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Trust is a collective, self-fulfilling phenomenon that suggests analogies with phase transitions.
We introduce a stylized model for the build-up and collapse of trust in networks, which generically
displays a first order transition. The basic assumption of our model is that whereas trustworthiness
begets trustworthiness, panic also begets panic, in the sense that a small decrease in trustworthiness
may be amplified and ultimately lead to a sudden and catastrophic drop of collective trust. We
show, using both numerical simulations and mean-field analytic arguments, that there are extended
regions of the parameter space where two equilibrium states coexist: a well-connected network where
global confidence is high, and a poorly connected network where global confidence is low. In these
coexistence regions, spontaneous jumps from the well-connected state to the poorly connected state
can occur, corresponding to a sudden collapse of trust that is not caused by any major external
catastrophe. In large systems, spontaneous crises are replaced by history dependence: whether the
system is found in one state or in the other essentially depends on initial conditions. Finally, we
document a new phase, in which agents are well connected yet distrustful.

I. INTRODUCTION

In the wake of the 2008 crisis, President Barack Obama declared: Our workers are no less productive than when
this crisis began. Our minds are no less inventive, our goods and services no less needed than they were last week,
or last month, or last year [1]. So what had happened that made the world so different from a few months before?
No war or physical catastrophe had occurred that would have destroyed tangible assets, infrastructures or knowledge.
As implied by President Obama’s comment, the damage seems to have been, at least partially, self-inflicted by a
sudden collapse of trust that led to a “freeze” of the interbank lending network (evidenced by soaring interbank rates,
see Fig. 1) and, nearly immediately afterwards, to a collapse of confidence of all economic actors – investors, firms,
households interrupted projects and reduced consumption, driving the economy to a grinding halt[2]. The bewildering
aspect of such a crisis (as well as many previous ones) is the speed at which financial markets, or the economy as
a whole, can shift from a relatively efficient state to a completely dysfunctional one. Whereas most “real” economic
factors (technology, workforce, R&D) usually change relatively slowly, trust or subjective expectations seem to have
no inertia, no anchor to their past values, and can swing from high to low in a matter of days, hours or even minutes.

Trust is critical in determining the prosperity of human societies and to secure a well-functioning economy and
orderly financial markets. Moreover, trust is a collective asset that allows efficient coordination and cooperation, and
tremendously accelerates business. It allows for the emergence of genuinely collective figments, such as money and
other social conventions. Fiat money is a perfect example: a piece of paper can only be valuable if everybody believes
that it will not be worthless tomorrow, and if everybody does, bank notes indeed become valuable.

The fact that trust is (as we view it) a collective, self-fulfilling phenomenon suggests analogies with phase transition
phenomena, where collective properties emerge that cannot exist at the individual level, like magnetism, superfluidity,
etc. Magnets, for example, arise because the spin of each atom acquires a favoured orientation, imposed by the
favoured orientation of neighbouring atoms. This occurs when the interaction between spins becomes strong enough.
Clearly, trust emergence is similar, and follows from positive feedback loops such as I trust you because he trusts you
because I trust you. The most important aspect of the analogy with phase transition is the possible coexistence of
very different equilibrium states, which leads to dis-equilibrium phenomena like history dependence or “hysteresis”,
when the system is trapped in one equilibrium while another is more favourable, and discontinuities, when the system
jumps from one state to the other. This is an interesting scenario as it opens a path to explain the sudden swings of
trust that seem to underpin many economic, financial or political crises.

Several models for trust collapse have been studied along these lines in the past few years, see e.g. [3–18] and
references therein. The common crucial feature is the coexistence of two (or more) equilibrium states in a region of
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Figure 1. TED spread, three-month LIBOR and three-month T-bill interest rate (Jul. 2006 – Jul.2009). The TED spread is
the difference between the three-month LIBOR and the three-month T-bill interest rate. Taking into account that T-bills are
considered risk-free, an increase in the TED spread is an indicator of higher perceived credit risk in the overall economy. In
10th October 2008, in the wake of the bankruptcy of Lehman Brothers, the TED spread reached 4.57%, several times above
the long term average of 0.30%!

the parameter space, and therefore the possibility of a sudden jump between a favourable, high-confidence state to
an unfavourable, low-confidence state. In these models, the jump is not induced by a major catastrophe (that would
replace the favourable equilibrium by an unfavourable one) but rather by some anecdotal random fluctuation, which
can induce a transition toward an already pre-existing low-confidence equilibrium.

Here, we introduce and study a highly stylized model for the build-up and collapse of collective trust in a dynamically
evolving network, which generically displays a first order transition with possible coexistence of different equilibria.
The nodes of the network can represent individuals, firms, banks, etc. Each node is assigned a real number that
measures its (perceived) trustworthiness.

The presence of an undirected link between two nodes indicates an established relationship of some kind (business,
loan, collaboration, etc.) resulting from some common rational benefit, but only possible if the perceived trustwor-
thiness of the partner is high enough. Links are thus created or destroyed depending on the trustworthiness of the
nodes and their dynamics; conversely, the trustworthiness of a node depends on that of its neighbours. The network
and the trustworthiness therefore co-evolve and, depending on the precise specification of the model (see below), this
leads to a rich dynamics with crises where the network disintegrates and the collective trust collapses. We solve our
model within a mean-field approximation and find, as anticipated, that there is a region of parameters where different
equilibria indeed coexist.

Our model and results are in several ways similar to those obtained by M. Marsili and associates in two very
inspiring papers [19, 20]. They also study the coupled dynamics of links and nodes and find generic phase coexistence
and hysteresis. One new aspect of our work is to consider that the speed of change of trustworthiness is itself a piece
of information which agents strongly react to, in particular when it is negative – in a “panic feeds panic” spirit. Our
mean-field analysis describes the phenomena induced by this effect and predicts phases which had not been considered
before, such as a connected yet distrustful phase. In a sense, our model is a stylized version of [3, 4] that removes
all the specifics of the interbank lending network, and a generalized version of [20], where some ingredients specific
to the dynamics of trustworthiness are introduced, leading to new effects. The possible coexistence of different states
has also been noted in the context of epidemic propagation on networks which may be rewired so as to avoid infected
nodes. In this case, infected network situations may indeed coexist with healthy networks [21]. This is similar to our
model, where agents/firms/banks tend to cut their links with degraded nodes.

