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Using the concept of internal degrees of freedom a new finite difference
formulation of polyatomic lattice dynamics is proposed. A transition
from the nonlocal equations of motion to the partly local and local ones
as well as the possibility of reduction of internal degrees of freedom
are shown.
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1. Introduction

The problem we are to deal with is a modelling of long wave deformation
patterns in linear elastodynamics of arbitrary perfect polyatomic lattice sys-
tems with a restricted range of binary interactions. The proposed approach
constitutes a certain alternative to those given by Brillouin (1946), Born and
Huang (1954), Babuska (1959), Kunin (1975) or Cielecka (1995), being based
on a new averaged finite-difference formulation of the equations of motion for
periodic composite mass-point systems. It will be shown that this formula-
tion makes it possible to specify two levels of long wave deformations, yields a
simple transition from the nonlocal models to the local ones and leads to the
approximate models governed by the monoatomic-type lattice equations. The
obtained results can be used for the analysis of wave propagation problems in
periodic composite mass-point systems.

Notations. Small and capital bold face characters stand for vectors and
second order tensors in 3D-space, respectively. Indices a,b run over 1,...,n



while A and K runover 1,..,M and 1,...,N, respectively. Superscripts
k,l run over 1,..,n — 1; the summation convention with respect to k,!{
holds. Points in the physical space are identified with their position vectors
and denoted by z, z; symbol f stands for a time coordinate.

2. Auxiliary concepts

Let A be the Bravais lattice with the base vectors d', d%, d° and A
stands for the elementary cell spanned on these vectors and having a center
at £ = 0. For an arbitrary £ € A we define A(z) =z + A as a translated cell
with a center at . We assume that in A is situated a molecule consisting of
n mass-points(atoms) having the equilibrum positions p* € 4, a = 1,...,n;
n > 1. The total mass-point system P under consideration is assumed to be
periodic. Hence, p%*(z) = p* +z, = € A, a = 1,...,n, are the equilibrium
positions of mass-points in an arbitrary translated cell A(z), £ € A. The
one-to-one mapping

p&h {zeE3: z=1p%(z), z€ A, a=1,...,n} (2.1)

will be referred to as a parametrization of the mass-point system FP. It means
that in the sequel the points of P will be identified with their equilibrium
positions; namely p®(z) is said to be the ath mass-point in the cell A(z),
ze A

Define d° =0 and let D = (d°,d",....d™), M > 3, be the M + I-tuple
of vectors such that d° d',...,d” € Aandif d € D then —d ¢ D. We
assume that all interactions between mass-points of P are binary and that
the mass-points in an arbitrary cell A(z), z € A, can interact only with those
in cells A(z +d*), A =0,1,..,M. Let N stand for a number of binary
interactions between points in an arbitrary cell A(z), z € 4, and those in all
cells Az + dA), A=0,1,..., M; due to the periodic structure of the system,
the number N is independent of the choice of = € A. Let ¢ be a function

:{1,..,N} 3 K — ¢(K)=(a,bA) € {1,...,n}* x {0,1,.. M}  (2.2)

such that for every z € A points p®(z) and p'(z + d*) can interact if
and only if (a,b,A) = ¢(K) for some K € {1,...,N}. It can be seen that
(a,b,0) = (b,a,0). The mapping (2.2) represents a parametrization of the
binary interactions in P.



Using the above parametrizations we shall denote by m, the mass of
ath point in an arbitrary cell A(z), £ € A, and by kg the elastic modulus
determining the Kth interaction. It means that if e is a change of a distance
between the mass-points p%(z) and p(z + d?), where (a,b,4) = ¢(K),
then kgeX is the value of mutual interaction between these points. At the
same time it has to be understood that |eX| are small as compared to the
corresponding distances between the mass-points p*(z) and pb(:z:—}-dA), where
(a,b, A) = ¢(K). Denoting

b A\ _ a
o REIIR k) = (0,0, 4)
t5 = { p(d") —p*| (2.3)
0 otherwise

we conclude that rxeXtK is a force acting on p*(z) from p°(z + d*).
For an arbitrary function f(z), £ € A, we introduce the denotations

Auf(z) = f(z+d%) - f(z) Auf(z) = f(z) - f(z—d*) (24)

for the right- and left-hand side differences of f(-), respectively, provided that
AF#0; for A=0 we have Asf =0.

