
HAL Id: hal-01119186
https://hal.science/hal-01119186v1

Submitted on 21 Feb 2015

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Estimation of Relative Transfer Function in the
Presence of Stationary Noise Based on Segmental Power

Spectral Density Matrix Subtraction
Xiaofei Li, Laurent Girin, Radu Horaud, Sharon Gannot

To cite this version:
Xiaofei Li, Laurent Girin, Radu Horaud, Sharon Gannot. Estimation of Relative Transfer Function
in the Presence of Stationary Noise Based on Segmental Power Spectral Density Matrix Subtraction.
ICASSP 2015 - 40th IEEE International Conference on Acoustics, Speech and Signal Processing, Apr
2015, Brisbane, Australia. pp.320 - 324, �10.1109/ICASSP.2015.7177983�. �hal-01119186�

https://hal.science/hal-01119186v1
https://hal.archives-ouvertes.fr


ESTIMATION OF RELATIVE TRANSFER FUNCTION IN THE PRESENCE OF STATIONARY

NOISE BASED ON SEGMENTAL POWER SPECTRAL DENSITY MATRIX SUBTRACTION

Xiaofei Li1, Laurent Girin1,2, Radu Horaud1

1INRIA Grenoble Rhône-Alpes
2GIPSA-Lab & Univ. Grenoble Alpes

Sharon Gannot

Faculty of Engineering

Bar-Ilan University

ABSTRACT

This paper addresses the problem of relative transfer func-

tion (RTF) estimation in the presence of stationary noise. We

propose an RTF identification method based on segmental

power spectral density (PSD) matrix subtraction. First mul-

tiple channel microphone signals are divided into segments

corresponding to speech-plus-noise activity and noise-only.

Then, the subtraction of two segmental PSD matrices leads

to an almost noise-free PSD matrix by reducing the station-

ary noise component and preserving non-stationary speech

component. This noise-free PSD matrix is used for single

speaker RTF identification by eigenvalue decomposition. Ex-

periments are performed in the context of sound source local-

ization to evaluate the efficiency of the proposed method.

Index Terms— microphone array, relative transfer func-

tion, stationary noise.

1. INTRODUCTION

The relative transfer function (RTF) is the acoustic transfer

function (ATF) ratio between a given microphone and a ref-

erence microphone [1]. It is widely used in array process-

ing, beamforming, sound source separation, and sound source

localization [2]. This paper addresses the estimation of a

multichannel RTF corresponding to a speech source of in-

terest in the presence of stationary noise. The authors of

[1] have proposed to estimate the RTF based on the station-

arity of noise signal and the non-stationarity of desired sig-

nal, whose exploitation for system identification originated in

[3]. Several successive frames are clustered into segments,

the cross power spectral density (PSD) between two chan-

nels of all the segments are combined to form an overdeter-

mined set of equations, and a least squares solution leads to

an unbiased cross-channel RTF estimate. Such an approach

has the limitation that a significant amount of noise segments

is included. An RTF identification method based on speech-

presence probability and spectral subtraction was proposed in

[4]. This method takes into account only the segments that
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have large speech presence probability, at each frequency. Its

performance depends on the accuracy of noise PSD estima-

tion. Both types of methods estimate an RTF for each chan-

nel pair separately and are suited only for the case of a single

desired signal. Other approaches include independent compo-

nent analysis, e.g., [5] which is applicable in underdetermined

scenarios, and [6] that uses sparsity.

In this paper, we propose an RTF identification method

based on segmental PSD matrix subtraction. Similarly, suc-

cessive frames are clustered into segments, then the PSD

matrix of each segment is computed. We classify segments

into two classes that have high speech power and low speech

power respectively. Since the noise signal is assumed sta-

tionary, subtracting a PSD matrix with low speech power

from a PSD matrix with high speech power leads to a quasi

noise-free segmental PSD matrix. Averaging all the segmen-

tal noise-free PSD matrices results in a matrix that compacts

speech power spectra. Inspired by [7] we then calculate the

principal eigenvector of this matrix to provide a good and ro-

bust estimation of the RTF in the case of a single speaker. To

process the segment classification, we use the minimum and

maximum statistics of the noise signal. Minimum statistics

were already proposed in [8] and in [9] for noise PSD esti-

mation, for the case where the increment between segments

is a single frame. We exploit here an analytical minimum and

maximum statistics and use an equivalent sequence length

that is suitable for any arbitrary increment between segments.