II. THE MODEL

A. Trustworthiness of the nodes

The nodes in the network are agents which can represent individuals, companies, banks or other institutions. We
make the strong assumption that the perceived trustworthiness of a node i, which determines its propensity to link
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with other nodes, can be summarized by the value of a real number −∞ < hi < +∞. That real number may depend
on a variety of factors, which can be deemed either objective or subjective depending on their underlying nature. The
balance sheet of a bank or the health of a business are examples of objective or “intrinsic” factors. Subjective factors
come into play, for instance, when one needs to assess how trustworthy the counterparties or business partners of i
are. Clearly, if the debtors of i are close to bankruptcy, they endanger the balance sheet of i itself – this mechanism
is at the core of many recent models of bankruptcy cascades such as [9, 11, 14, 16, 17, 22, 23]. But one can imagine
different, less mechanical channels of propagation. A good example for our purpose is reputation risk. In fact, if node
j is caught up in a scandal while making business with i, other partners of i might become wary that i is also involved
and decide to end their business with i, unless i reacts immediately and severs its own link with j.

Another important factor is the speed of variation of the trustworthiness itself. Imagine a highly respected bank
or institution i that rapidly loses many of its partners. This will be interpreted as worrying news by the remaining
partners who, as a precautionary measure, will be tempted to cut their relation as well, even if the trustworthiness of
i is still high. This “bank run” or “panic” type of feedback loop can be amplified by the existence of a CDS (Credit
Default Swap) market, which is supposed to price the default probability of firms and banks (and countries) and thus
a proxy for hi. The very fact that the price of the CDS increases (and thus the perceived default probability) can
trigger a crash-type dynamics. These avalanches of sell-offs when the perceived risk increases are often observed in
financial markets as a consequence of a highly conservative management of “Black Swan” events – that, ironically,
may result from these risk management policies!

Mathematically, we therefore write the trustworthiness hi of each node i as the sum of three terms:

hi = hi,0 + fh∗ki tanh

(
hi
h∗

)
+ d ·min (0, δhi) , (1)

where f, h∗, d are positive constants, ki is the degree of node i, hi = (
∑
j∈Vi

hj)/ki is the average trustworthiness of
the nodes j ∈ Vi that are connected to i (with hi ≡ 0 if ki = 0), and δhi is the variation of hi over the last time step.

The first term hi,0 is the intrinsic trustworthiness of node i, assumed here to be time-independent, IID random
variables with mean m and variance σ2. More specifically we will choose hi,0 to be uniformly distributed in the
interval [0, 2], corresponding to a positive mean m = 1 and σ2 = 1

3 .
The second term describes how much of the trustworthiness of the peers of i is bequeathed to i. When hi is much

smaller than a characteristic value h∗, expanding tanh(x) for small arguments gives the following contribution:

fh∗ki tanh

(
hi
h∗

)
≈ f

∑
j∈Vi

hj , (2)

which means that a fraction f of the total trustworthiness of the business partners of i is transferred to i itself. The
tanh function imposes a saturation: for large average trustworthiness, node i only receives a quantity fh∗ki that
grows with the number of neighbours but not with the value of hi.

Finally, the third term accounts for the dependence of the current trustworthiness on its speed of change. In partic-
ular, δhi increases with the difference between the current and previous trustworthiness values, while the minimum
operator implies that only negative recent changes are considered. Therefore, the coefficient d tunes the amplification
of negative events and introduces an asymmetry between positive and negative trustworthiness variations. In a sense,
it measures the susceptibility of a population to panic. For simplicity, we shall refer to d as “panic factor”. The exact
definition of δhi can be found in appendix A or [24].

How real is our notion of perceived trustworthiness hi? How could it be measured, for example? As mentioned
above, one clear example are the CDSs of companies, which directly price the default probability as seen by market
participants. Another possibility is to gauge the trustworthiness of individuals and firms through surveys, as discussed
in [25], echoing a concern expressed by Putnam [26]: since trust is so central to the theory of social capital, it would
be desirable to have strong behavioural indicators of trends in social trust or misanthropy. I have discovered no such
behavioural measures. Even if there is still a lot to be done in order to devise faithful, quantitative indicators of
trustworthiness in general, it is highly plausible that the final answer will not be a single real variable as we assume,
but a more complex, higher dimensional object. Nevertheless, we believe that the results obtained below, in particular
those pertaining to the co-existence of different equilibria where collective trust is present or absent, will survive in
more elaborate models of trustworthiness.

B. Network dynamics

We now specify how links in the network are created or broken depending on the trustworthiness of the nodes.
Since the latter depends itself on the degree of the nodes and on its dynamics, we end up with a model of coupled
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trustworthiness/network dynamics which shows interesting properties, much as in [20].
At each time step, we choose a pair of nodes at random, say (i, j), characterized by their trustworthiness hi and

hj . The total number of nodes is constant in time and equal to N . The global average (over all nodes) of hi, which
characterizes the overall confidence level in the network, is denoted by h =

∑
i hi/N .

1. Link creation

If there are no links between i and j, the probability Π+
ij that they decide to do business together is

Π+
ij =

r

N

zij
1 + zij

, (3)

where 0 < r < N is the a priori propensity to enter into a business relation (the factor 1/N is discussed below) and
zij ≥ 0 is a modulating factor that depends on the trustworthiness hi and hj as follows:

zij = eαh−β|hi−hj |, (4)

where α, β are two positive parameters. Therefore, a small value of z implies a small probability of link formation.
The term αh attempts to capture the idea that a trustful society eases the creation of new collaborations or business
relations, i.e. that a rising tide lifts all boats. This is the essential virtue of trust that we discussed in the introduction:
it acts as a catalyst to exchange and activity, an effect that we attempt to model through α. It is quite clear that
together with Eq. (1) above, this term can lead to a virtuous circle – more confidence leads to a more connected
society which in turn leads to more confidence.

The second term −β|hi−hj | decreases z and is consequently detrimental to link creation. This attempts to account
for “homophily”, i.e. the intuitive fact that two entities with very similar credit level are more likely to conduct
business together than less comparable peers [27–31].

Instead of coupling zij to the overall confidence level h, one could have imagined to use only the “local” trustwor-
thiness hi + hj . We have in fact investigated a generalized model in which

zij = eαh+α′(hi+hj−2h)−β|hi−hj |, (5)

where the α′ term captures deviations from the global average. We have found numerically that the new α′ term does
not change much the phenomenology of the model. This will be confirmed by the mean-field approximation below.
We will thus set henceforth α′ = 0.

