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Abstract
The spectrumof terahertz (THz) emission in gases via ionizing two-color femtosecond pulses is ana-
lyzed bymeans of a semi-analyticmodel and numerical simulations in 1D, 2D and 3D geometries
taking into account propagation effects of both pump andTHzfields.We show that produced THz
signals interact with free electron trajectories and thus significantly influence further THz generation
upon propagation, i.e., make the process inherently nonlocal. This self-action contributes to the
observed strong spectral broadening of the generated THzfield.We show that diffraction of the gener-
ated THz radiation is the limiting factor for the co-propagating low frequency amplitudes and thus for
the self-actionmechanism in 2D and 3Dgeometries.

1. Introduction

Research on intense terahertz (THz) electromagnetic sources has received an increasing amount of attention
owing to their numerous applications, for example, in time-domain spectroscopy, biomedical imaging
or security screening [1]. Among the various techniques employed to generate THz radiation, focusing
intense two-color femtosecond pulses in air or noble gases provides interesting features like the absence of
material damage, large generated bandwidths (up to∼100 THz) and high amplitudes of the emitted THz pulses
(>100MVm−1) [2]. First reported byCook et al [3], THz emission from intense two-color pulses was initially
attributed to optical rectification via third-order nonlinearity. However, it was shown later that the plasma built-
up by tunneling photoionization is necessary to explain the high amplitudes of the THzfield [4–6], and a quasi-
dc plasma current generated by the temporally asymmetric two-color field is responsible for THz emission
[7, 8]. Plasma oscillations leading to strong THz radiationwere also reported for single-color pumppulses with
few-cycle duration or at higher intensities [9, 10].

Apart from energy scaling [11] and polarization control [12], tailoring the shape of the broadband radiated
THz pulse is one of the current goals with respect to applications. In the case of two-color filaments in air it was
already demonstrated experimentally that the geometry of the plasma channels and the initial carrier envelope
phase of the laser pulse can be used to control the THzwaveform [13, 14]. Recently, controlling THz generation
in gases bymore involved spectral engineering of the IR pumppulsewas also suggested, i.e., bymodifying the
temporal positions of the electric fieldmaxima resp. ionization events [15].

One of themain challenges on the route towards THz spectral control is to understand the influence of the
complicated nonlinear propagation dynamics of the electromagnetic radiation. It is known that ionizing
femtosecond laser pulses undergo strong spatiotemporalmodifications during propagation, and that these
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propagation effects have a tremendous impact on the emitted THzfields [16].Moreover, shortly after the onset
of THz generation the gas atoms ormolecules and ionized electrons are exposed to the co-propagating low-
frequency field aswell. In particular, because asymmetrically ionized gases were already successfully used for
remote detection of THzfields through coherentmanipulation of the ionized electron drift velocity and
subsequent collision-induced fluorescence emission [17], we can expect tofind a self-actionmechanismof
already generated THz radiation on theTHz generation itself.

2.Model

In the present workwewill shed light onto the pulse propagation effects in the plasma, and the interaction of the
generated terahertz fieldwith the ionizedmedium.Our starting point is a semi-analyticmodel developed in [15]
based on the local current (LC) approximation, i.e., considering a small volume of gas irradiated by the ionizing
field. Let us assume that the free electron density is governed by

ρ ρ ρ∂ = −t W E t( ) ( ) ( ) , (1)t atST
⎡⎣ ⎤⎦

whereWST(E) is afield-dependent tunneling ionization rate [5], leading to a stepwise increase of ρ t( ) in time
(see figure 1(d)). The nth ionization eventwith amplitude δρn and temporal shapeHn(t) corresponds to a
maximumof the incoming field at time tn. Because all ionization events share a similar shape 9, we can simplify

τ≃ − = + −{ }H t H t t t t( ) ( ) 1 erf [( ) ] 2n n n , with characteristic temporal width τ = 0.2 fs. This valuewas

found tofit well the ”typical” duration of an ionization event (see appendix A.1. of [15]). The events are well
separated in time, sowe can give a semi-analytic expression for ρ t( )by summing up all contributions

∑ρ ρ δρ≈ = −( )t t H t t( ) ˜ ( ) . (2)
n

n n

For a given electric field amplitude E(t), the δρn and tn can be extracted from the numerical solution of
equation (1).

