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ENERGY STABLE AND CONVERGENT
FINITE ELEMENT SCHEMES FOR THE
MODIFIED PHASE FIELD CRYSTAL EQUATION

MAURIZIO GRASSELLI AND MORGAN PIERRE

ABSTRACT. We propose a space semi-discrete and a fully discrete finite element
scheme for the modified phase field crystal equation (MPFC). The space discretiza-
tion is based on a splitting method and consists in a Galerkin approximation which
allows low order (piecewise linear) finite elements. The time discretization is a
second-order scheme which has been introduced by Gomez and Hughes for the
Cahn-Hilliard equation. The fully discrete scheme is shown to be unconditionally
energy stable and uniquely solvable for small time steps, with a smallness condi-
tion independent of the space step. Using energy estimates, we prove that in both
cases, the discrete solution converges to the unique energy solution of the MPFC
equation as the discretization parameters tend to 0. Using a Lojasiewicz inequal-
ity, we also establish that the discrete solution tends to a stationary solution as
time goes to infinity. Numerical simulations illustrate the theoretical results.

Keywords: Finite elements, second-order schemes, gradient-like systems, Lojasiewicz
inequality:.
MSC 2010: 656M60, 65P40, 74N05, 82C26.

1. INTRODUCTION

In this paper, we analyze finite element discretizations of the modified phase field
crystal (MPFC) equation

Bug + up = A[A%u 4+ 2Au + f(u)], in Q x (0,400), (1.1)

with periodic boundary conditions on the d-parallelepiped 2 = HZ:1(07 Li) (L >0
for k =1,...,d) in space dimension d = 1, 2 or 3. Equation (1.1) is endowed with
initial conditions

u(0,2) = up(x), wu(0,2) =wvo(z), =€ Q. (1.2)

The unknown function w is the phase function and 8 > 0 is a relaxation parameter.
The nonlinearity f is the derivative of a polynomial potential F' (see (2.1)-(2.2) for
a precise definition). A relevant example in applications is given by

f(s) =8>+ (1 —¢)s, (1.3)

where € € R is constant.

When 5 = 0, equation (1.1) is known as the phase field crystal (PFC) equation:
it has been employed to model and simulate the dynamics of crystalline materials,
including crystal growth in a supercooled liquid, dendritic and eutectic solidification,
epitaxial growth [6, 7, 11, 12, 31, 33]. In the phase field approach, the number den-
sity of atoms is approximated by the phase function u. The parameter € in (1.3) is
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2 MAURIZIO GRASSELLI AND MORGAN PIERRE

proportional to the undercooling i.e. € ~ T, —T', T, being the equilibrium tempera-
ture at which the phase transition occurs. The PFC equation is a gradient flow for
the free energy

E(u) = /Q (;|Au\2 — |Vul® + F(u)) dz. (1.4)

It preserves the total mass and can be viewed as an analog of the Swift-Hohenberg
equation [36].

The MPFC equation (1.1) (with 5 > 0) was recently proposed in [34] (cf. also [12,
15, 16, 35]) in order to account for elastic interactions. Equations like (1.1) have also
been derived in [14] to take large deviations from thermodynamic equilibrium into
account.The MPFC equation is no longer a gradient flow for (1.4), but it is possible
to associate to a solution (u,u;) a “pseudo-energy”, obtained by adding to E a
kinetic energy term (see (2.7)). This leads in a natural way to the notion of energy
solution introduced by Grasselli and Wu [25] for the MPFC equation, following a
terminology used for the modified Cahn-Hilliard equation [22, 23, 24]. Existence
of a unique energy solution was proved by Grasselli and Wu in [25] as well as the
convergence of single trajectories to single stationary states. The analysis of global
dynamics (that is, existence of global and exponential attractors) for the MPFC
equation was carried out in [25, 26].