2. Link destruction

If there is a link between the chosen pair (i, j), it is destroyed with probability

Π−ij =
1

1 + zij
∈ [0, 1], (6)

which tends to unity when z � 1, i.e. when average confidence is very negative, or when homophily is strong (β � 1),
both being detrimental to maintaining relationships. The specific choice for Π±ij , and the factor N−1 in front of Π+

ij ,
can be understood by calculating the probability Pij that the link between i and j exists in the stationary state.
Assuming zij to be time independent, Pij is the solution of

Π+
ij(1− Pij)−Π−ijPij = 0 =⇒ Pij =

rzij
rzij +N

≈
r�N

rzij
N

. (7)

Therefore, when r, z are both of order unity, the probability that a link exists is of order 1/N and the typical degree
of a node is itself of order zr = O(1). This is the scaling needed in order to have a non trivial dynamics in the limit
N →∞.
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III. NUMERICAL RESULTS

We have numerically investigated this model in detail for various values of its six parameters: f, h∗, d for trustwor-
thiness and α, β, r for link creation/destruction. Some initial conditions for the h’s and for the state of the network
also need to be specified to run the dynamics. It turns out that as soon as N is somewhat large (i.e. N ' 50), and
for some regions in parameter space, the dynamics of the model becomes history dependent, in the sense that starting
from an empty network (no links at all) or a full network (all links are present) leads to completely different stationary
states – at least over time scales that can be reached in simulations and hence in reality as well (if our model captures
anything of reality).

The most important parameters of our model appear to be the homophily parameter β and the panic factor d. This
will be justified within our mean-field approximation below: as long as the confidence parameter α is not vanishingly
small and r is large enough, the phenomenology of the model is mostly determined by β and d. We have therefore
plotted the phase diagram of the model in the (d, β) plane, and the results are shown in Fig. 2. We represent the
average density of links L̃ = 〈k〉/N of the network in a color code, starting from an empty network at t = 0 (Fig. 2a)
or from a densely connected network (Fig. 2b). Similar patterns appear when one represents the average confidence
h instead. One observes a clear boundary line βc(d) separating two distinct phases: one in which the network is
sparse in the stationary state, corresponding to a low average confidence h, and another in which the network is
dense, corresponding to a high average confidence h. However, this boundary line shifts to significantly higher values
when one starts from an already dense network. In other words, there is a large crescent region in phase space where
the two outcomes (sparse or dense) are possible, and where the initial condition determines the fate of the network.
Another way to illustrate this is to show the evolution of the density of links and of the average trustworthiness h as
a function of d as one cycles along the line d = 2β as in Fig. 3a and Fig. 3b.

For small N (but still large enough to be of practical interest, say N . 100) the system can in fact alternate
between these two states, leading to interesting endogenous crises – i.e. large swings between high confidence and low
confidence that are not due to any particular event, but are the result of the noisy evolution of a system for which two
very different equilibrium states coexist – see Fig. 5. As N grows larger and larger, the probability to jump from one
state to another becomes exponentially small, a typical behaviour of physical systems undergoing a first order phase
transition (see below for a discussion of this point within a mean-field approximation). However, interesting dynamics
will follow from the time-variation of parameters. A suggestive numerical experiment is to let the average value m
of the intrinsic trustworthiness hi,0 slowly evolve with time, in order to model a progressive shift of the objective
state of the economy. When the system is in the coexistence region, one observes a succession of booms and crises,
corresponding to jumps between the two underlying equilibrium states – see Fig. 4a and Fig. 4b.

An analytic description of the dynamics of crisis and recovery can be performed, in particular when β = 0 and
close to the complete instability limit d = 4, which is derived in appendix B. The interested reader is referred to
[24] for further details. We now turn to a mean-field approximation that accounts relatively well for our numerical
observations.

IV. A MEAN-FIELD ANALYSIS

A. Warm-up: Erdös-Rényi

Let us start by adopting a kinetic view of the standard Erdös-Rényi network with N nodes. At each time step t, a
link is randomly chosen among the N(N−1)

2 ≈ N2

2 possible links. Following the same notation as before, the probability
to create a link is Π+ = r

N
z

1+z , where, for the time being, r and z are constants. If the link is already present, the
probability that it is destroyed is Π− = 1

1+z . We introduce the time-dependent degree distribution P (k, t), i.e. the
probability that a randomly chosen node has exactly k outgoing links at time t. The probability that this node
changes from k → k + 1 in the next time step t+ 1 is

W+(k) =
2

N2
(N − k)

rz

N(1 + z)
, (8)

while the probability to change from k → k − 1 in the next time step is

W−(k) =
2

N2

k

(1 + z)
. (9)
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(b) Initial conditions: L̃(t = 0) = 0.9. The region of the
parameter space where the dense state is not the preferred

stationary state is smaller than in Fig. 2a and the
absolute sparse state (L̃ ≈ 0) is not clearly visible.

Further numerical calculations indicate that we would
observe the absolute sparse state with these initial

conditions beyond β ≈ 10.

Figure 2. Average density of links L̃ for varying d and β and for two different initial conditions (sparse and dense). N = 200,
α = 1, f = 1, h∗ = 5, r = 1, 100 runs and after 105 time steps. Regardless of the initial condition, there are two distinct
regions in the parameter space, which correspond to two different stationary states, with a sharp transition in between. The
red area in the plot corresponds to a dense network (L̃ ≈ 1) and the blue area corresponds to a sparse network (L̃ ≈ 0).

Making time a continuous variable leads to the following Master equation for P (k, t):

∂P (k, t)

∂t
=

2

N2(1 + z)

[
rz
N − k + 1

N
P (k − 1, t) + (k + 1)P (k + 1, t)−

(
rz
N − k
N

+ k

)
P (k, t)

]
. (10)

By inspection, one finds that P0(k) = CkNq
k(1− q)N−k is a stationary solution of Eq. (10), as it should be, provided

q =
zr

zr +N
. (11)

The average degree 〈k〉 and the corresponding variance are then given by:

〈k〉 = Nq =
Nzr

zr +N
≈

N→∞
zr (12)

〈k2〉 − 〈k〉2 = Nq(1− q) (13)

The following sections extend the above calculation to the case where z self-consistently depends on the trustwor-
thiness of the nodes.

