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Visual geo-localization of non-photographic
depictions via 2D-3D alignment

Mathieu Aubry, Bryan Russell and Josef Sivic

Abstract This chapter describes a technique that can geo-localize arbitrary 2D
depictions of architectural sites, including drawings, paintings and historical pho-
tographs. This is achieved by aligning the input depiction with a 3D model of the
corresponding site. The task is very difficult as the appearance and scene structure
in the 2D depictions can be very different from the appearance and geometry of
the 3D model, e.g., due to the specific rendering style, drawing error, age, lighting
or change of seasons. In addition, we face a hard search problem: the number of
possible alignments of the depiction to a set of 3D models from different architec-
tural sites is huge. To address these issues, we develop a compact representation of
complex 3D scenes. 3D models of several scenes are represented by a set of discrim-
inative visual elements that are automatically learnt from rendered views. Similar to
object detection, the set of visual elements, as well as the weights of individual
features for each element, are learnt in a discriminative fashion. We show that the
learnt visual elements are reliably matched in 2D depictions of the scene despite
large variations in rendering style (e.g. watercolor, sketch, historical photograph)
and structural changes (e.g. missing scene parts, large occluders) of the scene. We
demonstrate that the proposed approach can automatically identify the correct archi-
tectural site as well as recover an approximate viewpoint of historical photographs
and paintings with respect to the 3D model of the site.
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Fig. 1 Our system automatically geo-localizes paintings, drawings, and historical photographs by
recovering their viewpoint with respect to a geo-referenced 3D model of the depicted architec-
tural site. Here geo-localized paintings of Notre Dame in Paris are visualized in the Google Earth
geobrowser.

1 Introduction

In this work we seek to automatically geo-localize historical photographs and non-
photographic renderings, such as paintings and line drawings, by matching them
with a set of geo-referenced 3D models. Specifically, we wish to establish a set of
point correspondences between local structures on the 3D models and their respec-
tive 2D depictions. The established correspondences will in turn allow us to identify
the correct architectural site and find an approximate viewpoint of the 2D depiction
with respect to the identified 3D model, thus geo-localizing the input depiction. We
focus on depictions that are, at least approximately, perspective renderings of the 3D
scene. Example results are shown in figure 1. We show that our alignment method
works with complex textured 3D models obtained by recent multi-view stereo re-
construction systems [22] as well as with simplified models obtained from 3D mod-
eling tools such as Trimble 3D Warehouse that often appear in geobrowsing tools
such as Google Earth.

Why is this task important? First, non-photographic depictions are plentiful and
comprise a large portion of our visual record. We wish to reason about them, and
aligning such depictions to our 3D physical world is an important step towards this
goal. Second, such depictions are often stored in archives and museums with lim-
ited access and search capabilities. Automatic large-scale geo-localization would
change the way archivists access and organize such imagery. Finally, reliable auto-
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matic image-to-3D model matching is important in domains where geo-referenced
3D models are often available, but may contain errors or unexpected changes (e.g.
something built/destroyed) [7], such as urban planning, civil engineering or archae-
ology.

The task of aligning 3D models to 2D non-photographic depictions is extremely
challenging. As discussed in prior work [41, 47], local feature matching based on
interest points (e.g. SIFT [35]) often fails to find correspondences across paintings
and photographs. First, the rendering styles across the two domains can vary con-
siderably. The scene appearance (colors, lighting, texture) and geometry depicted
by the artist can be very different from the rendering of the 3D model, e.g. due to
the depiction style, drawing error, or changes in the geometry of the scene. Second,
we face a hard search problem. The number of possible alignments of the depiction
to a large 3D model, such as a partial reconstruction of a city, is huge. Which parts
of the depiction should be aligned to which parts of the 3D model? How does one
search over the possible alignments?