The remainder of this paper is organized as follows. Sec-

tion 2 formulates the problem and Section 3 describes the pro-

posed method. Experiments are presented in Section 4 and

Section 5 draws some conclusions.

2. PROBLEM FORMULATION

Let us consider a desired directional sound source ss(t) and a

directional1 noise source si(t) recorded by a M -microphone

array. The m-th microphone signal in the time domain is

given by

xm(t) = hs,m(t) ∗ ss(t) + hi,m(t) ∗ si(t), (1)

1The problem is formulated for a directional noise but the approach is

extendable to diffuse stationary noise.



where hs,m(t) and hi,m(t) are the respective source-to-

microphone acoustic impulse responses and ∗ denotes con-

volution. Applying the short-time Fourier transform (STFT),

(1) is approximated in the time-frequency (TF) domain as

x(l, ω) = hs(ω)ss(l, ω) + hi(ω)si(l, ω), (2)

where l = 1 . . . L is the frame index, ω = 1 . . .Ω is the fre-

quency index, x(l, ω) is M -channel STFT spectrum of micro-

phone signals, ss(l, ω) and si(l, ω) are the STFT spectra of

the two sources, and hs(ω) and hi(ω) are the (time-invariant)

M -channel acoustic transfer functions from the desired and

noise sources to the microphone array, respectively. The prob-

lem that we address is the estimation of the RTF of the desired

source, i.e., a relative, arbitrarily normalized version of the

hs(ω) vector for each frequency ω.

3. THE PROPOSED METHOD

3.1. Segmental PSD Matrix Subtraction

In order to identify the RTF of the desired source, we propose

the following PSD matrix subtraction method. First let us de-

fine a segment as the concatenation of W successive frames:

Xl′(ω) = [x((l′−1)R+1, ω), . . . ,x((l′−1)R+W, ω)], (3)

where R is the segment increment and l′ = 1 . . . L′ is the seg-

ment index. Assuming that ss(t) and si(t) are uncorrelated,

the PSD matrix of a segment is given by2

Φl′(ω) = Xl′(ω)XH
l′ (ω)

≈ hs(ω)hH
s (ω)Φs

l′(ω) + hi(ω)hH
i (ω)Φi

l′(ω), (4)

where Φs
l′(ω) =

∑(l′−1)R+W

l=(l′−1)R+1 |ss(l, ω)|2 is the power sum-

mation of the desired source signal in the l′-th segment, and

similarly, Φi
l′(ω) is the power summation of the noise sig-

nal. This PSD matrix comprises two matrices spanned by the

ATF of desired source and noise source respectively, and take

their power as weight. Φi
l′(ω) is the smoothed power spec-

trum using W frames, and has a small variance due to si(t)
stationarity. Conversely, the fluctuations of Φs

l′(ω) are large

because of the non-stationarity and sparsity of speech signals.

Therefore, if we calculate the difference between segmental

PSD matrices

Φl′1
(ω)−Φl′2

(ω) = hs(ω)hH
s (ω)(Φs

l′1
(ω) − Φs

l′2
(ω))

+ hi(ω)hH
i (ω)(Φi

l′1
(ω) − Φi

l′2
(ω)), (5)

the difference of power weights is likely to be much smaller

(in absolute value) for the noise signal than for the speech

2Assuming the decorrelation and stationarity of both source signals, the

exact equality holds for the corresponding theoretical PSDs defined as expec-

tations. Here we have an approximation since we work with measured STFT

spectra and a non-stationary speech signal. This approximation is assumed

to be quite good in practice.

signal, i.e., |Φi
l′1

(ω) − Φi
l′2

(ω)| ≪ |Φs
l′1

(ω) − Φs
l′2

(ω)|. Conse-

quently, the PSD difference matrix (5) will match the matrix

spanned by hs(ω) well.

Ensuring that the difference |Φs
l′1

(ω) − Φs
l′2

(ω)| is large

can be done by classifying segments into two classes l1 and

l2, which have high speech power and low speech power, re-

spectively. This is done in the next section using the mini-

mum and maximum statistics of noise spectrum. Then, (5)

is applied for each segment l′1 ∈ l1, taking the correspond-

ing segment l′2 (denoted as l′2(l
′

1)) as its nearest segment in l2,

since in practice, the closer the two segments are, the smaller

is the difference of their noise PSD and transfer function.

