where the couple (u,v) is a weak solution to the system (1)–(3) in the sense of Definition 1.1.

3 Discrete properties, a priori estimates and existence of a discrete solution

In this section, we first bring up some technical lemmas presented by Cancès and Guichard [6], that we
reproduce here for clarity. Then, we establish the a priori estimates necessary to prove later the existence
of a solution to the discrete problem.

Lemma 3.1 Let
(
un+1

K

)
K,n ∈R

(N+1)#V (resp.
(
vn+1

K

)
K,n ∈R

(N+1)#V ), then denoting by ξT ,∆ t (resp. φT ,∆ t )

the unique function of HT ,∆ t with nodal values
(
ξ
(
un+1

K

))
∈ R(N+1)#V (resp.

(
φ
(
vn+1

K

))
∈ R(N+1)#V ),

one has

N

∑
n=0

∆ t ∑
σKL∈E

ΛKLan+1
KL
(
un+1

K −un+1
L
)2

≥
N

∑
n=0

∆ t ∑
σKL∈E

ΛKL
(
ξ
(
un+1

K
)
−ξ

(
un+1

L
))2

=
∫∫

Qtf

Λ∇ξT ,∆ t ·∇ξT ,∆ tdxdt,

(22)
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and

N

∑
n=0

∆ t ∑
σKL∈E

DKLη
n+1
KL
(

p(vn+1
K )− p(vn+1

L )
)2

≥
N

∑
n=0

∆ t ∑
σKL∈E

DKL
(
φ
(
vn+1

K
)
−φ

(
vn+1

L
))2

=
∫∫

Qtf

D∇φT ,∆ t ·∇φT ,∆ tdxdt.

(23)

Proof. We refer to [6, Lemma 3.1] for the proof of this lemma.

Let T ∈T , and let (K, L) ∈ V 2, we denote by

λ
T
KL :=−

∫
T

Λ∇ϕK ·∇ϕLdx = λ
T
LK .

δ
T
KL :=−

∫
T

D∇ϕK ·∇ϕLdx = δ
T
LK .

As a consequence, ΛKL = ∑
T∈T

λ
T
KL and DKL = ∑

T∈T
δ

T
KL for all σKL ∈ E .

Lemma 3.2 Let ΨT = ∑
K∈V

ψKϕK ∈HT , then there exists a quantity C0 depending only on Λ , D, and θT

such that

∑
σKL∈E

∑
T∈T

∣∣λ T
KL
∣∣(ψK−ψL)

2 ≤C0

∫
Ω

Λ(x)∇ΨT ·∇ΨT dx, (24)

and

∑
σKL∈E

∑
T∈T

∣∣δ T
KL
∣∣(ψK−ψL)

2 ≤C0

∫
Ω

D(x)∇ΨT ·∇ΨT dx. (25)

Proof. We refer to [6, Lemma 3.2] for the proof of this lemma.

Lemma 3.3 There exists a quantity C1 depending only on Λ , D, and θT such that

N

∑
n=0

∆ t ∑
σKL∈E

|ΛKL|an+1
KL
(
un+1

K −un+1
L
)2 ≤C1

N

∑
n=0

∆ t ∑
σKL∈E

ΛKLan+1
KL
(
un+1

K −un+1
L
)2
. (26)

and
N

∑
n=0

∆ t ∑
σKL∈E

|DKL|ηn+1
KL
(

p(vn+1
K )− p(vn+1

L )
)2 ≤C1

N

∑
n=0

∆ t ∑
σKL∈E

DKLη
n+1
KL
(

p(vn+1
K )− p(vn+1

L )
)2
. (27)

Proof. We denote by E − := {σKL ∈ E ; ΛKL < 0}, then since |x|= x+2x−, x− = max(−x,0), one has

N

∑
n=0

∆ t ∑
σKL∈E

|ΛKL|an+1
KL
(
un+1

K −un+1
L
)2

=
N

∑
n=0

∆ t ∑
σKL∈E

ΛKLan+1
KL
(
un+1

K −un+1
L
)2

+2
N

∑
n=0

∆ t ∑
σKL∈E−

|ΛKL|an+1
KL
(
un+1

K −un+1
L
)2
.

Now, from the definition (9) of an+1
KL , there exists c ∈

◦
In+1
KL such that(

ξ
(
un+1

K
)
−ξ

(
un+1

L
))2

= a(c)
(
un+1

K −un+1
L
)2 ≥ an+1

KL
(
un+1

K −un+1
L
)2
, ∀σKL ∈ E −

Therefore,
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N

∑
n=0

∆ t ∑
σKL∈E

|ΛKL|an+1
KL
(
un+1

K −un+1
L
)2 ≤

N

∑
n=0

∆ t ∑
σKL∈E

ΛKLan+1
KL
(
un+1

K −un+1
L
)2

+2
N

∑
n=0

∆ t ∑
σKL∈E

|ΛKL|
(
ξ
(
un+1

K
)
−ξ

(
un+1

L
))2

.

(28)

Lemma 3.2 ensures the existence of a quantity C0 > 0(=C0 (Λ ,θT )) such that

N

∑
n=0

∆ t ∑
σKL∈E

|ΛKL|
(
ξ
(
un+1

K
)
−ξ

(
un+1

L
))2 ≤

N

∑
n=0

∆ t ∑
σKL∈E

∑
T∈T
|λKL|

(
ξ
(
un+1

K
)
−ξ

(
un+1

L
))2

≤C0

∫
Qt

Λ∇ξT ,∆ t ·∇ξT ,∆ tdxdt,

and from lemma 3.1, we deduce that

N

∑
n=0

∆ t ∑
σKL∈E

|ΛKL|
(
ξ
(
un+1

K
)
−ξ

(
un+1

L
))2 ≤C0

N

∑
n=0

∆ t ∑
σKL∈E

ΛKLan+1
KL
(
un+1

K −un+1
L
)2
. (29)

Plugging estimate (29) into estimate (28), then estimate (26) holds with C1 = 1+2C0. The proof of estimate
(27) is similar.

3.1 Discrete maximum principle

Lemma 3.4 Let
(
un+1

K ,vn+1
K

)
K∈V ,n∈{0,...,N} be a solution to the CVFE scheme (14)–(21). Then, for all

K ∈ V , and all n ∈ {0, . . . ,N +1}, we have 0≤ un
K ≤ 1 and vn

K ≥ 0.

Proof. We show this property using an induction on n. The property is true for n = 0 thanks to the defini-
tions (11) and (12) of u0

K and v0
K and to the assumptions on u0 and v0. Now, assume that the claim is true

up to time step n. Consider a dual control volume ωK such that un+1
K = min

L∈V
{un+1

L }, we want to show that

un+1
K ≥ 0 i.e.

(
un+1

K

)−
= 0. Multiplying equation (14) by −

(
un+1

K

)−
, one has

−mK
un+1

K −un
K

∆ t

(
un+1

K
)−− ∑

σKL∈EK

ΛKLan+1
KL
(
un+1

K −un+1
L
)(

un+1
K
)−

+ ∑
σKL∈EK

ΛKLµ
n+1
KL an+1

KL
(
vn+1

K − vn+1
L
)(

un+1
K
)−

=−mK f
(
un+1

K
)(

un+1
K
)− ≤ 0,

(30)

to which, we have used the extension by f (0)≥ 0 (see assumption (A4)) of the continuous function f for
u≤ 0.
In view of the definition (13) of an+1

KL , and of the fact that a(u) = 0 if u≤ 0, one has an+1
KL = 0, if ΛKL ≤ 0.