To address these issues we introduce the idea of automatically discovering dis-
criminative visual elements for a 3D scene. We define a discriminative visual el-
ement to be a mid-level patch that is rendered with respect to a given viewpoint
from a 3D model with the following properties: (i) it is visually discriminative with
respect to the rest of the “visual world” represented here by a generic set of ran-
domly sampled patches, (ii) it is distinctive with respect to other patches in nearby
views, and (iii) it can be reliably matched across nearby viewpoints. We employ
modern representations and recent methods for discriminative learning of visual ap-
pearance, which have been successfully used in recent object recognition systems.
Our method can be viewed as “multi-view geometry [27] meets part-based object
recognition [18]” – here we wish to automatically discover the distinctive object
parts for a large 3D site.

We discover discriminative visual elements by first sampling candidate mid-level
patches across different rendered views of the 3D model. We cast the image match-
ing problem as a classification task over appearance features with the candidate
mid-level patch as a single positive example and a negative set consisting of a large
set of “background” patches. Note that a similar idea has been used in learning
per-exemplar distances [20] or per-exemplar support vector machine (SVM) clas-
sifiers [36] for object recognition and cross-domain image retrieval [47]. Here we
apply per-exemplar learning for matching mid-level structures between images.

For a candidate mid-level patch to be considered a discriminative visual element,
we require that (i) it has a low training error when learning the matching classi-
fier, and (ii) it is reliably detectable in nearby views via cross-validation. Critical
to the success of operationalizing the above procedure is the ability to efficiently
train linear classifiers over Histogram of Oriented Gradients (HOG) features [13]
for each candidate mid-level patch, which has potentially millions of negative train-
ing examples. In contrast to training a separate SVM classifier for each mid-level
patch, we change the loss to a square loss, similar to [5, 23]. We show that the so-
lution can be computed in closed form, which is computationally more efficient as
it does not require expensive iterative training. In turn, we show that efficient train-
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ing opens-up the possibility to evaluate the discriminability of millions of candidate
visual elements densely sampled over all the rendered views. We further show how
our formulation is related to recent work that performs linear discriminant analysis
(LDA) by analyzing a large set of negative training examples and recovering the
sample mean and covariance matrix that decorrelates the HOG features [26, 23].

The output for each discriminative visual element is a trained classifier. At run-
time, for an input depiction (e.g. a painting), we run the set of trained classifiers
in a sliding-window fashion across different scales. Detections with high responses
are considered as putative correspondences with the 3D model, from which camera
resectioning is performed. The output is a geo-localization of the input depiction in
the form of its approximate viewpoint with respect to the georeferenced 3D model.
We show that our approach is able to scale to a number of different 3D sites and
handles different input rendering styles. To evaluate our alignment procedure, we
use the publicly available dataset of [2]. First, we evaluate whether the proposed
technique can coarsely localize the input depiction by correctly identifying the 3D
model corresponding to the depicted architectural site. Second, for the correctly
coarsely localized depictions we perform a user study where human subjects are
asked to judge the goodness of the output alignment. Parts of this chapter were pre-
viously published in [2]. Here we apply the 2D-to-3D alignment technique described
in [2] to the task of automatic geo-localization of historical and non-photographic
imagery.

2 Related work

This section reviews prior work on visual geo-localization with a focus on non-
photographic and historical imagery.

Visual geo-localization using local features. Local invariant features and de-
scriptors such as SIFT [35] represent a powerful tool for matching photographs of
the same at least lightly textured scene despite changes in viewpoint, scale, illu-
mination, and partial occlusion. Without explicitly representing the 3D structure
of the scene, visual geo-localization can be cast as large-scale instance-level re-
trieval [37, 39, 48]. Local invariant features are extracted from each image in a geo-
referenced image database. The query photograph is then localized despite changes
in viewpoint or illumination by finding the best matching image in the database
and transferring its geotag [8, 12, 25, 31, 43, 50, 51]. Large 3D scenes, such as
a portion of a city [33], can be also represented as a geo-referenced 3D point
cloud with associated local feature descriptors extracted from the corresponding
photographs [30, 33, 42]. Geo-referenced camera pose of a given query photograph
can be recovered from 2D to 3D correspondences obtained by matching appearance
of local features verified using geometric constraints [27]. However, appearance
changes beyond the modeled invariance, such as significant perspective distortions,
non-rigid deformations, non-linear illumination changes (e.g. shadows), weathering,
change of seasons, structural variations or a different depiction style (photograph,
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painting, sketch, drawing) cause local feature-based methods to fail [28, 41, 47].
Greater insensitivity to appearance variation can be achieved by matching the geo-
metric or symmetry pattern of local image features [9, 28, 46], rather than the local
features themselves. However, such patterns have to be detectable and consistent
between the matched views.