3.2. Segment Classification

From (4), the trace of the PSD matrix Φl′(ω) is

ξl′(ω) = hH
s (ω)hs(ω)Φs

l′(ω) + hH
i (ω)hi(ω)Φi

l′(ω). (6)

It is the summation of the power of the image desired speech

signal and noise signal, i.e., those signals as recorded at the

microphones. The minimum statistics approach has been pro-

posed in [9] where the minimum value of (6), multiplied by a

bias correction factor, is used as the estimation of noise PSD.

Also, in [9] successive smoothed periodograms are processed

recursively, or equivalently the increment between segments

is a single frame. In this paper we propose to use classifica-

tion (for two classes l1 and l2) thresholds defined from ratios

between maximum and minimum statistics. Moreover, our

segment increment R in (4) can be an arbitrary integer value

from 1 to W , and we introduce an equivalent sequence length

for analyzing the minimum and maximum statistics of noise

PSD. Finally, we classify the segments by using the minimum

controlled maximum border.

Formally, the power of the image noise signal is

ξi
l′(ω) = hH

i (ω)hi(ω)
∑(l′−1)R+W

l=(l′−1)R+1
|si(l, ω)|2. (7)

For a stationary signal, the probability density function (pdf)

of periodogram bin |si(l, ω)|2 obeys the exponential distri-

bution with a variance equal to the signal PSD, i.e. σ2
i (ω) =

E{|si(l, ω)|2} [9]. Therefore, assuming that |si(l, ω)|2 at dif-

ferent frames are i.i.d. random variables, ξi
l′(ω) obeys the Er-

lang distribution [11]:

f(y)|y=ξi
l′

(ω) =
yk−1e−

y
µ

µk(k − 1)!
y ≥ 0, (8)

with scale parameter µ = hH
i (ω)hi(ω)σ2

i (ω) and shape pa-

rameter k = W . We are interested in characterizing and esti-

mating the ratio between the maximum and minimum statis-

tics. Since the maximum and minimum statistics are both lin-

early proportional to µ [9], without loss of generality we as-

sume µ = 1. Consequently the mean value of (8) equals W .

If there is no overlap between two adjacent segments, namely



R = W , the segmental power sequence ξi
l′(ω), l′ = 1 . . . L′

is an independent random sequence. The pdfs of the min-

imum and maximum of these L′ independent variables are

[8]:

fmin(ξ) = L′ · (1 − F (ξ))L′
−1 · f(ξ), (9)

fmax(ξ) = L′ · (F (ξ))L′
−1 · f(ξ), (10)

where F (·) denotes the cumulative distribution function (cdf)

associated with the pdf (8). Conversely, if R < W , ξi
l′(ω) is a

correlated sequence, and the correlation coefficient is linearly

proportional to the overlap. In order to make (9) valid for

the correlated sequence, simulations over a large dataset show

that an approximate equivalent sequence length

L̃′ =
L′R

W
·

(

1 + log

(

W

R

))

(11)

can replace L′ in (9). Then, the expectation of the minimum

can be approximately computed as

ξ̄min ≈
∑

ξi

ξi · fmin(ξi)/
∑

ξi

fmin(ξi), (12)

where ξi = {0, 0.1W, 0.2W, . . . , 3W} is a grid used to ap-

proximate the integral operation, which covers well the sup-

port of Erlang distribution with shape W and scale 1. Simi-

larly, the cdf of the maximum can be estimated as Fmax(ξ) ≈
∑

ξi
fmax(ξi). Finally, we define two classification thresh-

old factors that are two specific values of the maximum

to minimum ratios, namely r1 =
ξFmax(ξ)=0.95

ξ̄min
and r2 =

ξFmax(ξ)=0.5

ξ̄min
. The two classes l1 and l2 are then obtained as

l1 = {l′ | ξl′(ω) > r1 · min{ξl′(ω)}}, (13)

l2 = {l′ | ξl′(ω) < r2 · min{ξl′(ω)}}. (14)

These two thresholds are set differently to ensure that the

segments in l1 involve considerable speech power and the

segments in l2 involve negligible speech power. The speech

power for the other segments are probabilistically uncertain,

making them unsuitable for either l1 or l2.