B. Coupling with the average trustworthiness h

We now consider the baseline case where z = eαh, with α > 0 and h the average trustworthiness of the population.
For the time being, we discard all homophily effects or feedback loops (i.e. β = d = 0).

We first assume that the average intrinsic trustworthiness hi,0 has a zero mean, m = 0. This is an interesting
situation since it does not break the h → −h symmetry, i.e. collective trust or distrust are a priori equally probable
outcomes. Averaging Eq. (1) over all nodes and using a mean field argument, i.e neglecting all fluctuations making
all hi different, we find

h = fh∗〈k〉 tanh

(
h

h∗

)
. (14)
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Figure 3. Path along d = 2β for N = 50, 100, 200, α = 1, f = 1, h∗ = 5, r = 1, 100 runs and 106 time steps per point. The
average density of links L̃ is shown on the left. The direction along the hysteresis path, in which L̃ ranges from 0 to 1, is
represented by black arrows. The plot of the average trustworthiness h scaled by fh∗N , which we call h̃, is on the right. When
d is small and the number of links of the network approaches 1

2
N(N − 1), i.e. L̃→ 1, h̃ = h̄

fh∗N → 1. When d→ 4, h̃→ −∞
and L̃→ 0. The change from one state to the other occurs discontinuously, as observed in first order phase transitions.
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Figure 4. Path along µ = m · fh∗N for N = 50, 100, 200, α = 1, f = 1, h∗ = 5, r = 1, d = 2, β = 2, 100 runs and 106 time
steps per point. m is the (time-dependent) common shift added to the original intrinsic trustworthiness of each node hi,0. The
direction along the hysteresis path, in which L̃ ranges from 0 to 1, is represented by black arrows. When we start at µ = 1,
the network is dense and L̃ ≈ 1. If we continuously decrease µ the network disintegrates (L̃ ≈ 0) when µ / −1. Then, if we
increase µ the network will switch back to the dense state (L̃ ≈ 1) only when µ ' 0. The coexistence of two different equilibria
allows the system to be trapped in one of these states even if the other is more favourable. Besides, we observe discontinuities
when the system jumps from one state to the other.

This approximation is certainly justified in the dense limit 〈k〉 � 1, but breaks down for small 〈k〉, in particular when
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Figure 5. h̃ and L̃ (single run) for N = 100, α = 1, f = 1, h∗ = 5, d = 3.9, β = 0 and r = 1. L̃(t = 0) = 0 and the function
log is defined as log(x) = sign(x).log(|x|+1). We confirm that the system keeps switching between two distinct equilibria: one
consisting in a dense network (L̃ ≈ 1) and the other in a sparse network (L̃ ≈ 0). The dense state is typically characterized by
positive average trustworthiness h̃ which grows steadily in time towards the asymptotic value. On the other hand, the average
trustworthiness h̃ in the sparse state tends to be negative and oscillates wildly. The transitions from the sparse state to the
dense state are smooth and steady, while the transitions from the dense state to the sparse state, which are triggered by random
fluctuations that break links and cause cascade phenomena, are quick and abrupt.

〈k〉 < 1. In this latter case the network does not percolate and, in the absence of a giant component, no collective
behaviour is possible. In this case, the only solution to Eq. (14) is h ≈ 0.

Suppose for simplicity that f〈k〉 is somewhat larger than unity (say 5 or more), then | tanh( hh∗ )| ≈ 1 and Eq. (14)
has two possible solutions: h ≈ ±fh∗〈k〉 [32]. Now we can plug these solutions in Eq. (12), which yields a second
self-consistent equation:

〈k〉 =
Nr

r +Ne∓ϕ〈k〉
, where ϕ ≡ αfh∗. (15)

1. The positive trust self-consistent solutions

Let us focus first on the case where a positive average trustworthiness appears, corresponding to the minus sign in
the exponential in Eq. (15). Assume first that ϕ〈k〉 � logN . Then, the second term in the denominator is completely
negligible and 〈k〉 ≈ N , which obeys the above hypothesis provided ϕ ≡ αfh∗ > logN/N , which we will assume in the
following. This corresponds to a self-sustained “euphoric state” where the network is full and confidence at its peak.
This solution always exists unless ϕ is vanishingly small: in the absence of the detrimental effects studied below, a
dense network should appear due to the positive feedback term that favours link formation when confidence rises.

A second, sparse but percolating (i.e. with a giant component) solution can also exist. To see that this is the case,
assume now that z = O(1). Then, Eq. (15) leads to 〈k〉 = zr, where

z = eϕzr. (16)

This self-consistent equation depends on the product ϕr:

• When ϕr > e = 2.71.., there is no solution to this equation. Only the dense network solution described above
exists.

• When ϕr < e = 2.71.., on the other hand, there are 2 solutions z< and z>, one stable corresponding to a sparse,
but trustful network, and a dynamically unstable one, which is nevertheless interesting since the associated
value for 〈k〉∗ = z>r is the critical value above which a sparse network is unstable and flows towards the fully
connected solution above. Said differently, if the spontaneous fluctuations around the stable solution 〈k〉 = z<r
are not strong enough to reach 〈k〉∗ with appreciable probability, the sparse network will appear dynamically
stable. This is indeed the case when ϕ is small enough.
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2. A negative trust self-consistent solution

An important question at this point is whether this model also allows for the existence of sustained negative average
trustworthiness values h < 0, i.e. a connected, but suspicious society. This would correspond to the positive sign in
the exponential in Eq. (15). In this case, the solution for large N is:

yeϕy = r, y = 〈k〉. (17)

When ϕr � 1, the solution of Eq. (17) is 〈k〉 ≈ r, therefore when r > 1 the solution with negative h is indeed
self-consistent. Hence a self-sustained state of distrust in a sparse network (but with a giant component) is possible
when a) ϕ is small enough (i.e. distrust is not too detrimental to link formation) and b) r sufficiently large (i.e.
agents meet often enough so that links are created even if the two parties are mutually suspicious). This corresponds,
pictorially, to a “wary” society in which distrustful relationships are the norm.