3. TFinite difference formulations

Let u®* = u%(z,t), ¢ € A, be a displacement vector at an instant ¢ of an
arbitrary mass-point from its equilibrium position p®(z). The change of the
distance between the points p*(z) and pb(:z:—}-dA), for which (a,b, A) = ¢(K)
for some K € {1,..., N}, is equal to

ef = Auub 5 4 (ub —u) -tk o(K) = (a,b, A) (3.1)

for the sake of simplicity here and in the sequel arguments & € A and ¢
are neglected. Functions eX = eX(-,t) defined on A will be called strains
of the system under consideration. Hence within the framework of linearized
elastodynamics function @ = ®(A u?, ub), given by

N N
1 1
d=-Y kr(e")? =23 kx[Aau’ 8 + (ub —ut) tX]? (3.2)
2 K=1 2 K=1
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where (a,b, A) = ¢(K), represents the strain energy assigned to an arbi-
trary cell. Using Eq (3.2) we shall introduce the generalized internal forces by

means of 56 56
a b
= S 3
AT A g (3:3)
We also define the inertia matrix setting
m if a=1b
ME={ (3.4)
0 otherwise

while f% = f%(z,t) denote the external force acting at an instant ¢ on the
ath mass-point in a cell A(z). Under the aforementioned denotations it can
be proved that functions u*(z,-), a = 1,...,n, £ € A, have to satisfy the

equations
Aasy — 8%+ f2 — MPi> =0 a=1,..,n (3.5)

where the summation convention over A =1,...,N and b =1,...,n holds and
the internal forces are defined by Eq (3.3).

The aim of this section is to obtain an alternative formulation of the finite
difference equations (3.5). To this end we define m = m! + ... + m™ and
introduce the averaged displacements u = u(z,t), T € A, setting

1< a
= — .6
U= agﬂlmau (3.6)

Moreover, let h%, (a,k) € {1,...,n} x {1,...,n—1}, be real numbers satisfying
the conditions

n
> meh® =0 k=1,..,n-1 (3.7)
a=1

and such that det[h%®] # 0, where h*® =1 for a = 1,...,n. In the subsequent
considerations an arbitrary motion of the lattice system will be described in
terms of functions u(zx,-), v*(z,-) of time, which for every z € A are interrela-
ted with functions u®(z,-), by means of the one-to-one mapping (summation
over k=1,...,n —1 holds)

u® = u + [h%F (3.8)

where [ > 0 is a certain length parameter. The new unknows v*(z,-) will be
called the internal degrees of freedom. It can be seen that

eX = Aqu -t 1(R% — poF )k K LR A gF K (3.9)

a



for @(K) = (a,b, A). Hence, the strain energy function, now denoted by
W = W(Asu,v*, AgvF), is equal to

N
W= k[Aaw: tl + 1R — %)k K 4+ InF A0k ]2 (3.10)

K=1

N =

where ¢©(K) = (a,b, A). Setting

n n n
WLkl = Z WLahakhal f = Z fa gk: = Z hak:fa
a=1 a=1 a=1
and introducing the new generalized internal forces
ow g OW k ow
= A" = — hy = —— 3.11
o4 OAA‘H vk A GAAv’“ ( )

we can prove the following assertion.

Assertion 1. A motion of the system represented by averaged displacements
u(z,-) and internal degrees of freedom v*(z,-), k =1,...,n -1, z € A,
satisfies the equations

ZA8A+f—7ni),:0
Ash% — BF +1gk — PmFt =0 k=1,..,n—1

where the summation convention over A=1,..,Nand [ =1,..,n -1
holds and the internal forces are defined by (3.11).

The equations of motion (3.12) together with Eqgs (3.10), (3.11) consti-
tute the basis for the subsequent analysis. It can be seen that the generalized
internal forces (3.11) are related to those represented by Eq (3.3) by means of

n n
84 = 8% kY = > 8% hoF h* = X:s“h“’c
a=1

a=1 a=1

The main feature of the equations of motion (3.12) is the fact that deformations
of the system, given by functions u(-,t), v*(-,2) for an arbitrary but fixed
time £, are defined on the Bravais lattice A.



4. Long wave deformations

Let us take into account a class of deformations u(-,t), v*(-,t) depending
on the length parameter {, ! > 0, such that for every z € A the conditions
Agu € O(l), Azv® € O(l) and IwF € O(l) hold. Hereafter we shall confine
ourselves to deformations for which terms of a higher order O(I?) in Eq (3.9)
can be neglected and hence the strains eK are approximated by eK = Au-
tH 4+ (Y% — hokYE K € Ol), @(K) = (a,b, A). It follows that the strain
energy function will be given by

N
> kr[Agu-tE 4 1R — hok)pb . gK)2 (4.1)
K=1

W =

The generalized internal forces are

oW y  OW
= = 4.2
84 BAA’U. h ka ( )
and the equations of motion have the form
Dpass+f-mi=0 PmFlyt 4 B* = g (4.3)

with the summation convention over A = 1,..., N. It has to be emphasized
that the second one from the above equations (related to the internal degrees
of freedom ¥*) is a local one being independent of increments of functions
v*(-,t). Hence, Eqs (4.2), (4.3) represent a certain partly-local model of the
system. This model can be used if internal degrees of freedom are slowly va-
rying functions, i.e., increments A4v* can be treated as negligibly small as
compared to the values of v*. It follows that the related deformations will be
called the long wave internal deformations.