Therefore, the second term in the left hand side of equation (30) reads to

− ∑
σKL∈EK

an+1
KL (ΛKL)

+ (un+1
K −un+1

L
)(

un+1
K
)− ≥ 0,

Let us now focus on the third term of equation (30), and denote by A this term. Since an+1
KL = 0 for ΛKL ≤ 0,

then A rewrites

A = ∑
σKL∈EK

Λ
+
KLµ

n+1
KL an+1

KL
(
vn+1

K − vn+1
L
)+ (

un+1
K
)−− ∑

σKL∈EK

Λ
+
KLµ

n+1
KL an+1

KL
(
vn+1

K − vn+1
L
)− (

un+1
K
)−

.

The second term of A is nonpositive, but in view of Remark 1 on the approximation µ
n+1
KL and in view of

the extension by zero of the function µ for u≤ 0 since µ (0) = 0, one can deduce that
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µ
n+1
KL Λ

+
KL
(
vn+1

K − vn+1
L
)− ≤ µ

(
un+1

K
)

Λ
+
KL
(
vn+1

K − vn+1
L
)−

= 0,

thus, the second term of A is equal to zero and consequently A ≥ 0 since the first term of A is nonnegative.
Finally, we use the identity un+1

K =
(
un+1

K

)+− (un+1
K

)−
and the nonnegativity of un

K , one can deduce from
equation (30) that

(
un+1

K

)−
= 0. According to the choice of the dual control volume ωK , then min

L∈V
{un+1

L } is

non-negative. Consequently, un
K ≥ 0, ∀K ∈ V , and all n ∈ {0, . . . ,N +1}.

In order to prove by induction that un
K ≤ 1, ∀K ∈ V , ∀n ∈ {0, . . . ,N + 1}, we proceed in the same way as

before, so that we consider a dual control volume ωK such that un+1
K = max

L∈V
{un+1

L }. We get up the result

using Remark 1, the extension by zero of each of the function a, and µ for u ≥ 1, and the extension by
f (1)≤ 0 of the continuous function f for u≥ 1.

Let us prove now that vn+1
K ≥ 0 for all K ∈ V . Let Km ∈ V be such that vn+1

Km
= minK∈V vn+1

K , and assume
that vn

Km
≥ 0. Thanks to the convention (20), we can claim that

DKmLη
n+1
KmL(p(vn+1

Km
)− p(vn+1

L )) = 0 if DKmL ≤ 0,

and that
DKmLη

n+1
KmL(p(vn+1

Km
)− p(vn+1

L ))≤ 0 if DKmL ≥ 0.

Therefore, the scheme (21) together with the positivity of un
Km

yields

vn+1
Km
≥

vn
Km

1+β∆ t
≥ 0.

This achieves the proof of Lemma 3.4.

3.2 Entropy estimates on vM ,∆ t

Lemma 3.5 There exists C > 0 depending only on ‖v0‖L2(Ω), Ω , tf, α and β such that, for all n? ∈
{0, . . . ,N}, one has

∑
K∈V

mKΓ (vn?+1
K )+

n?

∑
n=0

∆ t ∑
σKL∈E

DKLη
n+1
KL
(

p(vn+1
K )− p(vn+1

L )
)2 ≤C.

Proof. It follows from Jensen’s inequality – recall that Γ is convex – that

∑
K∈V

mKΓ
(
v0

K
)
≤
∫

Ω

Γ (v0 (x))dx.

Since Γ (v)≤ (v−1)2 for all v≥ 0, we obtain that

∑
K∈V

mKΓ
(
v0

K
)
≤
∫

Ω

(v0 (x)−1)2 dx≤C. (31)

Multiplying the scheme (21) by p(vn+1
K )∆ t and summing of K ∈ V and n = 0, . . . ,n? provides

A +B = C , (32)

where we have set
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A =
n?

∑
n=0

∑
K∈V

mK(vn+1
K − vn

K)p(vn+1
K ),

B =
n?

∑
n=0

∆ t ∑
σKL∈E

DKLη
n+1
KL
(

p(vn+1
K )− p(vn+1

L )
)2
,

C =
n?

∑
n=0

∆ t ∑
K∈V

mK(αun
K−βvn+1

K )p(vn+1
K ).

Since, thanks to Lemma 3.4, un
K is non-negative for all K ∈ V and all n ≥ 0, and since p(v) ≤ (v−1) for

all v≥ 0 (with the convention p(0) =−∞), one has

αun
K p(vn+1

K )≤ αun
K(v

n+1
K −1).

On the other hand, there exists an absolute constant c? such that vp(v) ≥ (v− 1)2 − c? for all v ≥ 0.
Therefore,

βvn+1
K p(vn+1

K )≥ β (vn+1
K −1)2− c?.

As a consequence, we obtain that

C ≤ tf|Ω |c?+
n?

∑
n=0

∆ t ∑
K∈V

mK
(
αun

K(v
n+1
K −1)−β (vn+1

K −1)2) .
Using the weighted Young’s inequality αab≤ βb2 + α2

4β
a2 for all (a,b) ∈ R2 provides

αun
K(v

n+1
K −1)−β (vn+1

K −1)2 ≤ α2

4β
un

K ≤
α2

4β

thanks to Lemma 3.4. Hence, we obtain that

C ≤ tf|Ω |
(

c?+
α2

4β

)
. (33)

The function p being increasing, an elementary convexity inequality provides that

(a−b)p(a)≥ Γ (a)−Γ (b), ∀(a,b) ∈ (R+)
2,

ensuring that

A ≥
n?

∑
n=0

∑
K∈V

mK
(
Γ (vn+1

K )−Γ (vn
K)
)
= ∑

K∈V
mK

(
Γ (vn?+1

K )−Γ (v0
K)
)
. (34)

Using (33), (34) and (31) in (32) concludes the proof of Lemma 3.5.

Lemma 3.6 There exists C depending only on ‖v0‖L2(Ω), Ω , tf, α , β , D±, Λ+ and θT , such that

∫∫
Qtf

Λ (x)∇vT ,∆ t (x, t) ·∇vT ,∆ t (x, t)dxdt =
N

∑
n=0

∆ t ∑
σKL∈E

ΛKL(vn+1
K − vn+1

L )2 ≤C. (35)

Proof. Thanks to Lemmas 3.1 and 3.5, we know that

N

∑
n=0

∆ t ∑
σKL∈E

DKL(φ(vn+1
K )−φ(vn+1

L ))2 ≤
N

∑
n=0

∆ t ∑
σKL∈E

DKLη
n+1
KL
(

p(vn+1
K )− p(vn+1

L )
)2 ≤C.

Therefore, it follows from Lemma 3.2 that
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N

∑
n=0

∆ t ∑
σKL∈E

|DKL|(φ(vn+1
K )−φ(vn+1

L ))2 ≤C.

since (φ(vn+1
K )−φ(vn+1

L ))2 ≥ (vn+1
K − vn+1

L )2, we obtain that

∫∫
Qtf

D(x)∇vT ,∆ t(x, t) ·∇vT ,∆ t(x, t)dxdt =
N

∑
n=0

∆ t ∑
σKL∈E

DKL(vn+1
K − vn+1

L )2

≤
N

∑
n=0

∆ t ∑
σKL∈E

|DKL|(vn+1
K − vn+1

L )2 ≤C.

It only remains to check that∫∫
Qtf

Λ (x)∇vT ,∆ t(x, t) ·∇vT ,∆ t(x, t)dxdt ≤ Λ+

D−

∫∫
Qtf

D(x)∇vT ,∆ t(x, t) ·∇vT ,∆ t(x, t)dxdt

in order to conclude the proof of Lemma 3.6.

Remark 2 A careful analysis allows to prove, after a more involving proof very similar to the one of
Lemma 3.5, that the constant C depends neither on D+ nor on θT . The cornerstone of the corresponding
proof is the inequality

DKLη
n+1
KL
(

p
(
vn+1

K
)
− p

(
vn+1

L
))(

vn+1
K − vn+1

L
)
≥ DKL

(
vn+1

K − vn+1
L
)2

that relies on the definition of η
n+1
KL and on the link between the functions η and p.