On the other hand, if ϕr � 1, we have

〈k〉 ≈ 1

ϕ
[log(ϕr) +O(log log(ϕr))] . (18)

Equation (18) shows that as ϕ grows, 〈k〉 decreases until the giant component disappears (when 〈k〉 < 1) and the
solution with h < 0 is no longer viable. For large r, this occurs for a certain value ϕc ∼ log r +O(log log r). We have
checked numerically that this “wary society” phase indeed exists in our model and is not an artifact of the mean-field
approximation.

3. Summary

Summarizing, for ϕ = O(1) and r > 1 there are three viable solutions, one corresponding to very dense networks
and positive self-sustained collective trust, and the two other to sparse networks (but still percolating, 〈k〉 > 1), one
with positive and one with negative self-sustained trust. These latter two solutions however disappear as ϕ increases,
beyond ∼ e/r for the former and ∼ log r for the latter.

The above analysis assumed that the average intrinsic trustworthiness is m = 0. When m > 0, the self consistent
equation becomes:

h = m+ fh∗〈k〉 tanh

(
h

h∗

)
. (19)

Clearly, this equation now selects the dense, positive confidence solution as soon as αm is not vanishingly small. This
is the situation we have considered in simulations.

C. Coupling with speed of trust degradation

We now study the influence of the panic parameter d on the trustworthiness in Eq. (1), i.e. the positive feedback
effect that may trigger a link breaking avalanche when an increase of perceived risk takes place. We set the homophily
term β to zero for the time being and look into the general case in the next section.

As a warm-up exercise, let us compute the evolution of 〈k〉t =
∑
k kP (k, t) from Eq. (10). Multiplying by k and

summing over k yields

d

dt
〈k〉t =

2

(1 + z)N2
[zrN − (zr + 1)〈k〉t] . (20)

At equilibrium, with d
dt 〈k〉t = 0, we trivially recover the result in Eq. (12):

〈k〉eq =
Nzr

N + zr
.

For small deviations from equilibrium, 〈k〉t is described by an Ornstein-Uhlenbeck process that can be fully charac-
terized from the knowledge of the variance of k.
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Now, in our model with feedback we assume that all events contributing to lowering the degree of the nodes will
lead to a decrease of trustworthiness. Restricted to events lowering the degree, this contribution can be written as

d

dt
〈(∆k)−〉 =

2

(1 + z)N2
ΣkkP (k, t) =

2〈k〉t
(1 + z)N2

. (21)

After T = N2

2 time steps, which is the average time it takes to attempt to change the status of each link once, the
total contribution to degree decrease is

〈(∆k)−〉 ≈
〈k〉

1 + z
. (22)

Again in a mean-field spirit, the resulting expression for z is

z = eαh−d〈(∆k)−〉, (23)

meaning that the stronger the activity that decreases connectivity, the smaller the value of z and hence the larger
the probability of breaking further links. There is also a second contribution to min(0, δh) arising from the time
fluctuations of h itself, but it is much smaller in the equilibrium region we are focusing on.

Hence, we find a set of self-consistent equations valid when f〈k〉 � 1 and h > 0:

z = e〈k〉(ϕ−2d 1
1+z ) (24)

〈k〉 =
Nzr

N + zr
. (25)

Let us study the possible solutions to Eq. (24) and Eq. (25). Suppose first that N � rz. In this case, we have
from Eq. (25) that 〈k〉 ≈ N . The self-consistent Eq. (24) then leads to

z ≈ eϕN ,

which is indeed such that N � rz provided that ϕ� log(N)
N . This solution corresponds to such dense a network that

the downwards degree fluctuations cannot destabilize it, at least locally.
However, there might coexist a second solution, even for values of ϕ where it would not exist for d = 0. Suppose

now that z = O(1) and 〈k〉 ≈ rz, which we assume to be larger than 1 to allow for non-zero collective trust h > 0 to
exist and be locally stable. The self-consistent equation now reads

z = eϕrz−2d rz
1+z . (26)

It is clear that there is no solution to Eq. (26) when d is small and ϕr > e. However, there is a critical value of
d, denoted by d∗, above which Eq. (26) has two solutions: z< < 1, which is stable at least for d not too large, and
z> > 1, which is unstable. This is illustrated in Fig. 6. As d increases further, z< becomes smaller and smaller and
at one point becomes itself unstable, leading to limit cycle dynamics. This small z< solution however corresponds to
a completely disconnected network.

The existence of a second, sparse solution for large enough d corresponds well to our numerical observations: the
network attempts to connect but trustworthiness is small and cannot grow because it is killed by spontaneous negative
fluctuations.

The intermediate, unstable solution z> is also interesting as it again characterizes the critical transition path from
the dense solution towards the sparse solution (and vice versa). For large d, one finds z> ≈ 2d/ϕ, corresponding to a
characteristic average degree k> ≈ 2dr/ϕ. When k> is much smaller than N , the dense solution has an exponentially
small (in N) probability of spontaneous destabilisation. However, as k> increases towards N , fluctuation induced
crash events become more and more frequent, as shown in Fig. 5.

D. Homophily

We finally turn to the influence of homophily, i.e. the β term in the definition of z in Eq. (4). Here we assume, as
in [20], that the network is at all times an Erdös-Rényi network with a time dependent density of links qt = 〈k〉t/N .
We also assume, as above, that the network is well-formed, with f〈k〉t somewhat larger than unity so that one can
assume that for most nodes, the following approximation holds:

hi ≈ hi,0 + fh∗ki. (27)
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Figure 6. Graphical representation of Eq. (26) for d = 0 and d = 3 and ϕ = 2, r = 1. For d = 0 (red line) the function
f(z) := eϕrz−2d rz

1+z − z has no zeros, which means that z = O(1) and 〈k〉 ≈ rz are not compatible conditions in this case.
However, for large enough d, for example d = 3 (blue line), two solutions emerge: z< < 1 and z> > 1. The former is dynamically
stable, while the latter is unstable and characterizes the critical transition path from the dense solution towards the sparse
solution.