If we assume zero velocity for newly born electrons and neglect ponderomotive forces, the equation for the
plasma current density reads

Figure 1. (a) Exemplary two-color electricfieldE(t) (see equation (7) and text below for details); (b) corresponding spectrum; (c)
current density J(t) and (d) plasma density ρ t( ) given by equations (3) and (1). (e) The resulting spectrumof the secondary electric
field ν∝E JJ (see equation (6)), and (f) the free electron velocity vf (see equation (5)). Results of our semi-analyticmodel equations (2)
respectively (4), ρ t˜( ) and J t˜( ), aremarked as red dashed lines in (c), (d), and (e), showing excellent agreement. Red dots in (a) and (d)
indicate the temporal positions tn of the ionization events.

9
Provided that pump pulses aremulti-cycle, and ρ ρ≪t( ) at .
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γ ρ+ =J t

t
J t

q

m
t E t

d ( )

d
( ) ( ) ( ). (3)

2

Here, γ is a phenomenological electron–ion collision rate, andq m, represent electron charge andmass,
respectively.We choose γ = 7.7 ps−1 throughout this paper, a value compatible with usual estimates [18] for free
electron densities and velocities of the order of −10 1018 19 cm−3 and ∼106 ms−1, respectively. Finally, plugging
the above approximation ρ t˜( ) (equation (2)) for the plasma density ρ t( ) into equation (3) yields a semi-analytic
expression for the current

∑ δρ≈ = − − γ −( ) ( )( )J t J t q H t t v t v t( ) ˜( ) ( ) e . (4)
n

n n
t t

nf f
n

⎡
⎣⎢

⎤
⎦⎥

Here, the expression

∫ τ τ= γ τ
−∞

−v t
q

m
E( ) ( )e d (5)f

t
t( )

can be interpreted as the free electron velocity. Figure 1 confirms excellent agreement between numerical
evaluation of equations (1), (3) and our semi-analytic expression equations (2), (4) for both plasma and current
density. In fact, throughout thewhole analysis presented in this paperwe found that the approximations
ρ ρ≈t t( ) ˜( ) and ≈J t J t( ) ˜( ) are always close to equality.

The emitted secondary electric field due to the plasma current can be calculated in frequency domain as

ω ω ω=E g J( ) ( ), (6)J

where g is a constant [19]. Infigure 1(e)we show the spectrumof the secondary radiation according to
equation (6) for a representative (linearly polarized) two-color pumpfield

ω ω ϕ= + +− −
E t E t r t( ) e cos( ) e cos(2 ) , (7)0

t

tp

t

tp

2
2

2

2 2
⎡
⎣⎢

⎤
⎦⎥

where =E 310 GVm−1, tp=24 fs,ω πν= 2 withν = 375THz, and the ratio r=0.44 between the fundamental
and second-harmonic. The relative phase between bothfields has been set toϕ π= 2, to ensure optimum
conditions for THz generation [5]. Throughout this paper all quantities, including spectra, are expressed in
physical units.

3. THz spectral self-action

It is a reasonable assumption that an additional small low frequency fieldwill co-propagate with the pumppulse
shortly after the onset of THz generation. Thus, let us now investigate the impact of such afield on the secondary
radiation spectrum. To this end, we add a third component centered at 50THz,∼15 fs duration andwith only
2% the amplitude of the fundamental IR frequency to the two-color field equation (7) (seefigure 2(a)). As can
be seen infigure 2(d), the low-frequency spectral shape of the secondary radiation changes noticeably compared
tofigure 1(e), a peak around the frequency of the newpump component nowdominates the low frequency
range. This simple example already indicates that generated THz fields have an important impact on the
subsequent THz generation process, and thus produce a self-action. In otherwords, the THz generation process
from ionizing two-color pulses is nonlinear, and the nonlinearity is significantly nonlocal in propagation
direction of the pump laser.

Before performing any further analysis, wewant to investigate the influence of the phase angleϕ between the
fundamental and second-harmonic field. The secondary radiation spectra shown infigures 1(e) and 2(d) are
obtained forϕ π= 2. It is well known that for a pure two-color driving field this value ensuresmaximumTHz

yield ∫ ν ν ν∝ ∣ ∣J ( ) d
0

100 THz 2 2 , as recalled by the dashed line infigure 2(c).With the small THz component

present in the driving field, this THz yield increases considerably for almost all values ofϕ (see solid curve in
figure 2(c)), and the frequency of themaximum spectral density increases aswell (see figure 2(f)). The jump in
figure 2(f) aroundϕ π= 3 2 is linked to the exceptionally lowTHz yield in this parameter range (see
figure 2(c)). Thus, we can state that the additional THz pump field component, evenwith a small amplitude,
dominates the low frequency spectral shape of the secondary emission for almost all values ofϕ.We also found
that the phase angle of the THz pump component itself is ofminor influence (not shown), which is probably due
to themuch longer duration of the THz optical-cycle.