3.3 Energy estimates on uM ,∆ t

In the following, C denotes a “generic” constant, that may vary throughout the proofs.

Proposition 3.7 There exists a constant C > 0 depending only on ‖v0‖L2(Ω), Ω , tf, α , β , Λ , D, and θT

such that, for all n? ∈ {0, . . . ,N}, one has

∑
K∈V

mK

(
un?+1

K

)2
+

n?

∑
n=0

∆ t ∑
σKL∈E

ΛKLan+1
KL
(
un+1

K −un+1
L
)2 ≤C. (36)

Proof. We multiply equation (14) by ∆ t un+1
K and sum over K ∈ V and n ∈ {0, . . . ,n?}. This yields

E1 +E2 +E3 = E4, (37)

where

E1 =
n?

∑
n=0

∑
K∈V

mK
(
un+1

K −un
K
)

un+1
K , E2 =

n?

∑
n=0

∆ t ∑
K∈V

∑
σKL∈EK

ΛKLan+1
KL
(
un+1

K −un+1
L
)

un+1
K ,

E4 =
n?

∑
n=0

∆ t ∑
K∈V

mK f
(
un+1

K
)

un+1
K , E3 =−

n?

∑
n=0

∆ t ∑
K∈V

∑
σKL∈EK

ΛKLµ
n+1
KL an+1

KL
(
vn+1

K − vn+1
L
)

un+1
K .

For the time evolution term, we use the following inequality: (a−b)a≥ 1
2
(
a2−b2) , ∀a,b ∈ R, to get
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E1 ≥
1
2

n?

∑
n=0

∑
K∈V

mK

((
un+1

K
)2− (un

K)
2
)
=

1
2 ∑

K∈V
mK

((
un?+1

K

)2
−
(
u0

K
)2
)
. (38)

Next, for the diffusion term, we reorganize the sum over the edges, we find

E2 =
n?

∑
n=0

∆ t ∑
K∈V

∑
σKL∈EK

ΛKLan+1
KL
(
un+1

K −un+1
L
)

un+1
K =

n?

∑
n=0

∆ t ∑
σKL∈E

ΛKLan+1
KL
(
un+1

K −un+1
L
)2
. (39)

Similarly, we reorganize the sum over the edges for the convection term. We obtain, using the uniform
boundedness of the function µ , that

E3 =−
n?

∑
n=0

∆ t ∑
K∈V

∑
σKL∈EK

ΛKLµ
n+1
KL an+1

KL
(
vn+1

K − vn+1
L
)

un+1
K

=−
n?

∑
n=0

∆ t ∑
σKL∈E

ΛKLµ
n+1
KL an+1

KL
(
vn+1

K − vn+1
L
)(

un+1
K −un+1

L
)
.

Using the weighted Young inequality, we deduce

|E3| ≤C
n?

∑
n=0

∆ t ∑
K∈V

∑
σKL∈EK

|ΛKL|an+1
KL

∣∣vn+1
K − vn+1

L

∣∣ ∣∣un+1
K −un+1

L

∣∣
≤C

n?

∑
n=0

∆ t ∑
K∈V

∑
σKL∈EK

|ΛKL|
(
vn+1

K − vn+1
L
)2

+
1

2C1

n?

∑
n=0

∆ t ∑
K∈V

∑
σKL∈EK

|ΛKL|an+1
KL
(
un+1

K −un+1
L
)2
,

where C1 is the same constant introduced in Lemma 3.3.
Thanks to estimates (24) and (26), one has

|E3| ≤C
n?

∑
n=0

∆ t ∑
K∈V

∑
σKL∈EK

ΛKL
(
vn+1

K − vn+1
L
)2

+
1
2

n?

∑
n=0

∆ t ∑
K∈V

∑
σKL∈EK

ΛKLan+1
KL
(
un+1

K −un+1
L
)2
.

Therefore, Lemma 3.6 provides that

|E3| ≤C+
1
2

n?

∑
n=0

∆ t ∑
K∈V

∑
σKL∈EK

ΛKLan+1
KL
(
un+1

K −un+1
L
)2
. (40)

Finally, for the reaction term, since 0≤ un+1
K ≤ 1 thanks to Lemma 3.4, one has

E4 =
n?

∑
n=0

∆ t ∑
K∈Vm

mK f
(
un+1

K
)

un+1
K ≤ |Ω |‖ f‖L∞(0,1) tf. (41)

Plugging estimates (38)–(41) into equation (37), one deduces that estimate (36) holds.

3.4 Enhanced estimate on vM ,∆ t

The goal of this section is to prove a refined estimate on vM ,∆ t inspired from [6, Lemma 3.10], claiming
that either vM ,∆ t is constant equal to 0, or vM ,∆ t ≥ rh > 0 for some rh depending on the discretization
parameters. The first step consists of bounding from below the L∞((0, tf);L1(Ω)) norm of vM ,∆ t .

Lemma 3.8 Assume that
∫

Ω
u0 (x)dx > 0 or

∫
Ω

v0 (x)dx > 0, then there exists κ > 0 depending on the
discretization and on the data such that
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Ω

vM ,∆ t(x, t)dx≥ κ, ∀t ∈ [0, tf].

Proof. Summing equation (21) over K ∈V ensures that

∑
K∈V

mK(1+β∆ t)vn+1
K = ∑

K∈V
mKvn

K +α∆ t ∑
K∈V

mKun
K , ∀n ∈ {0, . . . ,N}. (42)

Assume that vn
Kn
?
> 0 or un

Kn
?
> 0 for some Kn

? ∈ V , as this is the case for n = 0 because of the assumption
on the initial data u0 and v0, then we deduce from (42) and from the non-negativity of vn

K and un
K proved in

Lemma 3.4 that
∑

K∈V
mK(1+β∆ t)vn+1

K > 0.

In particular, there exists Kn+1
? ∈ V such that vn+1

Kn+1
?

is (strictly) positive and

∑
K∈V

mKvn+1
K := κn+1 > 0.

One concludes the proof by setting κ = min
n=1,...,N+1

κn.

We give now the definition of D-transmissive path, which was introduced in [6, Definition 3.4].

Definition 3.1 A D-transmissive path w joining Ki ∈ V to Kf ∈ V consists in a list of vertices (Kq)0≤q≤M
such that Ki = K0, Kf = KM , with Kq 6= K` if q 6= `, and such that σKqKq+1 ∈ E with DKqKq+1 > 0 for all
q ∈ {0, . . . ,M−1}. We denote by W (Ki,Kf) the set of the transmissive path joining Ki ∈ V to Kf ∈ V .

We now state a result which is proved in [6, Lemma 3.5].

Lemma 3.9 For all (Ki,Kf) ∈ V 2 there exists a transmissive path w ∈W (Ki,Kf).

We have now introduced all the necessary tools for proving the main result of this section.

Lemma 3.10 Assume that
∫

Ω
u0 (x)dx > 0 or

∫
Ω

v0 (x)dx > 0, then there exists rh > 0 depending on the
data as well as on the mesh T and ∆ t such that

vn+1
K ≥ rh, ∀K ∈ V ,∀n ∈ {0, . . . ,N}. (43)

Proof. Thanks to Lemma 3.8, we know that there exists Ki such that vn+1
Ki

> 0. Let Kf ∈ V , then there exists
a D-transmissive path w = (Kq)0≤q≤M ∈W (Ki,Kf) thanks to Lemma 3.9, with K0 = Ki and KM = Kf.

Thanks to Lemmas 3.3 and 3.5, we know that there exists C such that

N

∑
n=0

∆ t ∑
σKL∈E

|DKL|ηn+1
KL
(

p(vn+1
K )− p(vn+1

L )
)2 ≤C.

In particular, this ensures that

DKqKq+1η
n+1
KqKq+1

(
p(vn+1

Kq
)− p(vn+1

q+1)
)2
≤ C

∆ t
, ∀q ∈ {0, . . . ,M−1}.