Visual geo-localization via alignment of contours. Contour-based 2D to 3D
alignment methods [29, 34] rely on detecting edges in the image and aligning them
with projected 3D model contours. Such approaches are successful if scene con-
tours can be reliably extracted both from the 2D image and the 3D model. A recent
example is the work on photograph localization using semi-automatically extracted
skylines matched to clean contours obtained from rendered views of digital elevation
models [3, 4]. Contour matching was also used for aligning paintings to 3D meshes
reconstructed from photographs [41]. However, contours extracted from paintings
and real-world 3D meshes obtained from photographs are noisy. As a result, the
method requires a good initialization with a close-by viewpoint. In general, reliable
contour extraction is a hard and yet unsolved problem.

Visual geo-localization with discriminative image representations. Modern
image representations developed for visual recognition, such as HOG descrip-
tors [13], represent 2D views of objects or object parts [18] by a weighted spa-
tial distribution of image gradient orientations. The weights are learnt in a dis-
criminative fashion to emphasize object contours and de-emphasize non-object,
background contours and clutter. Such a representation can capture complex ob-
ject boundaries in a soft manner, avoiding hard decisions about the presence and
connectivity of imaged object edges. Learnt weights have also been shown to em-
phasize visually salient image structures matchable across different image domains,
and have been used to coarsely geo-localize non-photographic depictions such as
paintings or sketches using a global image descriptor [47]. Similar representation
has been used to learn architectural elements that summarize a certain geo-spatial
area by analyzing (approximately rectified) 2D street-view photographs from mul-
tiple cities [15] and to detect objects depicted in paintings which have been trained
from images [11].

Building on discriminatively-trained models for object detection, we develop
a compact representation of 3D scenes suitable for alignment and visual geo-
localization of arbitrary 2D depictions, such as paintings, drawings, or historical
photographs. In contrast to [15, 47] who analyze 2D images, our method takes ad-
vantage of the knowledge and control over the 3D model to learn a set of mid-level
3D scene elements robust to a certain amount of viewpoint variation and capable of
recovery of the (approximate) geo-referenced camera viewpoint. We show that the
learnt mid-level scene elements are reliably detectable in 2D depictions of the scene
despite large changes in appearance and rendering style.
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Fig. 2 Approach overview. In the offline stage (left) we summarize a set of given geo-referenced
3D models using a collection of discriminative visual elements. In the online stage (right) we match
the learnt visual elements to the input depiction and use the obtained correspondences to recover
the camera viewpoint with respect to the best matching 3D model.

3 Geo-localization by matching discriminative visual elements

The proposed method has two stages: first, in an offline stage we learn a set of dis-
criminative visual elements representing one or more architectural sites; second, in
an online stage a given unseen query depiction is aligned with the appropriate 3D
model by matching with the learnt visual elements. The proposed algorithm is sum-
marized in figure 2. In detail, the input to the offline stage are 3D models of multiple
architectural sites. The output is a set of view-dependent visual element detectors
able to identify specific structures of the different 3D models in various types of 2D
imagery. The approach begins by rendering a set of representative views of each 3D
model. Next, a set of visual element detectors is computed from the rendered views
by identifying scene parts that are discriminative and can be reliably detected over a
range of viewpoints. During the online stage, given an input 2D depiction, we match
with the learnt visual element detectors and use the top scoring detections to recover
a camera viewpoint with respect to the best matching 3D model.