From the numerical analysis point of view, the MPFC equation has been studied
in [3, 4, 17, 37, 38], while the literature on the PFC equation is more abundant
(see, e.g., [2, 5, 10, 19, 28, 39]). In [3, 4, 38|, the authors proposed unconditionally
energy stable and unconditionally uniquely solvable finite difference schemes. The
time discretization was based on a convex splitting of the pseudo-energy and was
either first order or second order. A priori error estimates were proved assuming
enough regularity on the solution. A time semi-discrete scheme was used in [37] to
establish the existence of a weak solution and of a unique strong solution to the
MPFC equation up to any positive final time 7' > 0. In [17], an unconditionally
energy stable finite element scheme was derived, but no proof of convergence was
given.

The main purpose of this paper is to derive and analyze a second order (in time)
fully discrete finite element scheme for the MPFC equation. For the space discretiza-
tion we use a splitting approach which is well known in the context of phase field
models (cf., e.g., [9, 21]). This argument allows to consider low order (piecewise
linear) finite elements, although the analysis is carried out in a more general setting,
namely a Galerkin approximation. For the time discretization, we use a modified
Crank-Nicolson scheme which was introduced by Gomez and Hughes for the Cahn-
Hilliard equation [18]; their approach represents an interesting alternative to secant
schemes (cf. the discussion in [40]).

We prove that our scheme is unconditionally energy stable, solvable for any time
step, and uniquely solvable for small enough time steps, with a smallness assumption
independent of the space step. Using the energy estimate, and assuming only some
natural conditions on the initial conditions, we show that the solution of the fully
discrete scheme converges to the energy solution of problem (1.1)-(1.2) as the time
step 7 and the space step h tend to 0. Finally, we prove that the discrete solution
tends to a stationary solution as time goes to infinity. This last issue is not trivial



since the set of steady states can be very complicated (see [32] for an analysis of the
one dimensional stationary problem, cf. also [8]).

For equations involving a second order time derivative such as (1.1), second order
time discretizations are very interesting because they do not regularize in finite
time, unlike first order schemes: a fundamental property of the continuous model is
therefore reproduced at the discrete level. In contrast with the second order two-step
scheme in [3, 4], we loose the unconditional unique solvability, but one advantage
is that our one-step scheme can be used with variable time steps. Moreover, we
do not assume £ < 1 in (1.3), and we do not have any restriction on the initial
value of u;. Since energy solutions have a weaker regularity than the weak solutions,
our convergence result as (h,7) — (0,0) holds with the minimal regularity on the
solution.

Our proofs are crucially based on the energy estimates. In order to establish the
convergence to equilibrium, we also use the gradient-like structure of the problem
and a Lojasiewicz inequality [30], as in the continuous case [25]. Related results have
been obtained for first order schemes applied to second-order gradient-like equations
in [1, 20], but the case of the second-order scheme here is more involved.

The paper is structured as follows. In Section 2 we introduce the functional setting
and we recall useful results concerning the continuous problem. In Section 3 we
consider the space semi-discrete problem. We show its well-posedness and establish
energy estimates which allow us to prove the convergence of the semi-discrete solution
to the energy solution of the MPFC problem (1.1)-(1.2). This gives a framework for
the fully discrete problem which is treated in Section 4. Section 5 is concerned with
the convergence to equilibrium for the fully discrete problem. In Section 6, numerical
simulations in one and two space dimension illustrate the theoretical results.

2. THE CONTINUOUS PROBLEM

2.1. Notation and functional spaces. For a real Banach space V' with dual V*,
we indicate by (-, )y« v the duality product between V and V*. We denote by H,.,
m € N, the space of functions that are in H l”gc(}Rd) and periodic with period 2. For
any m € N, HJ¢, is a Hilbert space for the scalar product

(0 0)m =Y /Q D*u(z)D"v(z)dx

k|<m

(k being a multi-index) and its associated norm ||u||,, = ((u, u))ir{2

For m = 0, H),. = L*(2), the inner product as well as the norm on L?(Q2) are
simply indicated by (-,-) and | - ||, respectively. For sake of simplicity, we assume
that [, 1dz = || = 1. The mean value of any function u € L?() is denoted by

(u) = / udz,
Q
and we set & = u — (u).