Assume now that vn+1
Kq

> 0, as this is the case for q = 0, then η
n+1
KqKq+1

≥ η(vn+1
Kq

)> 0. Then one has

(
p(vn+1

Kq
)− p(vn+1

Kq+1
)
)2
≤ C

∆ tDKqKq+1η
n+1
KqKq+1

< ∞. (44)

Since limv→0 p(v) = −∞, we deduce from (44) that p(vn+1
Kq+1

) > −∞, hence vn+1
Kq+1

> 0. A straightforward

induction provides that vn+1
Kf

> 0, and since Kf was chosen arbitrarily, we obtain that

vn+1
K > 0, ∀K ∈ V .
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Since the set V ×{0, . . . ,N} is finite, we can conclude that there exists rh such that (43) holds.

3.5 Existence of a discrete solution

Proposition 3.11 Given (un
K ,v

n
K)K∈V such that uM ,∆ t(·,n∆ t) and vM ,∆ t(·,n∆ t) are non-negative, then

there exists (at least) one solution
(
un+1

K ,vn+1
K

)
K∈V of the scheme (14),(21). Moreover, uM ,∆ t(·,n∆ t) and

vM ,∆ t(·,n∆ t) are non-negative.

Proof. The case where (un
K ,v

n
K)K∈V ≡ 0 has to be treated apart. In this very particular case, it is easy to

check that
(
un+1

K ,vn+1
K

)
K∈V ≡ 0 is a solution to the scheme.

Let us now focus on the case where un
K or vn

K is strictly positive for some K ∈ V . Because of the
weak coupling on the numerical scheme, we can first solve (21), and afterwards (14). The existence of a
solution

(
vn+1

K

)
K∈V can be proved by slightly adapting the proof of [6, Proposition 3.11], which relies on

a topological argument. The main difficulty comes from the fact the scheme (21) is not continuous w.r.t.(
vn+1

K

)
K∈V on (R+)

#V , but Lemma 3.10 ensures that no component vn+1
K of the discrete solution can go

close to 0. Let us detail now the proof.
Let γ ∈ [0,1], we denote by

(
vn+1

K,γ

)
K∈V

the solution (if it exists) to the numerical scheme

vn+1
K,γ − vn

K

∆ t
mK+γ ∑

σKL∈EK

DKLη
n+1
KL,γ

(
p(vn+1

K,γ )− p(vn+1
L,γ )

)
+(1− γ) ∑

σKL∈EK

|DKL|(p(vn+1
K,γ )− p(vn+1

L,γ )) = αun
KmK−βvn+1

K,γ mK .

(45)

In the above scheme, we have set

η
n+1
KL,γ =

maxv∈Jn+1
KL,γ

η(v) if DKL ≥ 0,

minv∈Jn+1
KL,γ

η(v) if DKL < 0,

where Jn+1
KL,γ =

[
min(vn+1

K,γ ,v
n+1
L,γ ),max(vn+1

K,γ ,v
n+1
L,γ )

]
. Reproducing carefully the analysis carried out in §3.2

and §3.4, we get that for all γ ∈ [0,1],

∑
σKL∈E

DKL

(
φ(vn+1

K,γ )−φ(vn+1
L,γ )

)2
≤ ∑

σKL∈E
DKLη

n+1
KL,γ

(
p(vn+1

K,γ )− p(vn+1
L,γ )

)2
≤C (46)

and, that there exists ε > 0 such that

vn+1
K,γ ≥ ε > 0, ∀K ∈ V . (47)

This ensures in particular that for all γ ∈ [0,1], the solutions of equation (45) stay in the interior of a
compact subset K of R#V such that

dist
(
K ,(R−)

#V
)
≥ ε

2
.

Define the function ϒ : K × [0,1]→ R#V by: ∀K ∈ V ,

ϒK ((wK)K ,γ) =
wK− vn

K
∆ t

mK + γ ∑
σKL∈EK

DKLη
n+1
KL,γ (p(wK)− p(wL))

+(1− γ) ∑
σKL∈EK

|DKL|(wK)− p(wL))−αun
KmK +βwKmK .
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The functionϒ is uniformly continuous on K × [0,1], and for all γ ∈ [0,1] the solution vn+1
K,γ of the nonlinear

system
ϒ

((
vn+1

K,γ

)
K∈V

,γ
)
= 0 (48)

cannot reach ∂K . For γ = 0, the system is monotone, so that the system (48) admits a unique solution,
whose topological degree is equal to 1 (we refer to [13, Proposition 3.1] for a proof of this property). The
topological degree being constant w.r.t. γ ∈ [0,1], the system (48) admits at least one solution for γ = 1,
concluding the proof of the existence of

(
vn+1

K

)
K∈V .

The existence proof for
(
un+1

K

)
K∈V is similar but simpler since

i. the a priori estimate 0≤ un+1
K ≤ 1 is sufficient for the claim, and no energy estimate is needed here;

ii. the scheme (14) depends in a uniformly continuous way on
(
un+1

K

)
K∈V on the compact subset

[−1,2]#V of R#V .

Therefore, we let to the reader the care of checking the proof for self-conviction.

4 Compactness estimates on the family of discrete solutions.

In this section, we derive estimates on differences of time and space translates of the discrete solutions
necessary to prove the relative compactness property of the sequence of approximate solutions. To do this,
we use the increasing functions ξ : [0,1]−→ R and φ : [0,+∞)−→ R defined in equation (5) and (19).

For all K ∈ Vm and for all n≥ 1, we denote by ξ n
K = ξ (un

K), and by ξTm,∆ tm the corresponding piecewise
affine in space and constant in time reconstruction in HTm,∆ tm , and by ξMm,∆ tm the piecewise constant
reconstruction in XMm,∆ tm .

4.1 Time translate estimate.

We give below the time translate estimate for the family
(
ξMm,∆ tm

)
m expressed using the function ξ defined

in (5). We denote by Qtf−τ = Ω × (0, tf− τ), for all τ ∈ (0, tf).

Lemma 4.1 There exists two constants Cξ ,t and Cv,t independent of h and τ such that,∫∫
Qtf−τ

∣∣ξMm,∆ tm (x, t + τ)−ξMm,∆ tm (x, t)
∣∣2 dxdt ≤Cξ ,t (τ +∆ tm) , (49)∫∫

Qtf−τ

∣∣vMm,∆ tm (x, t + τ)− vMm,∆ tm (x, t)
∣∣2 dxdt ≤Cv,t (τ +∆ tm) , (50)

for all τ ∈ (0, tf).

Proof. We consider the quantity Am (t) defined by

Am (t) =
∫

Ω

∣∣ξMm,∆ tm (x, t + τ)−ξMm,∆ tm (x, t)
∣∣2 dx, for all t ∈ (0, tf− τ) ,

which implies, that ∫∫
Qtf−τ

∣∣ξMm,∆ tm (x, t + τ)−ξMm,∆ tm (x, t)
∣∣2 dxdt =

∫ tf−τ

0
Am (t) dt.

For t ∈ (0, tf], we denote by ν (t) ∈ {0, . . . ,N} the unique positive integer such that tν(t) < t ≤ tν(t+τ), so
that, we can rewrite Am (t) as
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Am (t) = ∑
K∈Vm

(
ξ

ν(t+τ)+1
K −ξ

ν(t)+1
K

)2
mK , for all t ∈ (0, tf− τ) .

We observe, using the definition (5) of the function ξ , that

(
ξ

ν(t+τ)+1
K −ξ

ν(t)+1
K

)2
≤C

(
uν(t+τ)+1

K −uν(t)+1
K

)
×
(

ξ (uν(t+τ)+1
K )−ξ (uν(t)+1

K )
)

=C
ν(t+τ)

∑
n=ν(t)+1

(
un+1

K −un
K
)(

ξ (uν(t+τ)+1
K )−ξ (uν(t)+1

K )
)
.