3.1 Rendering representative views

We sample possible views of each 3D model in a similar manner to [3, 30, 41]. First,
we identify the ground plane and corresponding vertical direction. The camera po-
sitions are then sampled on the ground plane on a regular grid. For each camera
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Fig. 3 Matching as classification. Given a region and its HOG descriptor q in a rendered view
(top left) the aim is to find the corresponding region in a depiction (e.g. a painting, top right).
This is achieved by training a linear HOG-based sliding window classifier using q as a single
positive example and a large number of negative data. The classifier weight vector w is visualized
by separately showing the positive (+) and negative (-) weights at different orientations and spatial
locations. The best match x in the depiction is found as the maximum of the classification score.

position we sample 12 possible horizontal camera rotations assuming no in-plane
rotation of the camera. For each horizontal rotation we sample 2 vertical rotations
(pitch angles). Views where less than 5% of the pixels are occupied by the 3D model
are discarded. This procedure results in 7,000-45,000 views for each model depend-
ing on the size of the 3D site. Note that the rendered views form only an intermediate
representation and can be discarded after visual element detectors are extracted.

3.2 Finding and matching discriminative visual elements

3.2.1 Matching as classification

The aim is to match a given rectangular image patch q (represented by a HOG de-
scriptor [13]) in a rendered view to its corresponding image patch in the depiction, as
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illustrated in figure 3. Instead of finding the best match measured by the Euclidean
distance between the descriptors, we train a linear classifier with q as a single pos-
itive example (with label yq = +1) and a large number of negative examples xi for
i =1 to N (with labels yi = −1). The matching is then performed by finding the
patch x∗ in the depiction with the highest classification score

s(x) = w>x+b, (1)

where w and b are the parameters of the linear classifier.
Parameters w and b can be obtained by minimizing a cost function of the follow-

ing form

E (w,b) = L
(
yq,wT q+b

)
+

1
N

N

∑
i=1

L
(
yi,wT xi +b

)
, (2)

where the first term measures the loss L on the positive example q (also called “ex-
emplar”) and the second term measures the loss on the negative data. A regularizer
could be added to this cost E, but we found that was not necessary with our choice
of loss functions. A particular case of the exemplar-based classifier is the exemplar-
SVM [36, 47], where the loss L(y,s(x)) between the label y and predicted score s(x)
is the hinge-loss L(y,s(x)) = max{0,1− ys(x)} [6]. For exemplar-SVM cost (2) is
convex and can be minimized using iterative algorithms [17, 45], but this remains
computationally expensive.

3.2.2 Selection of discriminative visual elements via least squares regression

Using instead a square loss L(y,s(x)) = (y− s(x))2, similarly to [5, 23], wLS and bLS
minimizing (2) and the optimal cost E∗LS can be obtained in closed form as

wLS =
2

2+‖Φ(q)‖2 Σ
−1(q−µ), (3)

bLS =−
1
2
(q+µ)T wLS, (4)

E∗LS =
4

2+‖Φ(q)‖2 , (5)

where µ = 1
N ∑

N
i=1 xi denotes the mean of the negative examples, Σ = 1

N ∑
N
i=1(xi−

µ)(xi−µ)> their covariance and Φ is the “whitening” transformation such that

‖Φ(x)‖2 = (x−µ)>Σ
−1(x−µ). (6)

We can use the value of the optimal cost (5) as a measure of the discriminability
of a specific q. If the training cost (error) for a specific candidate visual element q
is small, this visual element can be easily separated from the negative data and thus
it is discriminative. This observation can be translated into a simple and efficient
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algorithm for ranking candidate element detectors based on their discriminability.
Given a rendered view, we consider as candidate visual elements all patches that are
local minima (in scale and space) of the training cost (5)