The dual space of Hy, is denoted by H,.;", and it is equipped with the operator
norm given by

1T —m = sup |7 (w)]-

||U||m=1, ueH;T)ré'r
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For an operator u € H_.[", we denote (u) = (u,1);—m pm and we set @ = u — (u).
per stiper

We denote by H™, = {u € Hyt o (u) = 0} (m € Z) the Sobolev spaces for functions

per
with zero mean. We will frequently use the fact that Hp, is isomorphic to R x H;’;T
(m € Z) through the decomposition v = (u) + .
Using the dense and continuous inclusions ngr C L*Q) c H;e},, the semi-scalar
product on H;er,
(u,v) — (Vu, Vo),
defines a linear operator A = —A : D(A) — L*(Q) with domain D(A) = HZ,.

We denote A = —A : D(A) — L%(Q) the restriction of A to L?(Q), with domain

D(A) = ngr. We observe that A is a positive self-adjoint operator with compact

resolvent so that its powers A* (s € R) are well defined and it is possible to prove

that H7, = D(A™?) (m € Z). .
For m = —1, we introduce an equivalent and more convenient norm |-|_; on H,_!

per
associated with the inner product
(,0) 1 = (A0, A712),

so that for any @ € I-'Ip_;, we have

a1 = A4 = VAT .
Similarly, for m = 1, we will sometimes use the equivalent norm |-|; in H}}BT associated
with the inner product
(u,v)1 = (u)(v) + (Vu, Vo).
Moreover, A defines a continuous bijection from Hggr onto H;Té; 2. In particular,
for s = —1,

(uﬂﬁ_lz(Af%L@hQ g = (AT Y 1y = (AT 20, AT 20)

ersiper persiper
2.2. Energy solutions. The nonlinearity f is a polynomial of odd degree whose
leading coefficient is positive and which vanishes at 0:
2p+1
fls) = Z ais' Vs €R  (agpy1 > 0), (2.1)
i=1

with p € N*if d = 1 or d = 2 and with p € {1,2} if d = 3. We denote F the

antiderivative of f which vanishes at 0, i.e.,
2p+2 w

Fs)=Y s vseR 2.2

(=3 “H e (2.2)

We will make use of the Sobolev injection H;er C L*72(Q). In particular, there is

a constant C's = Cg(Q2) such that
”uHLQP“'Z(Q) < CS|“’17 Vu € H}%erv (23)

and the map v — f(v) is Lipschitz continuous on bounded sets of H;e,, with values

into L2r+2)/Cr+1)(Q) H,.1.. We also have H,, € C°(Q) with continuous injection.

Finally, we note that there exist constants ¢; > 0, co > 0 and c3 > 0 such that
F(s)>2s>—¢ VseR, (2.4)

1£(5)| < c2F(s) +¢3 Vs €R. (2.5)



We point out that the expression (2.2) includes the standard quartic potential (ob-
tained with p = 1)
4
S (1 — 5) 2
F(s) = — . 2.6
(8) =+ (2.6)

In contrast to some authors, we do not assume that ¢ < 1 (we simply have ¢ € R).
In [25], a notion of energy solution was introduced. This is based on the following
pseudo-energy:

(u,0) = B(u) + 510l 2.1
which is well defined for any (u,v) € Hp,, x H,..

Definition 2.1. A pair (u,u;) is called an energy solution to problem (1.1)-(1.2) if

(u,u) € LOO(]RJF;HZ?W X Hp_e,lﬂ), Ut € LOO(RJF;HP‘;,{), (2.8)
E(u,ur) € LRy, (2.9)
and the following relations hold:
(Bug +u) =0, (2.10)
A7 (Buse + up) + A*u — 2Au+ f(u) — (f(u)) = 0,
in H,2,  ae. in Ry, (2.11)
w(0) = ug in HY,., u;(0) =wp in H. (2.12)

Equation (2.10) can be interpreted as a conservation law for the mass. With this
definition, we have

