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The refined macrodynamics of periodic composites, describing the mi-
crostructure length effect on the macro-behaviour of the body, within
the framework of the linear elastodynamics was proposed by Woiniak
(1993) and investigated in a series of related papers. The main aim of
this contribution is to formulate equations of the refined macrodynamics
for elastic composite materials subjected to small strains but finite ro-
tations and displacements. The obtained results can be applied to the
analysis of geometrically nonlinear problems for thin flexible structural
elements, made of composite materials.

1. Introduction

As it is known asymptotic homogenization methods of macro-modelling
for elastic composite materials leading to various effective modulae theories,
constitute the foundations of analysis and calculations of different engineering
problems (cf Jones (1975), Bensoussan et al. (1980), Bakhvalov and Panasenko
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(1984), Nemat-Nasser and Hori (1993) and the extensive list of papers on this
subject). However, the effective modulus theories of periodic composites, ba-
sed on the asymptotic approach in which the microstructure of the composite
is scaled down, neglect the microstructure length ellcct of the body. The thesis
of the present contribution is that this effect plays a crucial role in a descrip-
tion of nonstationary problems and hence the effective modulae approach to
dynamics of composites often lcads to incorrect results. In order to obtain
the engineering tool describing dynamic problems the refined macrodynamics
of composite materials and structures was formulated by Wozniak (1993) and
investigated in a series of related papers. In the refined macrodynamics the
microstructure length scale effects are included into macro-description of the
composite. So far the refined macrodynamics was investigated within the fra-
mework of the linear theory of elastic or visco-clastic composites. llowever,
many thin, flexible structural composite elements, like composite rods, plates
and shells, can be subjected to small strains but finite rotations. That is why
the refined macrodynamics has to be forinulated also within the framework of
the geometrically nonlinear theory.

The aim of this contribution is threefold. Firstly, we generalize the appro-
ach proposed by WozZniak (1993) and derive equations of the refined macro-
elastodynamics for small strains but finite rotations and displacements. The
obtained nonlinear equations can be used as a starting point for formulations
of different geometrically nonlinear composite plate and shell theories; investi-
gations related to these problems are reserved for a separate study. Secondly,
by scaling the microstructure down we pass to the gecometrically nonlinear
effective modulus theory. Thirdly, on the simple example it is shown that
the effective modulus theory cannot be used as a tool in analysis of dynamic
boundary-value problems.

1.1. Denotations

Sub- and superscripts 4,7,k,... rtun over 1,2,3 and arc rclated to the
orthogonal cartesian coordinate system 0z'z?z3 in the physical space. Points
of this space are denoted by z = (2, z9,23) and 1 is the timne coordinate. Sub-
and superscripts «, 3,7, ... also run over 1,2,3 but are rclated to the material
coordinates X = (X1, X% X3), X € g, where 2 is the known region
occupied by the body in the reference configuration. Positions of the points
X € 2 in the natural (unstressed) configuration of the body are denoted
by ' = P(X), and their positions at the time instant { are z' = p'(X,t).



The displacements and strain components are u* = p'(X,t) — P{(X) and
eap = 2(P'a Pisp —Pia Piyg), respectively. The body under consideration
is assumed to have Vpg-periodic material structure with respect to material
coordinates, where Vg = (0,1;) x (0,/2) x (0,!3) is the representative volume
element in the space of X “-coordinates. The microstructure length parameter
[ is defined by ! = max{l;,ls,/3} and is assumed to be sufficiently small
compared to the minimum characteristic length dimension of §25. For any

integrable Vpg-periodic function f(X), we denote by

< [>= (Llgly)™! / f(X) dVr dVr = dX'dX?dX3
Vr

its averaged value. By si¢ and pp we denote the first Piola-Kirchhoff stress
tensor and mass density related to the region 25 and by s% the boundary
tractions related to 9f2r. The body forces are denoted by b; and are assumed
constant. We also introduce non-tensorial indices a,b,c,..., which run over
the sequence 1,...,n. Summation convention holds for all the aforementioned
indices.