3.2.3 Relation to linear discriminant analysis (LDA)

An alternative way to compute w and b is to use LDA, similarly to [23, 26]. This
results in slightly different values of the parameters:

wLDA = Σ
−1(q−µn), (7)

and
bLDA =

1
2
(
µ

T
Σ
−1

µ−qT
Σ
−1q

)
. (8)

Classifiers obtained by minimizing the least squares cost function (2) or satisfying
the LDA ratio test can be used for matching a candidate visual element q to a 2D
depiction as described in equation (1). Note that the decision hyperplanes obtained
from the least squares regression, wLS, and linear discriminant analysis, wLDA, are
parallel. As a consequence, for a particular visual element q the ranking of matches
according to the matching score (1) would be identical for the two methods. In other
words, in an object detection setup [13, 26, 23] the two methods would produce
identical precision-recall curves. In our matching setup, for a given q the best match
in a particular depiction would be identical for both methods. The actual value of the
score, however, becomes important when comparing matching scores across differ-
ent visual element detectors q. In object detection, the score of the learnt classifiers
is typically calibrated on a held-out set of labeled validation examples [36].

3.2.4 Calibrated discriminative matching

We have found that calibration of matching scores across different visual elements
is important for the quality of the final matching results. Below we describe a pro-
cedure to calibrate matching scores without the need of any labelled data. First, we
found [2] that the matching score obtained from LDA produces significantly better
matching results than matching via least squares regression. Nevertheless, we found
that the raw uncalibrated LDA score favors low-contrast image regions, which have
an almost zero HOG descriptor. To avoid this problem, we further calibrate the LDA
score by subtracting a term that measures the score of the visual element q matched
to a low-contrast region, represented by zero (empty) HOG vector

scalib(x) = sLDA(x)− sLDA(0) (9)
= (q−µ)T

Σ
−1x. (10)
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Fig. 4 Examples of selected visual elements for a 3D site. Left: Selection of top ranked 50
visual elements visible from this specific view of the site. Each element is depicted as a planar
patch with an orientation of the plane parallel to the camera plane of its corresponding source
view. Right: Subset of 8 elements shown from their original viewpoints. Note that the proposed
algorithm prefers visually salient scene structures such as the two towers in the top-right or the
building in the left part of the view.

This calibrated score gives much better results on the dataset of [28], as shown in [2],
and significantly improves matching results.

3.2.5 Filtering elements unstable across viewpoint

We discard elements that cannot be reliably detected in close-by rendered views.
This filtering criterion removes many unstable elements that are, for example, am-
biguous because of repeated structures in the rendered view or cover large depth
discontinuities and hence significantly change with viewpoint. To achieve that, we
perform two additional tests on each visual element. First, to suppress potential re-
peated structures, we require that the ratio between the score of the first and second
highest scoring detection in the image is larger than a threshold of 1.04, similar
to [35]. Second, we run the discriminative elements in the views near the one where
they were defined and keep only visual elements that are successfully detected in
more than 80% of the nearby views. The definition of what exactly is a nearby view
is a difficult question, and the number of nearby views we consider varies greatly
with the viewpoint. We refer the reader to [2] for more details. This procedure
typically results in several thousand selected elements for each architectural site.
Examples of the final visual elements obtained by the proposed approach are shown
in figure 4.



Visual geo-localization of non-photographic depictions via 2D-3D alignment 11

Fig. 5 Illustration of alignment. We use the recovered discriminative visual elements to find
correspondences between the input scene depiction (left) and a geo-referenced 3D model (right).
Shown is the recovered viewpoint and inlier visual elements found via RANSAC.

3.3 Geo-localization by recovering viewpoint

In this section we describe how, given the set of discriminative visual elements
gleaned from the set of 3D models, we identify which 3D site is depicted in the
input depiction, and recover the viewpoint of the input depiction with respect to the
3D model. We assume that the depictions are perspective scene renderings and seek
to recover the camera center and the camera rotation matrix via camera resection-
ing [27]. As all 3D models are georeferenced, the recovered camera position and
viewpoint provide a geo-localization of the input depiction.