Theorem 2.2 ([25]). For any intial data (uo,vo) € HY., x H, ., problem (1.1)-(1.2)
has a unique global energy solution (u,u;). Moreover, any energy solution satifies

the strong time continuity property
u € C*(Ry; Hyp) N CH(Rys Hye) N C(Ry; Hy,),

per per

as well as the following energy identity, for all s, t € R with s < t,

Eu(t), us(t)) = E(uls), ue(s)) — / |t (7)|? d7 + / (vo)e™ /8 /ﬂ f(u(r))dzdr.
(2.13)

In particular, whenever (vg) = 0 then the pseudo-energy is nonincreasing.

3. THE SPACE SEMI-DISCRETE PROBLEM

3.1. The space semi-discrete scheme. Our space discretization is based on two
ideas: first, in view of the time discretization, we write the PDE (1.1) as a first order
system; second, in order to use low order finite elements, we split the tri-Laplacian
into three terms, in the spirit of a well-known splitting approach in Cahn-Hilliard
type equations (see, e.g., [9, 21, 17]). We obtain the following system, which is
(formally) equivalent to (1.1):

U = v
Buy = —v + Aw
z=—-Au

w=—Az+2Au+ f(u).
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Now, let V}, denote a finite-dimensional subspace of H;er which contains the con-
stants. In applications, V}, will be a space of conforming finite elements (see Sec-
tion 6). The space V}, can also be obtained with a spectral basis.

The space semi-discrete scheme reads: find up, vy, zp, wy : Ry — V3 such that

(Ouns ¢n) = (vn: on)

B(Oyvn, n) = —(vn, ¥n) — (Vwn, Vibp,)

(2hsCn) = (Vup, V(p)

(wh, &) = (Van, V&) — 2(Vun, V) + (f(un), &n),

for all pp, ¥y, Ch, &y in Vy. This problem is completed with initial conditions
up(0) = ul),  vp(0) = v, (3.2)

where u)) and v) are given in Vj,.
It will be convenient to work with an appropriate basis of V. For this purpose, let
(e} )1<i<n, denote an orthonormal basis of V}, for the L?(Q2) scalar product, such that

(3.1)

e,ll = 1. The integer N}, is the dimension of V},. To every function rp = Zfﬁa me}; S
V}, corresponds a unique (column) vector R = (rq,... ,rNh)t, represented by the
corresponding capital letter. We seek

Np
up(t) = > wit)e) = (ur(t), ... un, () =U®), op=V, z~=Z, wy~W.
=1

Deﬁne A == (Aij)lﬁi,jSNh’ Where
Aij = (Vej,, Vel), 1<i,j < Ny, (3.3)
and let
t
Fp(U) = (F(u), 1), so that  VE(U) = ((f(un),eh), o, (Flun) ™)) -

By choosing the test functions ¢y, ¥n, Cp, &, in (3.1) as the basis functions 6;17 we
obtain the following equivalent system:

U=V
BV, = -V — AW
, t: e (3.4)

W = AZ — 2AU + VE,(U).
Eliminating V', Z and W, we see that (3.4) is equivalent to
BUy + Uy = —A[A’U — 2AU + VF,(U)], t>0. (3.5)

Since A is a discretization of —A, this is natural space semi-discrete version of (1.1).

Let U denote a solution of (3.5). We notice that the first line and the first column
of A are filled with zeros (recall e}L = 0, so that Ve,ll = 0). Thus, the first component
of U, uy(t) = (up(t), 1), satisfies

ﬁatﬂﬂ + 8tU1 = 0, t Z 0. (36)

Solving (3.6) with initial conditions u1(0) = (u9,1) =: u{ and dyu; (0) = (v, 1) =: v}
yields

ur(t) = We™B = a(t) and wuy(t) = M — Ba(t), with M = g0 + ). (3.7)



For every vector R = (rq,...,rn, )" € RN we denote R = (ro,...,rn,)t € RNe—L,
Then U satisfies

BU, + U, = —A[A%U — 2AU + VF,(U)], ¢>0, (3.8)

where A is the submatrix A = (Aij)ZSi,jSth and

VED) = ((Fn) ). (Flan) )

We can also write VF},(U) = P(VF,(ui(t),U)), where P : RV» — RNv=1 is the
projection on the components 2,...,N,. This shows that VF,(U) is a “non au-
tonomous” function of U (recall that uy (t) is determined by (3.7)). For later purpose,
we note that by (3.3), A is symmetric positive definite: in particular, A is invertible.