We can use the semi-analytic approximate expression for the plasma current J t˜( ), equation (4), to gain
further insight into the THz spectral self-actionmechanism. To this end, we rewrite the secondary field as the
sumof two contributions,
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ω ω ω ω ω ω ω= ≈ = −E g J g J g A B( ) ( ) ˜( ) [ ( ) ( )], (8)J

where

∑ω ω δρ= −( )A q v t H t t( ) FT ( ) , (9)
n

n nf

⎡
⎣
⎢⎢

⎤
⎦
⎥⎥

∑ω ω δρ= − γ −( ) ( )( )B q H t t v t( ) FT e . (10)
n

n n
t t

nf
n

⎡
⎣
⎢⎢

⎤
⎦
⎥⎥

Here, FT[ ] denotes the Fourier transform. Interestingly, for a two-color pump fieldwithout any low-
frequency components, in the optimumconfiguration (ϕ π= 2, see figure 1), the secondary radiation νE ( )J

below 100THz is determined solely by νB ( ) [15]. This is confirmed by figure 3(a), where the secondary
radiation ν ν ν∝E J( ) ( )J is separated into νA ( ) and νB ( ) according to equations (9) and (10).Once low-
frequency components are present, νA ( ) starts to contribute aswell through the free electron velocity vf(t).
Figure 3(b) illustrates the impact of νA ( ) and νB ( ) for the pumpfield configuration offigure 2 and reveals the
THz spectral self-actionmechanism: the term νA ( )describes the impact of the electricfield on the plasma
current, because νA ( ) contains vf (t)

10. In fact, the change in the free electron velocity v t( )f is clearly visible when
comparing figure 1(f) withfigure 2(e). Aswe can observe from figure 3(c), the low frequency component ofE(t)
resp. vf(t) can significantly alter the free electron trajectory and thus the secondary radiation spectrum. From the
mathematical structure of equation (9)we can infer that νA ( ) yields a similar spectrum to the pumpfield νE ( )
but broader due to the convolution of v tFT[ ( )]f with H tFT[ ( )] in the Fourier domain, which is confirmed by
figure 3. Because the secondary radiation is co-propagating with the pump field, a spectral self-action occurs and
we expect a THz spectral broadening upon propagation.

4. Simulations

To confirmour previous hypothesis of THz spectral self-action, we present several numerical simulations in
various geometries ranging from1D (hollow fiberwaveguide) to 3D (bulkmaterial, gas) configurations. In a
first attempt, we propagate the two-color field equation (7) 11 over 400 μm in argon gas bymeans of the 1D-

Figure 2. (a) Spectrumof the exemplary pumpfieldwith THz component centered at 50 THz (see text for details); (b) corresponding
current density J(t); (c) yield of secondary radiation below 100THz for the pumpfield in (a) (solid curve) and the pure two-color field
of figure 1 (dashed curve) versus phase angleϕ. (d) Spectrumof the secondary electric field ν∝E JJ ; the spectrumoffigure 1(e) is
recalled by the black dotted curve. (e) Free electron velocity vf for the pump field in (a). (f) Position of themaximum spectral density
of secondary radiation below 100THz, same line coding as in (c). Results of our semi-analyticmodel (J̃ , see equation (4)) aremarked
as red dashed lines in (b) and (d), again showing excellent agreement.

10
In contrast to νB ( ), which contains v t( )nf only.

11
In all simulations no THz component is present at the beginning of the simulation.
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finite-difference-time-domain (1D-FDTD) algorithm [20].Nonlinear generalization of the FDTDalgorithm
offers the possibility to simulateMaxwell’s equationswithout further approximations [21]. Linear dispersion of
argon is included via the refractive index ωn ( ) given in [22]. The plasma density ρ t( )obeys equation (1), and the
resulting plasma current J(t) is accounted for via equation (3). Figure 4(a,d,g) shows the spectrumof the
propagatedfield νE ( ) at three different distances.We can clearly see that the low frequency spectrum (red part of
the curve) broadens up to frequencies well above 100 THz during propagation in themedium, in agreement
with our previous expectations. Solid black lines infigure 4(b,e,h) show the corresponding local secondary
emission ν ν ν∝E J( ) ( )J . Interestingly, themaximumof the low frequency secondary emission spectrum shifts
toward larger frequencies with increasing propagation distance, an effect already reported in [16, 23].