Again, two cases should be considered. One corresponds to dense networks, such that 〈k〉 ∼ N . In this case,
fluctuations of node degree are at most of order

√
N . In fact, the homophily term leads to cliques of connected nodes

with a relatively homogeneous degree, so we expect these fluctuations to be much smaller than
√
N . Therefore, one

can estimate z as

log z ≈ αN − β
√
N, (28)

which shows that unless α is very small, the highly connected phase is not destabilized by homophily.
In the case of sparse but percolating networks with 〈k〉 > 1, the dispersion of trustworthiness that prevents links from

forming has two distinct origins. One is the intrinsic heterogeneity of the nodes, measured by the root mean square
σ of the fields hi,0. The second is the degree heterogeneity which, for an Erdös-Rényi network with qt = O(N−1), is
given by

√
Nqt =

√
〈k〉t. Using 〈k〉t = zr, valid in the sparse phase, one finally ends up with the following schematic

estimate of the homophily term:

β|hi − hj | −→ β
√
cσ2 + c′zr, (29)

where c, c′ are numerical constants of order unity. This leads to a new self-consistent equation for the link activity z
in the sparse phase:

z = eϕrz−β
√
cσ2+c′zr. (30)

It is graphically clear that this equation behaves much in the same way as Eq. (26): for small β and ϕr > e, no solution
exists except for dense networks. But as β increases, two non-trivial solutions, z< and z> appear, corresponding to a
sparse solution that is not able to connect because of the strong repulsion between different nodes. This corresponds
to the sparse phase observed in the phase diagram of the model for large β, see Fig. 2.

V. CONCLUSION

We have introduced, in the spirit of [19, 20], a highly stylized model for the asymmetric build-up and collapse
of collective trust in a network where the links and the trustworthiness of the nodes dynamically co-evolve. The
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basic assumption of our model is that whereas trustworthiness begets trustworthiness (meaning that a higher level of
trustworthiness is more favourable to link formation), trustworthiness heterogeneities, both across nodes and in time,
are detrimental to the network. In particular, panic also begets panic, in the sense that sudden drops of trust may
lead to link breaking (or “sell-offs” in the context of financial markets) that further decreases trustworthiness. We
have shown, using both numerical simulations and mean-field analytic arguments, that there are extended regions of
parameter space where two equilibrium states coexist: one corresponds to a favourable, well connected network with
a high level of confidence prevails, and the second is an unfavourable, poorly connected and low-confidence state. In
these coexistence regions, sudden spontaneous jumps between the two states can occur. These transitions are not
induced by any major catastrophe that would replace a favourable equilibrium by an unfavourable one, but rather by
random fluctuations that trigger the switch between two already existing equilibria. When the system becomes large,
however, these jumps become less and less frequent, unless an external parameter is changed – corresponding, for
example, to a measure of the overall economic activity that sets the average trustworthiness level. For large systems,
the phenomenon of spontaneous crises is replaced by the notion of strong history dependence: whether the system is
found in one state or in the other essentially depends on initial conditions: ergodicity is dynamically broken.

Our stylized model only aims at this stage to provide a generic (but certainly oversimplified) conceptual framework
to understand how financial markets, or the economy as a whole, can shift so rapidly from a relatively efficient state to
chaos, when nothing “material” has changed at all, when our minds are no less inventive, our goods and services no less
needed than they were last week, as noted by President Obama. Our model illustrates Keynes remark: a conventional
valuation which is established as the outcome of the mass psychology of a large number of ignorant individuals is liable
to change violently as the result of a sudden fluctuation of opinion due to factors which do not really make much
difference [33]. A theoretical challenge is of course to take our framework seriously and think about how such a model
could be calibrated against data, for example using interbank loan networks (see e.g. [9]), CDS data or survey results
as in [25]. An obvious goal would be to obtain early warning signals for potential trust collapse and crises [34] that
could, in some cases, look like precursor avalanches or “crackling noise” (see [35], and for a recent review on this theme,
[13]).
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Appendix A: Model specifications

The adjacency matrix at time t is denoted by Jij,t, while the trustworthiness of node i at time t is given by hi,t. N
is the total number of nodes in the network and ki,t is the degree of node i at time t, i.e., ki,t =

∑
j Jij,t.

At each time step t, the links between nodes are updated first. Then, the new trustworthiness of each node is
computed.

Therefore, the evolution of the system at each time step happens in two distinct steps as follows.

1. Create, destroy, or leave sN, s ∈]0, 1], links untouched:

P (Jij,t = 0|Jij,t−1 = 1) =: Π+
ij =

1

1 + zij,t−1
(A1)

P (Jij,t = 1|Jij,t−1 = 0) =: Π−ij =
r

N

zij,t−1

1 + zij,t−1
, (A2)

where

zij,t = eαht+α
′(hi,t+hj,t−2ht)−β|hi,t−hj,t| and r ∈ R+. (A3)

2. Update the trustworthiness values hi:

hi,t = hi,0 + fki,t tanh

(
1

cki,t
P̃i,t

)
+ d ·min (0, δhi,t) , (A4)
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where:

δhi,t = hi,t−1 − hi,t−2 + f
[
ki,t tanh

(
1

fki,t
P̃i,t

)
− ki,t−1 tanh

(
1

fki,t−1
Pi,t−1

)]
,

P̃i,t =
∑
j Jij,thj,t−1,

Pi,t =
∑
j Jij,thj,t,

and f, d ∈ R+.

Regarding the first step, it is worth remarking that limN→∞Π+
ij · N2 ∝ N , which implies that the number of new

links per node remains finite even for large N . zij,t is a measure of the propensity of nodes i and j to link or remain
linked at time t, which we assume to increase with ht and hi,t + hj,t − 2ht. On the other hand, we consider that zij,t
is bigger if |hi,t− hj,t| is smaller, i.e., that the likelihood of node i linking with node j increases with the similarity of
their perceived trustworthiness in the community (homophily).

The term min (0, δhi,t), with its intrinsic asymmetry, is a proxy for the panic sentiment mentioned in the main
text. Besides, P̃i,t is the tentative cumulative trustworthiness of the peers of node i at time t, while Pi,t is the actual
value.

We can view the parameter s as a mere refresh rate in the algorithm but we can also interpret it as a measure of
overall communication intensity between nodes.

Appendix B: Panic factor d and stability

Let us consider the case where node i ends up without any links at time tL + 1. Moreover, let us assume that zij,t
is small enough for us to neglect new links involving node i as per Eq. (A1). For the sake of simplicity, let us define
τ := t − tL. In this notation, node i has at least one link at τ = 0 and becomes disconnected from the rest of the
network at τ = 1. Moreover, let us define hn := hi,τ+n and hinit := hi,0.