2. Modelling procedure

In order to make considerations self consistent, we recall two auxiliary
concepts used in the proposed modelling procedure, namely the concept of
a regular V-macro function and that of micro-shape functions (cf Wozniak
(1993)).

A function F(X,t), X € £2gr, will be referred to as the Vg-macro function
(related to a certain small macro-accuracy parameter Ar), provided that for
every X', X" € g, if X'—X" € Vg then |F(X',t)— F(X",t)| < Ap. If the
function F is sufficiently regular and the conditions of this form hold for all
derivatives of F (including time derivatives) with macro-accuracy parameters
AvF, Ap etc., then it will be called a regular Vg-macro function. The choice
of a parameter Ap depends on the assumed accuracy of calculations involving
function F.

Let h,(X),a=1,...,n,denote a system of n linear independent functions
defined on the space of X*-coordinates, which are continuous, Vg-periodic,
have piecewise continuous first derivatives and satis{y conditions: <hg,>=0,
<prha>=0, ho(X) € O(l) for every X and h,,, (X) € O(1), i.e., the values
of derivatives of h, are independent of the microstructure length parameter /.
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Let us also assume that the set of all lincar combinations of h, describes
all expected disturbances in the displacements field ' (X,t) rclated to an
arbitrary but fixed cell (X1, X'+ 1) x (X2, X2+ 1) x (X3, X3+ 3)in g
and caused by the periodic inhomogeneity of the body under consideration.
Under the aforementioned conditions functions h,(X) will be called micro-
shape functions. Roughly speaking, the micro-shape functions have a role
similar to that of the known shape functions of the finite element method but
are Vp-periodic and their values averaged over Vg are equal to zero.

The starting point of the modelling procedure is the direct description of
a Vpg-periodic composite, given by the principle of virtual work related to the
region {2

/si—?éu;,a AV = }{ sibu; dAR + /pn(b,-— ii)6u; dVp (2.1)
2r 80Nr 2r

which holds for every virtual displacement éu,; and by the coustitutive relation
for the first Piola-Kirchhoff stress tensor
_ Oer(X5uj0)

Ouiaa

1o

R (2.2)

where ep(-;u;,5) is a Vg-periodic strain energy function. We restrict ourse-
lves to small strains and assume that this function has the form

1
er = 5CR " (X)eapeqs

1 ; 1
€ap = '2‘(17 sa Uis3 =P8 Uisa ) + 5“ s Uisg3

The elastic modulae C'g'gA"S(X) are Vp-periodic functions, constant for every
constituent of the composite. Due to the highly oscillating niicro-periodic
form of these functions, the direct description of the composite body do not
constitute a proper tool for analysis and numerical calculations of engineering
problems.

In order to pass from Eqs (2.1) and (2.2) to the averaged refined model of
a composite (which takes into account the eflect of the microstructure length
parameter [ on the macro-behaviour of a body) we apply the following three
macro-modelling hypotlieses.

1. The Kinematic Hypothesis states that the displacements u;(X,1) from
the natural configuration P;(X), X € (2p, of the composite can be
assumed in the form

wi(X,1) = Ui(X, 1) + ha(X)VA(X, 1) XeNr 120 (2.3)



where Uj, V# are arbitrary regular Vg-macro functions, hy,a =1,...,n,
are postulated a priori micro-shape functions and F;,, are the known
regular Vp-macro functions.

Functions Uj; are called macro-displacements and V;* will be referred to
as correctors. In the modelling procedure they constitute new kinematic
variables describing the motion of a composite body.

2. The Virtual Work Hypothesis states that the principle of virtual work
(2.1) is assumed to hold for every virtual displacement

§ui(X) = §UL(X) + ha(X)8VA(X) XeNp (24)

where 6U;, 6V are arbitrary linear independent regular Vg-macro
functions.

This hypothesis is strictly related to the previous one.

3. The Macro-Modelling Approzimalion states that in the principle of
virtual work (obtained by substituting the right-hand sides ol Eqs
(2.2) + (2.4) into Eq (2.1)) terms O(XA), where A runs over Ayy,
Ay Av, Ay, Avy can be neglected.