In order to further corroborate the THz spectral feedbackmechanism, hypothetical local secondary
emission spectra computed from amodified pumpfieldwith the low frequency part (<200 THz) suppressed are
plotted infigure 4(b,e,h) for comparison (dashed lines). Obviously, local spectra generated by these artificially
modified pump fields are less broad than the original spectra, in particular towards larger propagation distances
where strong THz spectral broadening takes place. By using the semi-analyticmodel developed above, we can
decompose the local secondary emissionν νJ ( ) into the contributions of νA ( ) and νB ( ). As predicted above and
confirmed byfigure 4(c,f,i), the low frequency part of νA ( ) is determined by the low frequency part of the
driving field E, and thus responsible for the THz spectral feedbackmechanism. In contrast, we reportminor
changes only in νB ( )when the low frequency part of the pump field is suppressed (not shown).

Thus, in the present propagation regimewith relatively narrow IRpump spectra, the THz spectral feedback
mechanism is a key playerwith a strong impact on the emitted secondary radiation. At larger propagation
distances, spectral broadening and shifting of the two-color pumppulse itselfmay become the dominant effect
determining the local secondary emission THz spectra. In fact, it is important to keep inmind that the THz

Figure 3. Spectrumof secondary radiation ν ν ν∝E J( ) ( )J (black solid line) for (a) a pure two-color pumppulse (see figure 1) and (b)
with an additional low amplitude component centered around 50 THz (see figure 2).Our semi-analyticmodel, equations (9) and
(10), allows a decomposition into νA ( ) (green solid lines) and νB ( ) (blue dashed lines). The term νA ( ), which contains the impact of
the electricfield on the plasma current via the free electron velocity vf(t), is clearly responsible for themodification of the secondary
radiation in THz spectral range. In (c) the phase-space representation of themotion of a free electron born at = −∞t is shown for
both pumpfield configurations. The dramatic impact of the THz component in the electron trajectory is clearly visible.
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spectral feedbackmechanism reported here is an additional effect, and other propagation effectsmodifying the
THz spectra are present aswell [7, 16].

In 1D geometries investigated so far, high pump intensities aremaintained over extended propagation
ranges due to the absence of transverse diffraction, and thus nonlinear effects are stronger than in 2Dor even 3D
geometries. To address the role of diffraction, 2D-FDTD simulations have been performed, employing a focused
( μ=f 330 m)beamwith initial width μ=w 30.20 m.Results are shown infigure 5. The initial fundamental
amplitudewas taken as 11.5GVm−1, in order to reach 47GVm−1 peak amplitude at focus.Other parameters are
kept as in the 1D simulations (see equation (7)). The interaction of the generated THzfieldwith the newly born
free electrons as the field propagates through themedium is expected to beweaker than in the 1D configuration,
because the low frequency part of the field strongly diffracts and leaves the plasma channel. Nevertheless, as the
field propagates, themaximumof the secondary radiation spectrum inTHz range shifts towards higher
frequencies until the focal point is reached (see figure 5(a,c,e)). Dashed curves in figure 5(b,d,f) show on-axis
local secondary emission spectra ν ν ν∝E J( ) ( )J computed frompumpfields with low frequency range
(<200 THz) suppressed. Local spectra generated near the focus by these artificiallymodified pumpfields are
shifted bymore than 10 THz towards lower frequencies compared to the original local spectra plotted in black
solid lines.We note that in simulations reaching higher peak electric field amplitudes >50GVm−1 at focus, the
THz self-action can bemore pronounced.However, ourmodel accounting for single ionization only becomes
questionable in this strong-field regime [24], andwe do not discuss this regime in the present work. In contrast,
simulationswith reduced fundamental peak amplitude reaching only 37GVm−1 at focus (not shown) feature
noTHz spectral self-action at all, simply because the on-axis THzfield amplitude remains one order of
magnitude lower. The rapid oscillations visible in the spectra infigure 5(b,d,f) are numerical artefacts due to the
limited propagation range (i.e., temporal extent of the recorded time series) in our 2D simulations.