Then, we have from Eq. (A4) that

hn = hinit + d(hn−1 − hn−2), n ≥ 2. (B1)

In this scenario, Eq. (B1) defines the fate of node i, as it determines whether its trustworthiness hi,t enters an
infinite downfall or not.

Equation (B1) can be re-written as

µn = ∆µn−2 + ν, (B2)

where:

∆ = d

[
d− 1 d

1 −1

]
(B3)

µn =
[
hn hn−1

]T (B4)

νn = hinit

[
d+ 1 1

]T
. (B5)

After some computations, Eq. (B2) becomes

µ2n+1 = ∆n(µ1 − v) + v (B6)
µ2n+2 = ∆n(µ2 − v) + v, (B7)

where v = hinit[ 1 1 ]T .
We can simplify Eq.(B6) and Eq. (B7) further to obtain:

h2n+1 =
d

2q
(h1 − 2h0 + hinit) (λn1 + λn2 ) +

1

2
(h1 − hinit) (λn1 − λn2 ) + hinit (B8)

h2n+2 =
d

2q
(h1 − 2h1 + hinit) (λn1 + λn2 ) +

1

2
(h2 − hinit) (λn1 − λn2 ) + hinit, (B9)

where λ1 = 1
2d(d− 2 + q) and λ2 = 1

2d(d− 2− q), with q =
√
d2 − 4d are the eigenvalues of ∆ in Eq. (B2).

Therefore, under the assumptions we made in the beginning of this section, there are the following possibilities
regarding the fate of node i:
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1. If d > 4, λ1, λ2 ∈ R and |λ1| = λ1 > 4 > 1. Thus, the system is unstable and hi,t will tend to infinitely large
negative values after node i becomes disconnected from the network. Consequently, the probability of a new
link involving node i tends to 0 exponentially quickly. Moreover, limd→∞ λ1 =∞ and limd→∞ λ2 = 1+.

2. If 0 < d < 1, λ1 = λ2 = d. Therefore |λ1| < 1 and |λ2| < 1. Thus, the system is stable and hi,t will eventually
return to values close to hi,0, which allow for the creation of links between node i and the rest of the network.

3. If 1 < d < 4, the evolution of hi,t would be unstable and unbounded for τ > 1 in the absence of the asymmetry
in the panic factor defined in Eq. (A4). However, this asymmetry condition gives rise to a situation in which hi,t
eventually returns to a point close to hi,0, where link formation is possible. This happens when δhi,t becomes
non-negative, which implies d ·min (0, δhi,t) = 0.

The eigenvalues λ1 and λ2 corresponding to the cases above are represented in Fig. 7. The interested reader is
referred to [24] for further details.

-1 0 1 2 3 4 5
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0.0
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Figure 7. Parametric representation of λ1 and λ2 in the complex plane. The unstable case (d > 4) is depicted in green, while
the stable regime (0 < d < 1) is in red. The case with 1 < d < 4, in which there is instability but hi,t is bounded, is in blue.

[1] Barack Obama, “Address by Barack Obama,” Fifty-Sixth Inaugural Ceremonies (2009), Speech.
[2] Those who were in New York at the end of Sept. 2008 will remember the sight of completely empty retail stores and the

stories of people emptying their bank accounts and going home with cash in plastic bags.
[3] Kartik Anand, Prasanna Gai, and Matteo Marsili, “The rise and fall of trust networks,” Progress in Artificial Economics

645, 77–88 (2010).
[4] Kartik Anand, Alan Kirman, and Matteo Marsili, “Epidemics of rules, rational negligence and market crashes,” The

European Journal of Finance 19, 438–447 (2013).
[5] Rama Cont and Lakshithe Wagalath, “Fire sales forensics: Measuring endogenous risk,” Mathematical Finance (2014),

10.1111/mafi.12071.
[6] Hamed Amini, Rama Cont, and Andreea Minca, “Resilience to contagion in financial networks,” Mathematical Finance

(2013), 10.1111/mafi.12051.
[7] Ricardo Caballero and Alp Simsek, “Complexity and financial panics,” Working Paper Series (2009), 10.3386/w14997.
[8] Sebastian Heise and Reimer Kühn, “Derivatives and credit contagion in interconnected networks,” The European Physical

Journal B 85, 115 (2012).
[9] Stefano Battiston, Michelangelo Puliga, Rahul Kaushik, Paolo Tasca, and Guido Caldarelli, “Debtrank: too central to

fail? financial networks, the fed and systemic risk.” Scientific reports 2, 541 (2012).
[10] Dion Harmon, Blake Stacey, Yavni Bar-Yam, and Yaneer Bar-Yam, “Networks of economic market interdependence and

systemic risk,” arXiv preprint , 9 (2010), arXiv:1011.3707.
[11] Pawel Sieczka, Didier Sornette, and Janusz Holyst, “The Lehman Brothers effect and bankruptcy cascades,” The European

Physical Journal B 82, 257–269 (2011).
[12] Tiago P. Peixoto and Stefan Bornholdt, “No need for conspiracy: Self-organized cartel formation in a modified trust game,”

Physical Review Letters 108, 218702 (2012).
[13] Jean-Philippe Bouchaud, “Crises and collective socio-economic phenomena: Simple models and challenges,” Journal of

Statistical Physics 151, 567–606 (2013).
[14] Prasanna Gai and Sujit Kapadia, “Contagion in financial networks,” Proceedings of the Royal Society A: Mathematical,

Physical and Engineering Sciences 466, 2401–2423 (2010).
[15] Prasanna Gai, Andrew Haldane, and Sujit Kapadia, “Complexity, concentration and contagion,” Journal of Monetary

Economics 58, 453–470 (2011).