Combining Eqs (2.1) < (2.4), using the Macro-Modelling Approximation
and following the procedure given by Wozniak (1993) we obtain the system
of 3 + 3n equations in the 3 4 3n new basic unknowns U; and VZ. De-
noting by <ep >=<¢ep> (Ui, V) the averaged over Vg strain energy
eR(X; Uiya +hasa (X)V?), where terms h, Vi, € O(Av)+10(Avy ) have been
neglected, these equations can be written down in the form

] .
—a%-z] +<,0R>b,'—<pR> U;i=0
o (2.5)
0 <ep> o
I<tr> hahy > VP =
Tyt <prhalis> V=0

We also obtain the natural boundary conditions assuming éu; = §U; on 0f2p

(? <€R > :
R p. = 8 2.6
an,a R R ( )
where ng, is the unit outward normal to 9f2g. It has to be emphasized that
Egs (2.5) involve exclusively Vp-macro functions and hence Eq (2.6) imposes
certain restrictions on the boundary tractions s;.



Now let us observe that under denotations
1 . ‘ 1 .
Eaﬁ = —(Pi,a Ulaﬁ +Pi)ﬁ Utvot ) + _Ulm( Uiaﬁ
2 2
(2.7)
Ve = VAP o +U )
where FE,3, V& are Vg-macro functions, and introducing matrix X¢; given

by the condition X%;(PJ,,+U7,,) = 5{, we obtain the following formula for
the strain components

1 .
eap = Eop + haya Vi) + §ha,a hoys X7 X8VEVEET 4 O(My)

For small strains and finite rotations, the macro-strain measures (2.7) are
small and hence in the strain energy terms of the third and higher order of
E.p, V2 can be neglected. Bearing in mind the macro-modelling approxima-
tion we can assume that

1
<ep>= 2A°’ﬁ”’5Eo,gE75 + BRPVEEop + C;;fbva (2.8)

where we have denoted

AP =< cope BYP =< hays CHP >
(2.9)

Cgab =< ha Y hb 26 007,65
and where denotations (2.7) have to be remembered. From Eq (2.8) it follows

that Eqs (2.5) in the case of small strains and finite rotations can be written
down in the form

J <er>, .; ; .
[ﬁ(lm +U'3)| + <pr> bi- <p> Ui =0

: (2.10)
DSR2 (P + Ui I < prhahs> 72 =0

o

and will be called macro-equations of motion. At the same time the natural
boundary conditions (2.6) yield

0 <ep>

aEaﬁ (P N —f—U 20 )TLRO, = '912 (2.11)

Eqgs (2.10) and (2.11) have to be considered jointly with Eqs (2.7) + (2.9) and
constitute the final result of the modelling procedure.



3. Refined macro-elastodynamics

The obtained macro-equations of motion (2.10) will be now transformed to
the alternative form of local macro-balance equations and macro-constitutive
equations involving explicitly the microstructure length parameter. To this
end define Jpap =< prhohs > 172 since < pphohy >€ O(1?) then the inertial
modulae Jp. behave as constant under scaling the microstructure down
! \, 0 provided that [;/l = const. Let us also introduce the ficlds Sgﬁ, g,
by means of

S50 = AP E g+ BV
(3.1)

H$, = B Egy + CREVS

which are called macro-stresses and micro-dynamic forces, respectively. llence
Eqgs (2.10) are

[SSPP 3 +U" ) e — <pr> Uit <pp>bi = 0

(3.2)

H3o(Pl o +U ) + PIpaVE =0

and the natural boundary condition (2.11) yiclds
SEP(P s +U g )npa = sk (3.3)