In general, THz self-action in 2D geometry is less pronounced than in the former 1D case.Moreover, from
the focal point onward, figure 5(d,f) shows that themaximumof the secondary field spectrum remainsfixed
aroundν ∼ 50 THz. These features can be readily explained by the strong diffraction of the THzfield beyond the
focus, which prevents the low frequency field fromdriving the free electrons produced in the plasma channel,

Figure 4. (a,d,g) Recorded electricfield spectrum from1D-FDTD simulations at indicated propagation distances, with the low
frequency partmarked in red. (b,e,h) Corresponding local secondary emission ν ν ν∝E J( ) ( )J in the range below 200THz (solid black
lines). The dashed lines show the same quantity computed from amodified pumpfieldwith the low frequency part (<200 THz)
suppressed. (c,f,i) The contribution νA ( ) to the local secondary emission according to equation (9) computedwith (solid green lines)
andwithout (dashed green lines) low frequency part of the pump.
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and therefore arrests the THz spectral self-actionmechanism. Infigure 6 the action of diffraction on the different
spectral components of the electric field at μ30 mafter the geometrical focus is visualized. One can clearly see
that diffraction delocalizes the THz radiationmuchmore strongly than the IR and visible light, which rapidly
decreases the on-axis THzfield strength. Thus, diffraction is a dominantmechanism in determining the final
bandwidth of the secondary emission.

The strong impact of diffraction on theTHz spectral self-actionmechanismobserved in the 2D simulations
raises the natural question of what happens in a full 3D configuration. Inmany relevant cases the peak electric
field amplitude is limited by so-called intensity clamping [25], andTHzfields will undergo strong diffraction.
Thus, it is a priorinot obviouswhether THzfield amplitudes inside the interaction volume are strong enough to
observe THz spectral self-action or not. In order to check this point, we resort to full 3D simulation data of two-
color femtosecond filamentation published earlier in [7]. In this work, collimated two-color pulses were
launched in an argon atmosphere at ambient pressure in order to produce filaments at clamping intensity over
several tens of centimeters. Simulations were performed using the unidirectional pulse propagationmodel
[16, 26]. Strong broadbandTHz emissionwas observed for pumppulses with a peak power of 0.3 TW, i.e., 30
times the critical power for self-focusing (see original article for details). Infigure 7, we present the analysis of
one of the 3D simulation data (20 fsGaussian pulse, red curves infigure 3 from [7]), in complete analogy to
figure 5. To this end, we re-processed the rawdata of the 3D simulation to extract the on-axis electric field as a
function of time and propagation distance. Then,figure 7was produced by using these electric field data. In
particular, the dashed lines infigure 7(b,d,f) were obtained by calculating the local current from the extracted
electric fields with low frequency range (<200 THz) suppressed. Figure 7 clearly confirms that (i) sufficiently
highTHz amplitudes for THz spectral self-action can be generated in 3D geometry and (ii) THz spectral self-
actionmodifies the spectrumof THz emission from two-color femtosecond filaments.

Figure 5. (a,c,e) Recorded on-axis electricfield spectrum from2D-FDTD simulations at indicated propagation distances, with the low
frequency partmarked in red. (b,d,f) Corresponding on-axis local secondary emission ν ν ν∝E J( ) ( )J in the range below 200THz
(solid black lines). The dashed lines show the same quantity computed from amodified pumpfieldwith the low frequency part
(<200 THz) suppressed. (g) Peak electricfield amplitude and plasma density versus propagation distance z, with z=0denoting the
focal point.
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5. Conclusions

In conclusion, we have investigated THz emission via ionizing two-color femtosecond pulses and revealed a THz
spectral self-actionmechanism. Thismechanism stems from the interaction of the already generated THzfield
with the subsequent free electron dynamics in the plasma channel and contributes to the strong THz spectral
broadening frequently observed in experiments and simulations. Direct simulations in 1D, 2D and 3D
geometries support our semi-analyticmodel and show that diffraction of the THz radiation plays an important
role in determining thefinal bandwidth of the secondary emission by limiting the interaction length of the low-
frequency fieldwith the plasma.We believe that our findingsmay have implications beyond the generation of
broadbandTHz radiation, namely, on the interpretation of recent experiments on high harmonic generation
with two-color pulses [27]. Because of the similar pumppulse configuration, generated THz radiationmay alter
electron trajectories on time scales relevant to the high harmonic generation process as well (see figure 3(c)).
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dashed line in (a) serves as an eye-guide and shows the expected beamwidth ν ν∝w ( ) 1 for a perfect Gaussian beam for all
frequencies. Beamparameters are the same as infigure 5.
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