http://www.whitehouse.gov/blog/inaugural-address
http://link.springer.com/chapter/10.1007/978-3-642-13947-5_7
http://link.springer.com/chapter/10.1007/978-3-642-13947-5_7
http://dx.doi.org/ 10.1080/1351847X.2011.601872
http://dx.doi.org/ 10.1080/1351847X.2011.601872
http://dx.doi.org/10.1111/mafi.12071
http://dx.doi.org/10.1111/mafi.12071
http://dx.doi.org/10.1111/mafi.12051
http://dx.doi.org/10.1111/mafi.12051
http://dx.doi.org/10.3386/w14997
http://dx.doi.org/10.1140/epjb/e2012-20740-0
http://dx.doi.org/10.1140/epjb/e2012-20740-0
http://dx.doi.org/ 10.1038/srep00541
http://arxiv.org/abs/1011.3707
http://arxiv.org/abs/1011.3707
http://dx.doi.org/ 10.1140/epjb/e2011-10757-2
http://dx.doi.org/ 10.1140/epjb/e2011-10757-2
http://dx.doi.org/10.1103/PhysRevLett.108.218702
http://dx.doi.org/10.1007/s10955-012-0687-3
http://dx.doi.org/10.1007/s10955-012-0687-3
http://dx.doi.org/10.1098/rspa.2009.0410
http://dx.doi.org/10.1098/rspa.2009.0410
http://dx.doi.org/ 10.1016/j.jmoneco.2011.05.005
http://dx.doi.org/ 10.1016/j.jmoneco.2011.05.005


15

[16] Fabio Caccioli, Munik Shrestha, Cristopher Moore, and J. Doyne Farmer, “Stability analysis of financial contagion due to
overlapping portfolios,” Journal of Banking & Finance 46, 25 (2012), arXiv:1210.5987.

[17] Martha Contreras and Giorgio Fagiolo, “Propagation of economic shocks in input-output networks: A cross-country anal-
ysis,” Phys. Rev. E 90, 062812 (2014).

[18] Ginestra Bianconi and Matteo Marsili, “Clogging and self-organized criticality in complex networks,” Physical Review E
70, 35105 (2004).

[19] Matteo Marsili, Fernando Vega-Redondo, and Frantisek Slanina, “The rise and fall of a networked society: a formal
model.” Proceedings of the National Academy of Sciences of the United States of America 101, 1439–1442 (2004).

[20] George Ehrhardt, Matteo Marsili, and Fernando Vega-Redondo, “Phenomenological models of socioeconomic network
dynamics,” Physical Review E 74, 036106 (2006).

[21] Romualdo Pastor-Satorras, Claudio Castellano, Piet Van Mieghem, and Alessandro Vespignani, “Epidemic processes in
complex networks,” , 61 (2014), arXiv:1408.2701.

[22] Fulvio Corsi, Stefano Marmi, and Fabrizio Lillo, “When micro prudence increases macro risk: The destabilizing effects of
financial innovation, leverage, and diversification,” SSRN Electronic Journal (2013), 10.2139/ssrn.2278298.

[23] Jan Lorenz, Stefano Battiston, and Frank Schweitzer, “Systemic risk in a unifying framework for cascading processes on
networks,” The European Physical Journal B 71, 441–460 (2009).

[24] Joao da Gama Batista, Dynamics of Trust in Networks and Systemic Risk, Ph.D. thesis, École Centrale Paris (2015).
[25] Edward L. Glaeser, David I. Laibson, Jose A. Scheinkman, and Christine L. Soutter, “Measuring trust,” Quarterly Journal

of Economics 115, 811–846 (2000).
[26] Robert Putnam, The case of missing social capital, Tech. Rep. (Harvard University working paper, 1995).
[27] George Ehrhardt, Matteo Marsili, and Fernando Vega-Redondo, “Homophily, conformity, and noise in the (co-)evolution

of complex social networks,” Complexity and Spatial Networks, Advances in Spatial Science, 105–115 (2009).
[28] Miller McPherson, Lynn Smith-Lovin, and James M Cook, “Birds of a feather: Homophily in social networks,” Annual

Review of Sociology 27, 415–444 (2001).
[29] Peter Marsden, “Homogeneity in confiding relations,” Social Networks 10, 57–76 (1988).
[30] James Coleman, “Relational analysis: the study of social organizations with survey methods,” Human Organization (1958).
[31] Paolo Pin, Silvio Franz, and Matteo Marsili, “Opportunity and choice in social networks,” Fondazione Eni Enrico Mattei

Working Papers (2008).
[32] For f〈k〉 > 1 but not so large, the qualitative discussion below remains valid, up to prefactors of order unity.
[33] John Maynard Keynes, General Theory Of Employment , Interest And Money (Atlantic Publishers & Dist, 2006) p. 400.
[34] Tiziano Squartini, Iman van Lelyveld, and Diego Garlaschelli, “Early-warning signals of topological collapse in interbank

networks,” Scientific reports 3 (2013).
[35] James Sethna, Karin Dahmen, and Cristopher Myers, “Crackling noise.” Nature 410, 242–50 (2001).

http://dx.doi.org/10.1016/j.jbankfin.2014.05.021
http://arxiv.org/abs/1210.5987
http://dx.doi.org/10.1103/PhysRevE.90.062812
http://dx.doi.org/10.1103/PhysRevE.70.035105
http://dx.doi.org/10.1103/PhysRevE.70.035105
http://dx.doi.org/10.1073/pnas.0305684101
http://dx.doi.org/10.1103/PhysRevE.74.036106
http://arxiv.org/abs/1408.2701
http://arxiv.org/abs/1408.2701
http://dx.doi.org/10.2139/ssrn.2278298
http://dx.doi.org/10.1140/epjb/e2009-00347-4
http://dx.doi.org/ 10.1162/003355300554926
http://dx.doi.org/ 10.1162/003355300554926
http://dx.doi.org/10.1007/978-3-642-01554-0_8
http://dx.doi.org/ 10.1146/annurev.soc.27.1.415
http://dx.doi.org/ 10.1146/annurev.soc.27.1.415
http://dx.doi.org/10.1016/0378-8733(88)90010-X
http://sfaa.metapress.com/index/Q5604M676260Q8N7.pdf
http://services.bepress.com/feem/paper186
http://services.bepress.com/feem/paper186
http://books.google.com/books?hl=en&lr=&id=xpw-96rynOcC&pgis=1
http://dx.doi.org/10.1038/35065675

	Sudden Trust Collapse in Networked Societies
	Abstract
	I Introduction
	II The model
	A Trustworthiness of the nodes
	B Network dynamics
	1 Link creation
	2 Link destruction


	III Numerical results
	IV A mean-field analysis
	A Warm-up: Erdös-Rényi
	B Coupling with the average trustworthiness h
	1 The positive trust self-consistent solutions
	2 A negative trust self-consistent solution
	3 Summary

	C Coupling with speed of trust degradation
	D Homophily

	V Conclusion
	VI Acknowledgements
	A Model specifications
	B Panic factor d and stability
	 References