Egs (3.1) and (3.2) are called macro-constitutive equations and local macro-
balance equations, respectively. They involve exclusively Vgr-macro fields,
characterize material properties of the micro-periodic medium by the avera-
ged modulae (2.9) inertial properties by the averaged densities < pgr >, Jpas
and describe the effect of the microstructure length parameter [ on the beha-
viour of the body. That is why Eqs (3.1) + (3.3), together with Eqs (2.7), will
be referred to as the governing equations of the refined macro-elastodynamics.
The basic unknown fields in these equations are microdisplacements U; and
correctors V2. It has to be emphasized that formulae for correctors are ordi-
nary differential equations. Hence V,* areindependent of boundary conditions
and can be interpreted as certain internal balance variables. It can be shown
that for homogeneous bodies and under trivial initial conditions for correctors:
Va(X,0) =0, VA(X,0) = 0, X € g, we obtain that V2(X,t) =0 for every
X € 2r and t > 0. Hence the correctors describe, from the quantitative
viewpoint, the effect of inhomogeneity of the composite of its behaviour. The
effect of finite rotations in Eqs (3.2) and (3.3) is described by deformation



gradients P, +U*,, and leads to the nonlinear terms S%BU",[;, Hg.Ui .
Neglecting these terms and assuming that P'(X) = 6, X (i.e., that Qg is
the region occupied by the body in its natural configuration) we arrive at the
equations obtained by Wozniak (1993).

Egs (3.2) and (3.3) involve densities related to the unit volume element of
2r. Denoting J = det(P',, +U*,, ) and setting

590 = g-1s5ef HS = 7718, p=J" <pp>
Jab = j_l JRab b = Xaib,'

where X are given by X%;(P7,,+U7,,) = 67 we can transform Eqs (3.2)
to the form

S"ﬁ,ﬁ — uU; X% 4 ub® =0
(3.4)
HE + P VIXe =0
where S"‘ﬁ|ﬂ stands for the covariant derivative of S%° in the metric tensor

Cap = (P'ya +U% o )(Pryp +Ui,g ) of the actual configuration of the body (at
the instant t). All densities in Eqs (3.4) are related to this configuration and
X can be treated as the convective coordinates. Similarly, Eqs (3.3) can be
transformed to the form related to the actual configuration

59PR5 = s (3.5)

where 7 is the unit outward normal to the boundary of the region occupied
by the body in the actual configuration and s are the pertinent boundary
tractions. It has to be emphasized that by the actual configuration of a com-
posite body we understand here its configuration, given by the set of positions
z; = Pi(X)+ Ui(X,1), X € 2, of all material points at the time ¢. This con-
figuration will be referred to as the macro-configuration since it is described
by means of Vg-macro functions Uj;.

Egs (3.1) and (3.2) or (3.1) and (3.4) have to be considered together with
boundary conditions for U; and initial conditions for U;, V*. It has to
be emphasized that solutions to the pertinent initial-boundary value problems
have physical sense only if U;, V;* are sufficiently regular Vg-macro functions.

4. Effective modulus theory

The effective modulus theory of elastic composite materials can be ob-



tained from the refined theory by scaling the microstructure down. Settling
[\, 0in Eqs (3.2) we obtain /1§, = 0 and from Eqs (3.1) it follows that
Vé’ = —(Cﬁl)%‘j] B?{Z& E.s, where (C;{l)}}‘f} describe the linear transformation
R3 — R inverse to that given by ngb. llence, the governing equations
of the eflective modulus theory are

[S;ﬂ(Pivﬂ +Ui’ﬂ )]701_ <pr> U,+ <pr> bi =0

Sl = AFIE,, (4.1)

1 . . 1 .
Eaﬂ = i(Piaa Ul:ﬂ +Pi’[3 U ) + iuiaa Ulvﬂ

where A‘}’;ﬁj‘; are called the effective elastic modulae, related to the reference
configuration, defined by

ALY = AR = BEC(CRDS DT (4:2)
The above equations were derived by the asymptotic approximation of the re-
fined macro-elastodynamics. Using the asymptotic homogenization approach
(cf Bensoussan et al. (1980), Bakhvalov and Panasenko (1984)) the effective
modulae have to be calculated on the basis of a certain boundary value pro-
blem on representative volume element, but the governing cquations have the
form similar to that of Eqs (4.1). The basic unknowns in Eqs (4.1) and (4.2)
are macrodisplacements U;. The obtained nonlincar eflective modulus theory
takes into account the finite rotations of composite clements.