Now, using the scheme (14) then gathering by edges and using the weighted Young inequality, we obtain

Am (t)≤C
ν(t+τ)

∑
n=ν(t)+1

∆ tm ∑
σKL∈Em

∆ tm

[(
ΛKLan+1

KL
(
un+1

K −un+1
L
)
−ΛKLµ

n+1
KL an+1

KL
(
vn+1

K − vn+1
L
))

×
((

ξ (uν(t)+1
K )−ξ (uν(t)+1

L )
)
−
(

ξ (uν(t+τ)+1
K )−ξ (uν(t+τ)+1

L )
))]

+C
ν(t+τ)

∑
n=ν(t)+1

∆ tm ∑
K∈Vm

mK f
(
un+1

K
)(

ξ (uν(t+τ)+1
K )−ξ (uν(t)+1

K )
)

≤C (A1,m (t)+A2,m (t)+A3,m (t)+A4,m (t)+A5,m (t)) ,

where, we have set

A1,m (t) =
ν(t+τ)

∑
n=ν(t)+1

∆ tm ∑
σKL∈Em

|ΛKL|an+1
KL
(
un+1

K −un+1
L
)2
,

A2,m (t) =
‖a‖2

∞
+‖χ‖2

∞

2

ν(t+τ)

∑
n=ν(t)+1

∆ tm ∑
σKL∈Em

|ΛKL|
(

ξ (uν(t)+1
K )−ξ (uν(t)+1

L )
)2

,

A3,m (t) =
‖a‖2

∞
+‖χ‖2

∞

2

ν(t+τ)

∑
n=ν(t)+1

∆ tm ∑
σKL∈Em

|ΛKL|
(

ξ (uν(t+τ)+1
K −ξ (uν(t+τ)+1

L )
)2

,

A4,m (t) =
ν(t+τ)

∑
n=ν(t)+1

∆ tm ∑
σKL∈Em

|ΛKL|
(
vn+1

K − vn+1
L
)2
,

A5,m (t) =
ν(t+τ)

∑
n=ν(t)+1

∆ tm ∑
K∈Vm

mK
∣∣ f (un+1

K
)∣∣ ∣∣∣ξ (uν(t+τ)+1

K )−ξ (uν(t)+1
K )

∣∣∣ .
Now, we introduce the characteristic function ρ (n, t,τ) = 1 if t < n∆ tm≤ t+τ and ρ (n, t,τ) = 0 otherwise.
Let (an)n∈{0,...,N} be a family of non negative real values, we have the following properties

∫ tf−τ

0
ρ (n, t,τ) dt =

∫ tn

tn−τ

dt = τ,
ν(t+τ)

∑
n=ν(t)+1

∆ tm = ∑
n; t<tn<t+τ

tn+1− tn ≤ τ +∆ tm,

and∫ tf−τ

0

ν(t+τ)

∑
n=ν(t)+1

∆ tman+1 dt =
∫ tf−τ

0

N

∑
n=0

∆ tman+1
ρ (n, t,τ) dt = τ

N

∑
n=0

∆ tman+1.

Using these properties, Lemma 3.3, the a priori estimates (35)–(36) on un+1
K and vn+1

K , and the L∞ bound of
the function ξ , one can deduce that
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0
A1,m (t)≤C (τ +∆ tm) ,

∫ tf−τ

0
A4,m (t)≤C (τ +∆ tm) , and

∫ tf−τ

0
A5,m (t)≤C (τ +∆ tm) ,

for some constant C > 0. It remains to show that
∫ tf−τ

0 A2,m (t) ≤ C (τ +∆ tm), and
∫ tf−τ

0 A3,m (t) ≤
C (τ +∆ tm) , for some constant C > 0.
Consider the function ζ defined by ζ (n, t) = 1 if ν (t) = n and ζ (n, t) = 0 otherwise. We have the following
result (see e.g. [18])

∫ tf−τ

0

(
ν(t+τ)

∑
n=ν(t)+1

∆ tm

)
aν(t+τ)+1 dt ≤ (τ +∆ tm)

∫ tf−τ

0

N

∑
m=0

am+1
ζ (m, t + τ) dt

= (τ +∆ tm)
N

∑
m=0

am+1
∫ tm+1−τ

tm−τ

dt = (τ +∆ tm)
N

∑
m=0

am+1
∆ tm.

One can conclude the proof of estimate (49) using this property, Lemma 3.1, and Lemma 3.3. The proof of
estimate (50) is similar.

We now extend by zero the functions ξMm,∆ tm and ξTm,∆ tm outside of Qtf and give the time translate estimate
over R3 on ξMm,∆ tm . Indeed, there exists a constant C > 0 independent of m and τ such that∫

R

∫
R2

∣∣ξMm,∆ tm (x, t + τ)−ξMm,∆ tm (x, t)
∣∣2 dxdt ≤C (τ +∆ tm) , for all τ ∈ (0, tf) .

Proof. Using the extension by zero of ξMm,∆ tm outside of Qtf , one has

∫
R

∫
R2

∣∣ξMm,∆ tm (x, t + τ)−ξMm,∆ tm (x, t)
∣∣2 dxdt =

∫∫
Qtf−τ

∣∣ξMm,∆ tm (x, t + τ)−ξMm,∆ tm (x, t)
∣∣2 dxdt

+
∫ tf

tf−τ

∫
Ω

∣∣ξMm,∆ tm (x, t)
∣∣2 dxdt.

One can deduce the proof using Lemma 4.1 and the L∞ bound of the function ξ .

We give now the space translate estimate on ξMm,∆ tm .

4.2 Space translate estimate.

Lemma 4.2 There exists two constants Cξ ,s and Cv,s independent of m and y such that,∫ tf

0

∫
R2

∣∣ξMm,∆ tm (x+y, t)−ξMm,∆ tm (x, t)
∣∣dxdt ≤Cξ ,s (|y|+hm) , (51)∫ tf

0

∫
R2

∣∣vMm,∆ tm (x+y, t)− vMm,∆ tm (x, t)
∣∣dxdt ≤Cξ ,s (|y|+hm) , (52)

for all y ∈ R2.

Proof. We follow the same proof as in [6]. We first state that∫ tf

0

∫
R2

∣∣ξTm,∆ tm (x+y, t)−ξTm,∆ tm (x, t)
∣∣dxdt ≤C |y| , for all y ∈ R2,

then, using the extension by zero of ξMm,∆ tm outside of Qtf and the triangle inequality, we get
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0

∫
R2

∣∣ξMm,∆ tm (x+y, t)−ξMm,∆ tm (x, t)
∣∣dxdt ≤

∫ tf

0

∫
R2

∣∣ξTm,∆ tm (x+y, t)−ξTm,∆ tm (x, t)
∣∣dxdt

+2
∫∫

Qtf

∣∣ξMm,∆ tm (x, t)−ξTm,∆ tm (x, t)
∣∣dxdt.

One can conclude the proof of estimate (51) using the following estimate which is a direct consequence of
[6, Lemma A.2] ∫∫

Qtf

∣∣ξMm,∆ tm (x, t)−ξTm,∆ tm (x, t)
∣∣dxdt ≤Chm. (53)

The proof of estimate (52) follows the same lines. This ends the proof of the lemma.

Lemma 4.3 (Strong convergence in L1 (Qtf)) There exists a subsequence of the sequence
(

ξ (u)Mm,∆ tm

)
m≥1

(resp.
(
vMm,∆ tm

)
m≥1) which converges in L1 (Qtf) to some function ξ (u) ∈ L2

(
0, tf;H1 (Ω)

)
(resp. v ∈

L2
(
0, tf;H1 (Ω)

)
).