As an illustration of (11), Fig. 1 shows the cdf for W =
18. The empirical curves are simulated using white Gaussian

noise (WGN) as the stationary noise signal, and the analyti-

cal curves are computed using the equivalent sequence length

in (11). Three groups of curves are shown for the minimum

cdf and maximum cdf, respectively, and L̃′ is fixed for each

group. For example, if L̃′ = 10, the corresponding segment

numbers are 46, 12 and 10, for the three segment increments

R = 1, 9, 18, respectively. This shows that the equivalent se-

quence length in (11) is accurate for minimum and maximum

statistics.

3.3. RTF Estimation

Finally, in order to obtain a robust RTF estimation, we calcu-

late the global noise-free PSD matrix as the sum of noise-

free PSD matrices for all segments in l1, i.e., Φ̂(ω) =

Fig. 1: Cumulative distribution function for W = 18 (see text

for explanations).

∑

l′1∈l1
(Φl′1

(ω) − Φl′2(l
′

1)
(ω)). The principal eigenvector

u1(ω) of Φ̂(ω) is then a good estimation of the unit-norm

RTF vector corresponding to hs(ω) [7].

4. EXPERIMENTS: APPLICATION TO SOUND

SOURCE LOCALIZATION

4.1. Principle

Evaluation of the RTF estimation technique by comparing

true RTF values with estimated RTF values is delicate since

the effect of estimation error on practical systems using the

RTF is difficult to characterize. Therefore, several authors

have preferred to directly measure the performances of sys-

tems exploiting RTFs, e.g., in a beamforming framework

[1][10][4]. In this paper, we apply this principle in the con-

text of sound source localization (SSL). In the single source-

of-interest case, SSL provides a relevant framework for RTF

estimation assessment since, in a given environment, there

exists a smooth mapping between RTF values and source

location [2]. In the present study, we adopt a basic super-

vised “look-up table” approach: We have available a dictio-

nary Dh,p of K pairs {hk,pk}
K
k=1, where hk is an RTF fea-

ture vector of a sound source and pk is the corresponding

source direction vector, for a given room and given micro-

phones position in the room. An RTF feature vector is sim-

ply the concatenation of RTF vectors at all frequency bins,

h = [h(1)T , . . . ,h(Ω)T ]T . This dictionary was obtained

from noise-free single-source controlled recordings (see next

section). Then, for any new RTF feature vector h̃ extracted

from a source + noise test recording, the direction of the

source is estimated by selecting the closest vector in Dh,p:

p̂ = pk0
with k0 = argmin

k∈[1,K]

‖ h̃ − hk ‖ . (15)



Fig. 2: Audio-Visual dataset. Left: Dummy head, micro-

phones (red circles) and cameras. Only one camera is used

here. Right: Camera view with training directions.

4.2. The Dataset

We used an acoustic dummy head equipped with a 4-

microphone array (left/right and front/back) and a camera,

e.g., Fig. 2(left). The audio-visual data acquisition method

is detailed in [12]. To summarize, the training data consists

of 1 s white-noise signals emitted by a loud-speaker from 432

source directions spanning a field of view of 24◦ × 18◦ (az-

imuth and elevation). The ground-truth source direction are

obtained by localizing the loud-speaker’s visual marker in the

image provided by the camera. The image resolution is of

640×480 pixels, and 1◦ of azimuth/elevation corresponds to

23.3 horizontal/vertical pixels. Fig. 1(right) shows the cam-

era field-of-view and the 432 training directions. The test data

are 108 speech signals from the TIMIT dataset [13] emitted

by the same loud-speaker from 108 directions in the camera

field-of-view. All source positions are located in a plane at

approximately 2.5 meters away from the dummy head. White

Gaussian noise (WGN) and babble noise from the NOISE92

library are used as stationary noise, emitted separately with

different directions outside the camera field-of-view, and then

added to the speech test signals with various signal-to-noise

ratios. The environment is a quiet office. The sampling rate

of signals is 16 kHz and the window length of STFT is 32 ms

with overlap 16 ms.

4.3. Results

The proposed RTF estimation method was tested and com-

pared with two existing algorithms: The non-stationarity (NS)

method in [1] and the speech presence probability (SPP)

method in [4]. The weight matrix in NS method is set as

the identity matrix. The SPP threshold p0 is set to 0.3, as this

value achieved the best performance, and the non-recursive

operator from [4] (eq. (8)) is adopted. For the proposed

method, the segment length is set to 0.3s with a 50% over-

lap, equivalently W = 2R = 18. The performance metric is

the average distance between the localized direction and the

ground truth in the image plane (in pixels).