Conversely, any solution U of (3.7)-(3.8) satisfies (3.4), i.e. that the second equa-
tion of (3.4) is satisfied with V', Z and W given by the three other equations of the
system (3.4).

3.2. Existence, uniqueness, and discrete energy estimate. The standard Eu-
clidean norm in RV» or RV»~1 will be denoted |-|. We also use the following quadratic
norm:

: e N1/2
IRy = (RtA*1R> , (3.9)
defined for all R € RN»~1. Notice that |A3U| = |ASU| (s > 0, U € RV»). We set
1
En(U) = §’AU\2 — AU + Fy(U), (3.10)
E(UV) = Ep(U)+ gm%l. (3.11)

As a shortcut, for a solution (U, U;) of (3.5), we will write

En(t) = En(U(2), Ui(2)).
Notice that by the Cauchy-Schwarz inequality we have

AV2U P = U AT < i|AU|Q U (3.12)
Then, using also (2.4), we find that
En(U) > %|AU\2 FIUP - (3.13)
We first prove the following
Lemma 3.1. Any solution U € C2([0,T); R™) of (3.5) satisfies the energy equality

d . _
S8 + U2, = ofe P (f ) 1), (3.14)
and the energy estimate
t
En(t) + / U (s)[% 1ds < E,(0)€*218 1 (¢cp + c3) 10| Be22!01P, (3.15)
0

for all t € [0,T), where c1, ca and c3 depend only on f (see (2.4)-(2.5)), and where
v = dyuq(0).
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Proof. Recall that dyui(t) = vle */# (see (3.7)). On multiplying (3.8) by UfA~!,
and using

LIRU )] = (VRO Zatuz ),

we find the energy equality (3.14). Estimate (2.5) ylelds

d . _
%Sh( )+ U2y < [00]e P (eaFi(U) + c3).

By the Cauchy-Schwarz inequality, we have
2|AV2U 2 = Ut AU < |AU|? + U2
Thus we get
2B, (U) = (JAU? — 2| AV2U 2 4 [U]2) + Fu(U) + (Fu(U) — [UP) > Fu(U) — 1,

so that
Fh(U) < Qgh(U, V) + 1. (316)

Therefore we obtain

d .
agh( ) + ’Ut|2,1 < "U?‘eft/ﬁ (2625h(t> + cico + 63) .
Letting n(t fo 2co|vY]e t/8 and ¢y = c1¢2 + 3, Gronwall’s lemma yields
t
/ 104()[2 "D s < £, (0)en® + / &, 00 e=5/Ben®=n(s) g,
0

Since 7(t) = 2¢2|v9|B(1—e~/P) < 2¢9|vY| B, we deduce the energy estimate (3.15). [

Theorem 3.2. For every U, VO in R, there exists a unique solution U €
C?(Ry, RN of (3.5) such that U(0) = U® and Uy(0) = VY.

Proof. By the Cauchy-Lipschitz theorem, there exists a unique maximal solution
U € C?*([0,T%);RNr) of (3.5) satisfying the given initial conditions. The energy
estimate (3.15) shows that &, is uniformly bounded for ¢t > 0. By (3.13), |U| and
|U;|_1 are uniformly bounded for ¢ > 0. This, together with the estimate (3.7) on
the mass, implies that T = +o0. O

3.3. Some additional notation. We assume now that (V})p~¢ is a family of sub-
spaces of ngr such that:

(H1) for all h > 0, V}, has finite dimension and contains all the constants;
(H2) for any ¢ € Hj.,, there exists ¢j, € V, such that ¢, — ¢ (strongly) in H),,
as h tends to 0.