For detection, each discriminative visual element takes as input a 2D patch from
the depiction and returns as output a 3D model ID, a 3D location X on the 3D model,
a plane representing the patch extent on the 3D model centered at X, and a detec-
tor response score indicating the quality of the appearance match. Following the
matching procedure described in section 3.2.4, we form a set of putative discrimi-
native visual element matches using the following procedure. First, we apply to the
input depiction all visual element detectors from all 3D models and take the top 200
detections sorted according to the first to second nearest neighbor ratio [35], using
the calibrated similarity score (9). This selects the least ambiguous matches. Second,
we sort the 200 matches directly by score (9) and select the top 25 matches. This two
step selection process choses putative matches that are both non-ambiguous (step 1)
and have a high matching score (step 2). From each putative visual element match
we obtain 5 putative point correspondences by taking the 2D/3D locations of the
patch center and its four corners. The patch corners provide information about the
patch scale and the plane location on the 3D model, which has been shown to work
well for structure-from-motion with planar constraints [49]. At this point the puta-
tive correspondences could still match to several different 3D models. To resolve
this, we use RANSAC [19] to find the set of inlier correspondences to a camera
model with a constraint that inliers must come from the same architectural site.
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Table 1 Statistics of the dataset of historical photographs and non-photographic depictions used
for our quantitative evaluation.

S. Marco Basilica Trevi Fountain Notre Dame Total
Hist. photos 30 0 41 71

Paintings 41 34 52 127
Drawings 19 5 34 58

Engravings 9 10 20 39
Total 99 49 147 295

Among the 125 putative correspondences derived from the 25 putative matches, at
each RANSAC iteration we first select a correspondence at random, followed by
a random selection of two correspondences from the same 3D model. We use the
three points to estimate a camera matrix and then compute the number of inlier cor-
respondences to the camera matrix. We use a restricted camera model where the
intrinsics are fixed with the focal length set to the image diagonal length and the
principal point set to the center of the image. The result of this RANSAC procedure
is both a best matching 3D model and the corresponding camera matrix. The recov-
ered viewpoint geo-localizes the input depiction as well as provides an alignment of
the input depiction to the 3D model, as shown in figure 5.

4 Results

In this section we evaluate the potential of our method for geo-localizing a given
2D depiction across different architectural sites and the quality of the recovered
viewpoint. A detailed analysis of the 2D-3D instance alignment pipeline, as well as
comparisons with other methods are given in [2]. Note that this prior work aligns a
historical photograph or a non-photographic depiction to a 3D model of the depicted
site assuming the identity of the depicted site is known. Here we are interested in
the harder task of identifying the correct architectural site among a set of given 3D
models of different architectural sites.

In the following, dataset and performance measures are described in section 4.1,
quantitative evaluation is given in section 4.2 and qualitative results are shown in
section 4.3. Finally, the main failure modes are discussed in section 4.4.

4.1 Dataset and performance measures

We consider a subset of the dataset introduced in [2] consisting of 3D models
and historical photographs/non-photographic depictions of three architectural land-
marks. The dataset contains 3D models downloaded from Trimble 3D Warehouse
for the following architectural landmarks: Notre Dame of Paris, Trevi Fountain, and
San Marco’s Basilica. The 3D models consist of basic primitive shapes and have
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Table 2 The percentage of input depictions that were assigned to the correct architectural site
split across different sites (rows) and depiction styles (columns). Note that there are no historical
photographs for Trevi Fountain in the database of [2].

Paintings Historical photograph Engravings Drawings Average
S. Marco Basilica 83% 87% 89% 94% 87%

Trevi Fountain 82% - 90% 80% 84%
Notre Dame 90% 88% 85% 79% 86%

Average 86 % 87% 87% 84% 86%

a composite texture from a set of images. The 2D depictions for the three sites
were collected by [2] from the Internet and include 71 historical photographs and
224 non-photographic depictions, with 39 engravings, 58 drawings, and 127 paint-
ings. The drawings category includes color renderings and the paintings category
includes different rendering styles, such as watercolors, oil paintings, and pastels.
Table 1 shows the number of images belonging to each category across the different
sites.