Proof. Let us consider the function ξMm,∆ tm on Qtf and its extension by zero outside of Qtf . Lemma 4.1,

Lemma 4.2, and the boundedness of ξ due to Lemma 3.1 ensure that the sequence
(

ξ (u)Mm,∆ tm

)
m≥1

verifies the assumptions of the Kolmogorov compactness criterion (see e.g. [19, 15]), where the third item
of the theorem is satisfied using the triangle inequality: for any η ∈ R2 and τ ∈ R,∥∥ξMm,∆ tm (·+η , ·+ τ)−ξMm,∆ tm (·, ·)

∥∥
L1(R2×R) ≤

∥∥ξMm,∆ tm (·+η , ·)−ξMm,∆ tm (·, ·)
∥∥

L1(R2×R)

+
∥∥ξMm,∆ tm (·, ·+ τ)−ξMm,∆ tm (·, ·)

∥∥
L1(R2×R) .

Kolmogorov’s theorem ensures that the sequence
(

ξ (u)Mm,∆ tm

)
m≥1

is relatively compact in L1 (Qtf), that

implies the existence of a subsequence of
(

ξ (u)Mm,∆ tm

)
m≥1

such that

ξ (u)Mm,∆ tm −→ ξ
? strongly in L1 (Qtf) . (54)

Furthermore, as ξ is a continuous and non decreasing function on [0,1], there exists a unique u(x, t) defined
by

u(x, t) = ξ
−1 (ξ ? (x, t)) , for a.e. (x, t) ∈ Qtf−τ .

Since ξ−1 is well defined and continuous, applying the L∞ bound on uMm,∆ tm and the dominated conver-
gence theorem to uMm,∆ tm (x, t) = ξ−1

(
ξMm,∆ tm (x, t)

)
, ∀(x, t) ∈ ωK× (0, tf) , ∀K ∈ Vm, we get

uMm,∆ tm −→ u a.e. in Qtf and strongly in Lp (Qtf) for p <+∞.

It remains to show that ξ (u) ∈ L2
(
0, tf;H1 (Ω)

)
. Indeed, plugging estimate (36) into estimate (22), one

gets that ∇ξ (u)Tm,∆ tm is uniformly bounded in
(
L2 (Qtf)

)2. It follows that
(

ξ (u)Tm,∆ tm

)
m

is bounded

in L2
(
0, tf;H1 (Ω)

)
since ξ (u)Tm,∆ tm is uniformly bounded in L2 (Qtf). Consequently, the sequence(

ξ (u)Tm,∆ tm

)
m

converges weakly, up to an unlabeled subsequence, to a function ξ̃ in L2
(
0, tf;H1 (Ω)

)
.

According to estimate (53), the sequences
(

ξ (u)Tm,∆ tm

)
m

and
(

ξ (u)Mm,∆ tm

)
m

have the same limit, as a

consequence ξ (u) = ξ ? = ξ̃ ∈ L2
(
0, tf;H1 (Qtf)

)
.

5 Identification as a weak solution

It remains to be shown that (u,v) satisfies the weak formulation (6)–(7). To do this, we consider a test
function ψ ∈ D

(
Ω × [0, tf)

)
, and denote by ψn

K = ψ (xK , tn), for all K ∈ Vm and all n ∈ {0, . . . ,Nm}. Let
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us focus on the convergence of the first equation of scheme (14)–(21), i.e., we show that equation (6) is
verified when m→ ∞. We note that the convergence of the second equation of the scheme is similar and
major difficulties that we can met are discussed hereafter.

Multiplying the first equation (14) by ∆ tmψn
K and summing over n ∈ {0, . . . ,Nm} and K ∈ Vm yields,

after a reorganization of the sum,
Am +Bm +Cm +Dm = Fm, (55)

where

Am =
Nm

∑
n=0

∑
K∈Vm

(
un+1

K −un
K
)

ψ
n
KmK , Fm =

Nm

∑
n=0

∆ tm ∑
K∈Vm

f
(
un+1

K
)

ψ
n
KmK ,

Bm =
Nm

∑
n=0

∆ tm ∑
σKL∈Em

ΛKL

(
an+1

KL
(
un+1

K −un+1
L
)
−
√

an+1
KL

(
ξ
(
un+1

K
)
−ξ

(
un+1

L
)))

(ψn
K−ψ

n
L) ,

Cm =
Nm

∑
n=0

∆ tm ∑
σKL∈Em

ΛKL

√
an+1

KL

(
ξ
(
un+1

K
)
−ξ

(
un+1

L
))

(ψn
K−ψ

n
L) ,

Dm =−
Nm

∑
n=0

∆ tm ∑
σKL∈Em

ΛKLµ
n+1
KL an+1

KL
(
vn+1

K − vn+1
L
)
(ψn

K−ψ
n
L) .

Accumulation term

Note that ψ
Nm+1
K = 0 for all K ∈ Vm, then, performing summation by parts in time, the term Am can be

rewritten

Am =
Nm

∑
n=0

∑
K∈Vm

un+1
K ψ

n
KmK−

Nm

∑
n=1

∑
K∈Vm

un
Kψ

n
KmK− ∑

K∈Vm

u0
Kψ

0
KmK

=−
Nm

∑
n=0

∆ tm ∑
K∈Vm

un+1
K

ψ
n+1
K −ψn

K
∆ tm

mK− ∑
K∈Vm

u0
Kψ

0
KmK

=−
∫∫

Qtf

uMm,∆ tm (x, t)∂tψMm,∆ tm (x, t)dxdt−
∫

Ω

uMm,∆ tm (x,0)ψMm,∆ tm (x,0)dx.

Thanks to the regularity of ψ , and the convergence in L1 (Qtf) of the sequence
(
uMm,∆ tm

)
m towards u, it

follows that (see e.g. [17])

Am −→−
∫∫

Qtf

u(x, t)∂tψ (x, t)dxdt−
∫

Ω

u(x,0)ψ (x,0)dx, as m→ ∞.

Diffusion term

Let us first prove that lim
m→∞

Bm = 0.

For all σKL ∈ Em and all n ∈ {0, . . . ,Nm}, we denote by an+1
KL the quantity defined by

an+1
KL =


(

ξ (un+1
K )−ξ (un+1

L )

un+1
K −un+1

L

)2

if un+1
K 6= un+1

L ,

a
(
un+1

K

)
if un+1

K = un+1
L .
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Then, the term Bm rewrites

Bm =
Nm

∑
n=0

∆ tm ∑
σKL∈Em

ΛKL

√
an+1

KL

(√
an+1

KL −
√

an+1
KL

)(
un+1

K −un+1
L
)
(ψn

K−ψ
n
L) .

Now, using the Cauchy-Schwarz inequality, we get

|Bm| ≤

(
Nm

∑
n=0

∆ tm ∑
σKL∈Em

|ΛKL|an+1
KL
(
un+1

K −un+1
L
)2
) 1

2

×Rm
1
2 ,

where, Rm is given by

Rm =
Nm

∑
n=0

∆ tm ∑
σKL∈Em

|ΛKL|
(√

an+1
KL −

√
an+1

KL

)2

(ψn
K−ψ

n
L)

2 .

Using Lemma 3.3 and Proposition 3.7, one has |Bm| ≤CRm
1
2 . Hence, in order to prove that lim

m→∞
Bm = 0,

it suffices to prove that lim
m→∞

Rm = 0.
For all T ∈Tm, we denote by

ξ
n+1
T = max

x∈T

(
ξ (p)Tm,∆ tm

(
x, tn+1)) , ξ

n+1
T

= min
x∈T

(
ξ (p)Tm,∆ tm

(
x, tn+1)) ,

and for all (x, t) ∈ T ×
(
tn, tn+1

)
, by

ξ Tm,∆ tm (x, t) = ξ
n+1
T , ξ

Tm,∆ tm
(x, t) = ξ

n+1
T

.