Table 1 shows the localization results. For WGN noise,

the SPP method achieves smaller localization error than the

WGN babble

SIR(dB) NS SPP Prop. NS SPP Prop.

10 35.2 31.5 28.1 34.3 30.6 28.9

5 36.7 31.2 29.7 41.2 36.9 36.3

0 49.8 38.4 30.2 55.9 59.3 57.5

-5 107.3 64.9 41.2 - - -

-10 214.4 154.8 61.1 - - -

Table 1: Localization results for WGN noise and babble noise

(in pixels, 23.3 pixels correspond to 1◦).

NS method because it uses only the intervals containing

speech, which decreases the error variance of RTF estimated

by least-squares optimization. The proposed method obtains

the best performance consistently at all SNRs, and the rea-

sons are 1)similarly to the SPP method, we also select the

segments containing speech with the proposed segment clas-

sification; 2) the proposed segmental PSD matrix subtrac-

tion accurately subtracts the noise PSD matrix, while the SPP

method relies on the accuracy of noise PSD estimation; and

3) the eigenvalue decomposition for RTF estimate that is used

in our method is an optimization criterion that considers all

channels simultaneously. Conversely, NS and SPP methods

perform least-squares optimization separately for each chan-

nel with the reference channel. Table 1 also shows the lo-

calization results for babble noise. The localization errors for

babble noise are larger than WGN because of the relative non-

stationarity of babble noise compared to WGN. The proposed

method obtains the best performance for 5 and 10dB SNR,

but SPP and the proposed method do not perform better than

NS for 0dB SNR, because for babble noise, the noise PSD

estimation in SPP and the proposed segment classification al-

gorithm perform worse than for WGN.

5. CONCLUSION

We proposed an RTF identification method based on seg-

mental PSD matrix subtraction and a classification between

speech-and-noise segments and noise-only-segment based on

maximum and minimum statistics of PSD. The method is

shown to provide estimated RTFs that can be exploited effi-

ciently for SSL and that competes well with other related RTF

estimation methods in this context. Future work will consider

the case of several sources of interest. In this case, the “de-

sired source” in (1)−(6) would actually be the summation of

multiple desired sources. If segments with negligible speech

power can still be detected, the PSD matrix subtraction in (5)

still makes sense but the estimation of several “individual”

RTF from Φ̂(ω) is not straightforward, if any feasible. How-

ever, Φ̂(ω) can still be used for multiple-source application

scenario, such as sound source localization based on subspace

methods, which is in favor of the proposed PSD matrix sub-

traction method.
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[6] J. Málek and Z. Koldovský, “Sparse target cancellation

filters with application to semi-blind noise extraction,”

in Proc. IEEE Int. Conf. Acoustics, Speech, and Signal

Processing, 2014.

[7] S. Markovich, S. Gannot and I. Cohen, “Multichannel

Eigenspace Beamforming in a Reverberant Noisy En-

vironment with Multiple Interfering Speech Signals,”

IEEE Trans. on Audio, Speech and Language Process-

ing, Vol. 17, No. 6, pp. 1071-1086, 2009.

[8] R. Martin, “Spectral subtraction based on minimum

statistics,” in Proc. European Signal Processing Confer-

ence, pp. 1182-1185, 1994.

[9] R. Martin, “Noise power spectral density estimate based

on optimal smoothing and minimum statistics,” IEEE

Trans. on Speech and Audio Processing, vol. 9, no. 5,

pp. 504-512, 2001.

[10] G. Reuven, S. Gannot and I. Cohen, “Dual-source

transfer-function generalized sidelobe canceller,” IEEE

Trans. on Audio, Speech, and Language Processing, vol.

16, no. 4, pp. 711-727, 2008.

[11] M. Evans, N. Hastings and B. Peacock, “Erlang Distri-

bution,” Ch. 15 in Statistical Distributions, 3rd ed. New

York: Wiley, pp. 84-85, 2000.

[12] A. Deleforge, V. Drouard, L. Girin and R. Horaud,

“Mapping Sounds on Images Using Binaural Spectro-

grams”, in Proc. European Signal Processing Confer-

ence, Lisbon, Portugal, 2014.

[13] J. Garofolo et al, TIMIT Acoustic-Phonetic Continu-

ous Speech Corpus LDC93S1, Philadelphia: Linguistic

Data Consortium, 1993.