We measure performance for the following two tasks. First, we evaluate the geo-
localization accuracy, which measures the percentage of input depictions that are
matched to the correct architectural site. Second, for the depictions assigned to the
correct architectural site we evaluate the quality of the resulting alignment, which is
measured by a user study via Amazon Mechanical Turk.

4.2 Quantitative evaluation

We summarized the three Trimble 3D Warehouse models with 15,000 discrimina-
tive visual elements each. For each input depiction, we applied all of the 45,000
detectors corresponding to those elements, selected the 25 most confident ones, and
performed camera resectioning using RANSAC as described in section 3.3, with the
constraint that only elements from the same site could be counted as inliers. Thus,
our output is both a specific 3D model and a viewpoint.

We first report results on the task of identifying the 3D model of the architectural
site. Table 2 shows the results separately for the three different sites and across dif-
ferent depiction styles. Despite the difficulty of the task due to the large variety of
viewpoints and styles, our method identified correctly the architectural site for 86%
of the depictions, which is much larger than the 33% chance performance.

We then evaluated the quality of the alignments for depictions that were assigned
to the correct site. To quantitatively evaluate the goodness of our alignments, we
have conducted a user study via Amazon Mechanical Turk. As in [2], the workers
were asked to judge the viewpoint similarity of the resulting alignments to their
corresponding input depictions by categorizing the viewpoint similarity as either a
(a) Good match, (b) Coarse match, or (c) No match, illustrated in figure 6. We asked
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(a) Good match (b) Coarse match (c) No match
Fig. 6 Alignment evaluation criteria. We asked workers on Amazon Mechanical Turk to judge
the viewpoint similarity of the resulting alignment to the input depiction. The workers were asked
to categorize the viewpoint similarity into one of three categories: (a) Good match – the two images
show a roughly similar view of the building; (b) Coarse match – the view may not be similar, but
the building is roughly at the same location in both images, not upside down, and corresponding
building parts can be clearly identified; (c) No match – the views are completely different, e.g.
upside down, little or no visual overlap.

˜
Fig. 7 Alignment of historical photographs of San Marco’s Square (top) and Notre Dame of Paris
(bottom) to their respective 3D models.

five different workers to rate the viewpoint similarity for each depiction and we
report the majority opinion. Table 3 shows the performance of our algorithm for the
different depiction styles. The performance varies across depiction style from 77%
of coarse/good matches for paintings to more than 90% for historical photographs
or engravings. Overall, 83% of the input depictions are at least coarsely matched.

Table 3 Viewpoint similarity user study of our algorithm across different depiction styles.

Good Coarse No
match match match

Historical photographs 74% 16% 10%
Paintings 57% 20% 23%
Drawings 59% 20% 20%

Engravings 65% 29% 6%
Average 63% 20% 17%
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Fig. 8 Example alignments of non-photographic depictions to 3D models. Notice that we are able
to align depictions rendered in different styles and having a variety of viewpoints with respect to
the 3D models.

4.3 Qualitative evaluation

Figures 7 and 8 show example alignments of historical photographs and non-
photographic depictions, respectively. Notice that the depictions are reasonably well
aligned with the 3D models, with regions on the 3D model rendered onto the cor-
responding location for a given depiction. We are able to cope with a variety of
viewpoints with respect to the 3D model as well as different depiction styles. Our
approach succeeds in recovering the approximate viewpoint in spite of these chal-
lenging appearance changes and the varying quality of the 3D models.
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(a) Scene distortion. (b) Drawing and 3D errors. (c) Major structural differ-
ences.

Fig. 9 Challenging examples successfully aligned by our method where the assumption of a per-
spective scene rendering is violated. Note that the drawing in (c) is a completely different cathedral.

(a) San Marco’s Basilica. (b) Trevi Fountain.