Consider the uniform continuous function
√

a◦ξ−1 defined on the closed bounded interval [0,ξ (1)], and
let η be its modulus of continuity, then we have∣∣∣∣√an+1

KL −
√

an+1
KL

∣∣∣∣≤ η

(
ξ

n+1
T −ξ

n+1
T

)
, for all σKL ∈ ET . (56)

Therefore, using this inequality in the definition of Rm, we get

0≤Rm ≤Qm (57)

where,

Qm =
Nm

∑
n=0

∆ tm ∑
T∈Tm

(
η

(
ξ

n+1
T −ξ

n+1
T

))2
∑

σKL∈ET

∣∣λ T
KL
∣∣(ψn

K−ψ
n
L)

2 , (58)

and λ T
KL is the constant defined by (24).

Thanks to Lemma 3.2, one can deduce that the inequality (57) implies that

0≤Rm ≤C
∫∫

Qtf

η

(
ξ Tm,∆ tm (x, t)−ξ

Tm,∆ tm
(x, t)

)
dxdt,

where C is independent of hm, and ∆ tm. Therefore, it suffices to show that ξ Tm,∆ tm (x, t)−ξ
Tm,∆ tm

(x, t)→ 0
a.e. in Qtf to consequently prove that lim

m→∞
Rm = 0. By a simple generalization of [6, Lemma A.1] and by

the help of Lemma 3.1 and Proposition 3.7, it follows that
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∫∫
Qtf

∣∣∣ξ Tm,∆ tm (x, t)−ξ
Tm,∆ tm

(x, t)
∣∣∣dxdt ≤Ch

(∫∫
Qtf

∣∣∣∇ξ (u)Tm,∆ tm (x, t)
∣∣∣2 dxdt

) 1
2

≤Ch.

As a consequence, up to a subsequence, one has

lim
m→∞

Bm = lim
m→∞

Rm = lim
m→∞

Qm = 0.

We now focus on the term Cm and prove that

lim
m→∞

Cm =
∫∫

Qtf

Λ (x)a(u)∇u ·∇ψdxdt.

To do this, we introduce the term C ′m defined by

C ′m :=
∫∫

Qtf

ΘTm,∆ tmΛ (x)∇ξ (u)Tm,∆ tm ·∇ψTm,∆ tm (·, t−∆ tm)dxdt,

where ΘTm,∆ tm is a piecewise constant function (on the triangular mesh) function given by

ΘTm,∆ tm (x, t) =
√

a◦ξ−1
(
ϒTm,∆ tm (x, t)

)
, ∀x ∈ T, ∀t ∈ (tn, tn+1], ∀T ∈Tm,

where ϒTm,∆ tm is defined by

ϒTm,∆ tm (x, t) = ξ (u)Tm,∆ tm (xT , t) , ∀x ∈ T, ∀t ∈ (tn, tn+1], ∀T ∈Tm.

Using again a slight generalization of [6, Lemma A.1] as well as the boundedness of the continuous function√
a◦ξ−1, we obtain

ϒTm,∆ tm −→ ξ (u) in L2 (Qtf) as m→ ∞,

ΘTm,∆ tm −→
√

a(u) in L2 (Qtf) as m→ ∞.
(59)

It remains to verify that |Cm−C ′m| −→ 0, when m tends to infinity.
We denote by

an+1
T =

(
ΘTm,∆ tm

(
xT , tn+1))2

, ∀T ∈Tm, ∀n ∈ {0, . . . ,Nm}.

The discretization of the term C ′m is written as

C ′m =
Nm

∑
n=0

∆ tm ∑
T∈Tm

√
an+1

T ∑
σKL∈ET

λ
T
KL
(
ξ
(
un+1

K
)
−ξ

(
un+1

L
))

(ψn
K−ψ

n
L) .

Similar arguments as for obtaining inequality (56) yield∣∣∣∣√an+1
KL −

√
an+1

T

∣∣∣∣≤ η

(
ξ

n+1
T −ξ

n+1
T

)
, for all σKL ∈ ET .

Therefore, using the Cauchy-Schwarz inequality, Lemma 3.1, Lemma 3.2, and Proposition 3.7, we deduce
that there exists a constant C does not depend on hm such that

∣∣Cm−C ′m
∣∣2 ≤( Nm

∑
n=0

∆ tm ∑
T∈Tm

η

(
ξ

n+1
T −ξ

n+1
T

)
∑

σKL∈ET

∣∣λ T
KL
∣∣ ∣∣ξ (un+1

K
)
−ξ

(
un+1

L
)∣∣ |ψn

K−ψ
n
L |
)2

≤Qm×
Nm

∑
n=0

∆ tm ∑
T∈Tm

∑
σKL∈ET

∣∣λ T
KL
∣∣ ∣∣ξ (un+1

K
)
−ξ

(
un+1

L
)∣∣2 ≤CQm −→ 0 as m→ ∞.
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Convection term

For all T ∈Tm, we define the piecewise constant function κTm,∆ tm by

κTm,∆ tm (x, t) = χ ◦ξ
−1 (

ϒTm,∆ tm (x, t)
)
, ∀x ∈ T, ∀t ∈ (tn, tn+1].

Using the same guidelines as for the convergence results (59), one has

κTm,∆ tm −→ χ (u) in L2 (Qtf) as m→ ∞.

We introduce the term

D ′m :=−
∫∫

Qtf

κTm,∆ tmΛ (x)∇vTm,∆ tm ·∇ψTm,∆ tm (·, t−∆ tm)dxdt.

Thanks to the weakly convergence in L2 (Qtf) of the sequence ∇vTm,∆ tm towards ∇v, and to the uniform
convergence of ∇ψTm,∆ tm towards ∇ψ , we obtain

D ′m −→−
∫∫

Qtf

χ (u)Λ (x)∇v ·∇ψdxdt as m→ ∞.

Let us prove, using the same guidelines as before, that |Dm−D ′m| −→ 0, when m tends to infinity.
We denote by

χ
n+1
T = κTm,∆ tm

(
xT , tn+1) , ∀T ∈Tm,∀n ∈ {0, . . . ,Nm},

µ
n+1
T = µTm,∆ tm

(
xT , tn+1), ∀T ∈Tm,∀n ∈ {0, . . . ,Nm}.

Therefore,

Dm−D ′m =
Nm

∑
n=0

∆ tm ∑
T∈Tm

∑
σKL∈ET

(
an+1

T µ
n+1
T −an+1

KL µ
n+1
KL
)

λ
T
KL
(
vn+1

K − vn+1
L
)
(ψn

K−ψ
n
L) .

Thanks to the the triangle inequality and to the existence of a continuity moduli η and δ of the continuous
functions

√
a◦ξ−1 and µ ◦ξ−1 respectively, one has∣∣an+1

KL µ
n+1
KL −an+1

T µ
n+1
T

∣∣≤ µ
n+1
KL

∣∣an+1
KL −an+1

T

∣∣+an+1
T
(
µ

n+1
KL −µ

n+1
T
)

≤C
(

η

(
ξ

n+1
T −ξ

n+1
T

)
+δ

(
ξ

n+1
T −ξ

n+1
T

))
,

where the constant C does not depend on hm. Therefore, using the Cauchy-Schwarz inequality, Lemma 3.1,
Lemma 3.2, and Proposition 3.7, we deduce that there exists a constant C independent of hm such that

∣∣Dm−D ′m
∣∣2 ≤C (Qm +Wm)×

Nm

∑
n=0

∆ tm ∑
T∈Tm

∑
σKL∈ET

∣∣λ T
KL
∣∣ ∣∣vn+1

K − vn+1
L

∣∣2 ,
where Qm is given by equation (58), and Wm is given by

Wm =
Nm

∑
n=0

∆ tm ∑
T∈Tm

(
δ

(
ξ

n+1
T −ξ

n+1
T

))2
∑

σKL∈ET

∣∣λ T
KL
∣∣(ψn

K−ψ
n
L)

2 .