5. Refined versus effective modulus theory

Let us observe that for stationary problems the refined macro-
elastodynamics and the eflective modulus theory coincide. One can suppose
that the effective modulus theory can be taken as a certain good approxi-
mation of the refined macro-elastodynamics also in non-stationary boundary-
value problems. In order to prove that this statement is not true, we shall
formulate a simple counterexample. For the sake of simplicity we restrict con-
siderations to the linear theory and assume that PY(X) = § X for every
X € 2r. As the example let us consider a thick periodically laminated layer,
bounded by coordinate planes z; = 0 and =z, = II, in which the repre-
sentative sublayer is made of two homogencous laminae of thicknesses [, [”



and bounded by planes 2, = 0, 2; =" and 2z, = U', 2y =1 = I' + 1",
respectively, where [ is very small compared to I; [ < II. In this case we
introduce only one micro-shape function h = A(z,), which is [-periodic and
in [0,!] takes the values h(0) = h(l) = —1/2, h(I') = [/2, being linear in the
intervals [0,{] and [!’,I]. Let the layer be subjected to the boundary condi-
tions Ui(0,1) = 0, U%(H,t) = U3(H,t) = 0, U'(II,1) = & for every t > 0,
where & = const, and let the initial conditions be independent of x4, z3
coordinates. Then the problem under consideration is independent of z,, z3
coordinates. Let us denote U =U',V =V, A= A1 p= BN C=CH
and J = Jpi1, where now Jpi1 =<pr> /12. Eqs (2.7), (3.1) and (3.2) of
the refined macro-elastodynamics, after the lincarization and neglecting body
forces, yield

AU +BV - <p>U=0
BU,L+CV +12JV =0

For the initial conditions: U(zy,0) = 6&H 'ay, U(ml,O) = 0,
V(z1,0) = V(z,,0) = 0, =z € (0,H) and the aforementioned boundary
conditions: U(0,t) = 0, U(I,t) = 6, t > 0, denoting ¢ = 8§17},

k2 = CJ 1% weobtain U = ¢x;, V = e¢BC (coskr — 1), and the

macro-stresses S = SL! given by the first one from Eqs (3.1), are equal to
S=Aeij+EBQC_1COSKT AeijA——BQC_'l (5.1)

Eqgs (4.1) of the effective modulus theory reduce to the simple form
AesiUni— <pr>U =0

and for similar boundary and initial conditions for U(zy,t) yield U = ez

and
S = Aeij (5'2)

Comparing solutions (5.1) and (5.2) it can be seen that they coincide only
for a homogeneous body, for which B = 0. It follows that for a compo-
site body effective modulus theory leads to the incorrect time independent
solution (5.2) while the refined macro-elastodynamics describes the time oscil-
lations of macrostresses (and also the oscillations of boundary tractions on
zy = 0 and z, = H, cf Eq (3.3)) caused by the micro-inhomogeneity of
the medium. Hence the trivial conclusion that in investigations of dynamic
boundary-value problems for elastic composite materials the effective modulus
theory can lead to incorrect solutions and should be replaced by the refined
macro-elastodynamics.
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Skoriczone obroty w mikro-dynamice sprezystych kompozytéw

Streszczenie

Mikrodynamika periodycznych kompozytdw, opisujaca wplyw wielkosci mikro-
struktury na makro-wlasnosci osrodka, w ramach liniowej elastodynamiki zostala
zaproponowana w pracy Wozniaka (1993) oraz stosowana w serii dalszych opraco-
wan. Gléwnym celem tej pracy jest sformulowanie réwnan mikro-makrodynamiki dla
sprezystych kompozytéw poddanych malym odksztalceniom przy skoiiczonych obro-
tach 1 przemieszczeniach. Otrzymane wyniki zostana zastosowane do analizy pro-
bleméw geometrycznie nieliniowych dla wiotkich elementéw konstrukcji z materialow
kompozytowych.