Fig. 10 Recovered viewpoints of some of the geo-localized depictions visualized in Google Earth.

Note that figures 7 and 8, in addition to the Trimble 3D Warehouse models, also
include alignment results using a 3D model of San Marco’s Square that was recon-
structed from a set of photographs using dense multi-view stereo [21]. While the
latter 3D model has more accurate geometry than the Trimble 3D Warehouse mod-
els, it is also much noisier along the model boundaries. This model was excluded
from the quantitative evaluation in section 4.2 as it overlaps with the San Marco
Basilica Trimble 3D Warehouse model, but we include it here to demonstrate align-
ment for different types of 3D models.

In figure 9 we show alignments for a set of challenging examples where the
assumption of a perspective rendering is significantly violated, but the proposed
approach was still able to recover a reasonable alignment. Notice the severe non-
perspective scene distortions, drawing errors, and major architectural differences
(e.g. a part of the landmark may take a completely different shape).

Figures 1 and 10 show the recovered viewpoints of several different depictions
for the three sites rendered in Google Earth. Figure 11 shows individual depictions
rendered in Google Earth, which showcases a re-photography application by allow-
ing a user to browse the depictions in the context of their modern environments.
Please see additional qualitative results on the project webpage [1].
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(a) Notre Dame

(b) San Marco’s Basilica.

(c) Trevi Fountain.

Fig. 11 Examples of geo-localized depictions visualized in Google Earth. Note that the proposed
method allows us to visualize the specific place across time and through the eyes of different artists.

4.4 Failure modes

We have identified three main failure modes of our algorithm, examples of which
are shown in figure 12. The first is due to large-scale symmetries, for example when
the front and side facade of a building are very similar. This problem is difficult to
resolve with only local reasoning. For example, the proposed cross-validation step
removes repetitive structures visible in the same view but not at different locations
of the site. The second failure mode is due to locally confusing image structures, for
example, the vertical support structures on the cathedral in figure 12 (middle) are lo-
cally similar (by their HOG descriptor) to the vertical pencil strokes on the drawing.
The learnt mid-level visual elements have a larger support than typical local invari-
ant features (such as SIFT) and hence are typically more distinctive. Nevertheless,
such mismatches can occur and in some cases are geometrically consistent with a
certain view of the 3D model. The third failure mode is when the depicted viewpoint
is not covered in the set of sampled views. This can happen for unusual viewpoints
including extreme angles, large close-ups, or cropped views. Such unusual views
are in some cases assigned to a wrong 3D site.
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Fig. 12 Example failure cases. Top: large scale symmetry. Here arches are incorrectly matched
on a building with similar front and side facades. Middle: locally confusing image structures. Here
the vertical support structures on the cathedral (right) are locally similar by their HOG descriptor to
the vertical pencil strokes on the drawing (left). Bottom: Two examples of paintings with unusual
viewpoints.

5 Conclusion

We have demonstrated that automatic geo-localization is possible for a range of
non-photographic depictions and historical photographs, which represent extremely
challenging cases for current local feature matching methods. To achieve this we
have developed an approach to compactly represent 3D models of architectural sites
by a set of visually distinct mid-level scene elements extracted from rendered views,
and have shown that they can be reliably matched in a variety of photographic
and non-photographic depictions. We have also shown an application of the pro-
posed approach to computational re-photography to automatically geo-tag and find
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an approximate viewpoint of historical photographs and paintings, which allows
for geo-browsing within Google Earth. This work is just a step towards computa-
tional reasoning about the content of non-photographic depictions. The developed
approach for extracting visual elements opens-up the possibility of efficient index-
ing for visual search of paintings and historical photographs (e.g. via hashing of the
HOG features as in [14]), or automatic fitting of complex non-perspective models
used in historical imagery [40]. It would be also interesting to investigate learn-
ing our 3D mid-level visual elements with convolutional neural network descrip-
tors [16, 24, 32, 38, 44, 52], which have recently shown promising results in object
detection in non-photographic depictions [10].
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