Now, using the same proof as for the diffusion term, one can deuce that Wm ≤Chm. Therefore

lim
m→∞

∣∣Dm−D ′m
∣∣= 0,
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and consequently,

lim
m→∞

Dm =−
∫∫

Qtf

χ (u)Λ (x)∇v ·∇ψdxdt.

Reaction term

We would now like to show that

Fm −→
∫∫

Qtf

f (u(x, t))ψ (x, t)dxdt as m→ ∞.

For this purpose, we denote, for all K ∈ Vm and for all n≥ 1, by f n
K = f (un

K), and by fMm,∆ tm the piecewise
constant reconstruction in XMm,∆ tm . Thus we have

Fm =
∫∫

Qtf

fMm,∆ tmψMm,∆ tm (·, t−∆ tm)dxdt −→
∫∫

Qtf

f (u(x, t))ψ (x, t)dxdt as m→ ∞,

since f (u)Mm,∆ tm converges strongly in L2 (Qtf) towards f (u), and as ψMm,∆ tm converges uniformly to-
wards ψ . This ends the proof of Theorem 2.1.

6 Numerical results

In this section, we establish various 2–D numerical results provided by the nonlinear CVFE scheme (14),
(21). Newton’s algorithm is carried out for the implementation of the scheme, coupled with a biconjugate
gradient method to solve linear systems arising from the Newton algorithm. We provide three tests to show
the effectiveness of the nonlinear CVFE scheme (14), (21). For these tests, we consider the following data:
Lx = 1, Ly = 1 (the length and the width of the domain). We fix: ∆ t = 0.002, α = 0.01, β = 0.05, a(u) =
duu(1−u), du = 0.0005, χ (u) = ζ × (u(1−u))2, ζ = 0.05. By definition, we have µ (u) = ζ

du
u(1−u)

then, the numerical flux function µ
n+1
KL is given using the following functions:

µ↑ (z) = µ

(
min{z, 1

2
}
)
, and µ↓ (z) = µ

(
max{z, 1

2
}
)
−µ

(
1
2

)
, ∀z ∈ (0,1)× (0,1) .

Unless stated otherwise and throughout the tests, we assume that f (u) = 0, that the initial conditions are
defined by regions, and we assume zero-flux boundary conditions. For instance, the cell density is ini-
tially defined by u0 (x,y) = 1 in the square region given by (x,y) ∈ [0.45, 0.55] and 0 otherwise. The
initial chemeoattractant concentration is defined by v0 (x,y) = 5 in the space region given by (x,y) ∈
[0.2, 0.3]× [0.45, 0.55]∪ [0.45, 0.55]× [0.2, 0.3]∪ [0.45, 0.55]× [0.7, 0.8]∪ [0.7, 0.8]× [0.45, 0.55].

Test 1 (Weak anisotropic case). In this test, we assume that the diffusion tensors are given by

Λ(x) =
(

1 0
0 θ

)
, D(x) = d

(
1 0
0 1

)
, d = 0.0001.

Further, we consider an admissible triangular primary mesh made of 14 336 triangles, the corresponding
Donald dual mesh consists of 7 297 dual control volumes. In a admissible triangular mesh, all the angles
of triangles are acute, then one can deduce that the maximum principle is verified for v since the trans-
missibility coefficients are nonnegative, which it is not the case for u. In Tab. 1, we present minimum and
maximum values obtained with each of the scheme (14)–(15), the nonlinear CVFE scheme (14),(21), and
the finite volume scheme.
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scheme (14)–(15) scheme (14),(21) FV scheme
After 1 iteration Min. Val. u 0.0 0.0 0.0

θ = 1 Max. Val. u 1.0 1.0 1.0
After 10 iterations Min. Val. u 0.0 0.0 0.0

θ = 1 Max. Val. u 0.971110 1.0 1.0
After 1 iteration Min. Val. u −1.73001×10−3 8.68789×10−20 —

θ = 5 Max. Val. u 0.99722922 1.0 —
After 10 iterations Min. Val. u −1.62500×10−2 0.00 —

θ = 5 Max. Val. u 0.9715705 1.0 —
After 1 iteration Min. Val. u −4.46953×10−3 6.30555×10−16 —

θ = 10 Max. Val. u 1.00018368 1.0 —
After 10 iterations Min. Val. u −3.91245×10−2 6.30554×10−16 —

θ = 10 Max. Val. u 0.98342428 0.9999999 —

Table 1 Numerical results after 1 and 10 iterations.

Fig. 2 Meshes: admissible mesh for Test 1(left), initial primal mesh for Test 2 and 3 (center) and barycentric dual mesh for
Test 2 and 3 (right).

Test 2 (Weak anisotropic case/obtuse angles). In this test, we consider a general unstructured mesh that
contains obtuse angles, this mesh is made of 5 193 triangles and 2 665 dual control volumes. The discrete
maximum principle is not guarantied for v, hence we cannot expect the maximum principle for u since the
computation of u depends on the values of v, for that we consider the nonlinear discretization (21) of v.

Fig. 3 Initial condition for the cell density u (left) with 0 ≤ u ≤ 1 and for the chemeoattractant concentration v (right) with
0≤ v≤ 5.

The diffusion tensors are defined, for all x ∈ (0,1)× (0,1), by

Λ(x) =
(

7 2
2 10

)
, D(x) = d

(
1 0
0 1

)
, d = 0.0001.

Figure 3 represents initial distributions of the cell density u and the chemeoattractant concentration v
over the initial triangular mesh as well as the corresponding dual mesh.

Figures 4–5 represent the evolution of the cell density at time t = 0.4, t = 1.4, t = 2.4, and t = 4.
At moment t = 0.4, it is clear that the cell density diffuses in the space without any interactions with the
chemeoattractant which diffuses uniformly in the space. Then, after a while, and when the chemeoattractant
diffusion reaches the cell density location, we see that the latter changes its direction to be absorbed by the
chemeoattractant located vertically. This process continues and the cells accumulate into the location of the
chemeoattractant and finally we obtain the cell density aggregations as shown at t = 4.
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Fig. 4 Evolution of the cell density u at time t = 0.4 with 0≤ u≤ 0.667 (left), and at time t = 1.4 with 0≤ u≤ 0.632(right).

Fig. 5 Evolution of the cell density u at time t = 2.4 with 0≤ u≤ 0.972 (left), and at time t = 4 with 0≤ u≤ 0.987(right).

Test 3 (Anisotropic case/obtuse angles). In this test, we consider an unstructured mesh consisting of 15
568 primal triangles and 7 912 dual control dual volumes. Further, we assume that the diffusion tensors are
anisotropic and are given by:

Λ(x) =
(

8 −7
−7 20

)
, D(x) = d

(
1 0
0 3

)
, d = 0.0001.

CVFE scheme: (14)–(15) CVFE scheme: (14),(21)
Min. Val. u 0.0 0.0

After 1 iteration Max. Val. u 1.0 1.0
Min. Val. v -1.141912E-002 1.922764E-051
Max. Val. v 5.012383 4.999982
Min. Val. u 0.0 0.0

After 200 iterations Max. Val. u 0.5298226 0.5312562
Min. Val. v -1.731068E-003 1.297192E-080
Max. Val. v 4.8053827 4.8018742
Min. Val. u 0.0 0.0

After 1000 iterations Max. Val. u 0.9957580 0.9974757
Min. Val. v 6.265859E-023 3.171769E-080
Max. Val. v 2.961761 2.910828

Table 2 Numerical results after 1, 200 and 1000 iterations over an unstructured mesh with obtuse angles.

Table 2 provides a comparison between the nonlinear CVFE scheme coupled on the one hand with the
discretization (15) of v and with the discretization (21) of v on the other hand. We see that the discretiza-
tion (21) carries out a better approximation than the discretization (15) in terms of ensuring the discrete
maximum principle property.
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