Let u(-,t) and v*(,,t), k = 1,...,n — 1, be sufficiently regular functions
defined on E°® for every time ¢, which under restriction their domain to A
coincide with averaged displacements and internal degrees of freedom, respec-
tively. Moreover, let ¥ be an arbitrary differentiable function defined on E?
such that for every z € A € E? the following approximations take place

A0 =gt v = S vL

Let us assume that u(-,t), v¥(-,t) together with all derivatives satisfy the
above conditions and let us confine ourselves to the long wave internal defor-
mations. In this case the class of function u(-,t), v*(-,1) under consideration



will be referred to as the long wave deformations. For these deformations the
strain energy function (4.1) can be approximated by

N

BE=g ST ki@ - V) - tK 4+ 1(hF — hoF)E LK) (4.4)
K=1

with ¢(K) = (a,b, A). Let us introduce the strain energy density function
e = &(Vu,v*) by means of ¢ = EI™3, where from now on [® = volA. The
related generalized internal forces are

N Oe k i

= ova W= Gve (4.5)

Let us also define densities &= fi=2, p = m(~2, 8* = g*(~% and p* = m* 3.
Under the aforementioned denotations the following statement holds true.

Assertion 2. For the long wave deformations, which for every ¢ are repre-
sented by sufficiently regular functions u(-,t), v*(-,t), k = 1,..,n — 1,
defined on E®, an arbitrary motion of the system is governed by the
equations

V- T+b-pu=0
12p*yt + BF = b k=1,..,n—1
with the internal forces defined by Eq (4.5).

The proof of this assertion follows directly from Eqs (4.2), (4.3), after
taking into account that W can be approximated by E and using the relations

. 9E
ovVu

OFE oW p A — A
o d” = A ~d”.Vey =V
oVu  0A,u ® s4®d ASA 4

where the summation convention over A = 1,..., N holds. Eqs (4.5), (4.6)
represent a local model of the polyatomic lattice system under consideration.

Let us observe that neglecting in Eqs (4.3) and (4.6) the terms which
depend explicitly on [? we shall obtain certain approximate models in which
internal degrees of freedom can be eliminated from equations of motion. In the
partly local model given by Eqs (4.2), (4.3) we obtain for vF a system of linear
algebraic equations obtained from AW /0v* = g*. It can be shown that this
system has a unique solution given by v* = D% A su4vf, where D% are 3x 3
matrices and the summation convention over A =1,..., N holds. Substituting



the obtained solution to Eq (4.1) we arrive at the strain energy function in
the form W, = Wy(A4u) independent of v*. The governing equations for
averaged displacements u will be given by

oWy

A - mi = = 4.
A84+f—mu=0 84 A ( 7)

The similar procedure can be also applied to the local equations (4.5), (4.6)
where after elimination of v* we arrive at the strain energy density in the
form €9 = ¢o(Vu). In this local model the governing equations for averaged
displacements are

660

- T+b—pu=0 T=—
v + pu ovu

(4.8)
It can be observed that Eqs (4.7), from the formal point of view, are similar
to the equations for monoatomic lattice systems. At the same time, Eqs (4.8)
are similar to the equations describing a local model of monoatomic lattice
systems and coincide with equations of motion of the linear elasticity. The
aforementioned models can be applied only to the problems in which the inertia
forces due to oscillatory motions inside every molecule can be neglected.

5. Conclusions

The main results of this contribution are:

e Formulation of the finite difference equations for dynamics of polyatomic
lattices systems in the simple form (3.12) with averaged displacements
and internal degrees of freedom as basic unknowns.

e Derivation from Eq (3.12) partly local models represented by Eqs (4.3)
in which the internal degrees of freedom are governed by local equations.

e Passage from partly local equations (4.3) to the local equations (4.6)
which determine a certain continuum model of a periodic composite
mass-point system.

e Possibility of elimination of integral degrees of freedom from Eqs (4.2)
and (4.3), leading to Eqgs (4.7) and (4.8) which reveal the formal resem-
blence with the equations of monoatomic lattices and their local models,
respectively.



More detailed discussion of the obtained results and their applications
to the analysis of vibrations and wave propagation problems will be given
separately.
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O dynamice sieci wieloatomowych

Streszczenie

Wprowadzajac pojecie wewnetrznych stopni swobody sformulowano nowa rézni-
cowg postaé¢ dynamiki sieci zlozonych. Pokazano przejicie od réwnaii nielokalnych do
modeli czeéciowo i calkowicie lokalnych oraz zwrécono uwage na mozliwos¢ wyrugo-
wania wewnetrznych stopni swobody.