For the convergence result as h — 0, it will be useful to have h-dependent operators
and norms. We denote Ay, : V}, — V}, the linear operator such that for any ¢, € V},,
Apagp, solves

(Anan, Cn) = (Van, V),  VCh € Vi (3.17)
The operator Aj, is a discrete Laplacian, A, ~ —A,. Notice that if ¢, is constant,
then Aj,q, = 0 so that Aj, is not invertible. In order to define a discrete version of
A1, we introduce the subspace

Vh:{gﬂhGVh : <(ph>20}.



The bilinear form (V-, V+) is symmetric positive definite on V. We can define the
operator Sh, : Vi = Vj, such that for any ry € Vh, Sy, is the unique solution of

(VShin, Vn) = (fn, 1), Von € Vi (3.18)

By choosing G = 1in (3.17), we see that Ay (V) C Vi, so that the restriction
Ap Vh — Vi of Ay is well defined. Using (3.17)-(3.18), it is easily seen that
Sh = .A_

We also define the L2-orthogonal projector P, : L?(Q) — V}, i.e.,

(Pug; on) = (:¢n), Vg € L*(Q), Yo, € Vi
By Pythagoras’ theorem and assumption (#2), for any ¢ € L?(f2), we have

lg — Puql| = inf g —ru] = 0, as h — 0. (3.19)

Since V), C H per, the operator P, has a natural extension to Hpe,, (also denoted Fy),
by setting
Bug € Vi, (Bagyon) = (&)t - Ve € H ers Von € Hp,

pem

The H!-orthogonal projector Iy, : Hper — V}, is defined as follows: for any ¢ € Hper,
IInq € V is uniquely defined by

(pg) = (q) and (VIaq,Vep) = (Vq,Vr), Vq € Hy,,, You € Vi (3.20)
By Pythagora’s theorem and assumption (H2), for any ¢ € H'. ., we get

per>

l¢ —pgly = inf [¢g—rpl1 =0, as h — 0. (3.21)
rhEVh

We point out that the space Vj, is invariant by II, and by P,.
By using a L?-orthonormal basis (€},)1<i<n, of V}, as in Section 3.1, with e}L =1,
we see that the matrix of Ay, is A, so that the energy E}, from (3.10) can be rewritten

Bn(un) = 5l Aneun |~ lin 3 + (), 1)
the norm | -|_; from (3.9) becomes for any element 7, € V,
il = (s Ay ) = JAG il
It is an Euclidean norm for the following scalar product on V,
(s dn) -1 = (ny A tdn) = (A5 e, A ).
Thus, the discrete pseudo-energy (3.11) reads
En(up,vp) := Ep(up) + §|@h|31,h7 Yup, vy € Vi (3.22)
The Cauchy-Schwarz (3.12) inequality gives
lul? < fHAhuhH2 + lunl?,  Yup € Vi, (3.23)
and estimate (3.13) becomes

En(up) > *HAhuhHQ + HuhH2 —c1, Yup eV (3.24)
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3.4. Convergence as h — 0.

Theorem 3.3. Let (ug,vp) € H , X Hpe}« Assume that (ul),v))p=0 is a family of
functions in Vi, x V}, such that

uf) — ug in Hp,, Ahug — Aug in L*(), (3.25)
(vp) = (vo) in R, A of — A~Yég in Hp,,, (3.26)

as h — 0. Then the solution (up, Oyup,) of the space semi-discrete scheme (3.1)-(3.2)
tends to the energy solution (u,u:) of (1.1)-(1.2) in the following sense:

up, — u weakly x in L°(Ry; HL. ),

per
up, — u strongly in C([0,T); L*()), for all T >0,
Apun, —  Au weakly * in L°(Ry; L*(Q)),
Aglatuh —  A7'00 weakly « in L®(Ry; H.,) and weakly in L*(Ry; HL,).

per per

Proof. The idea is to use a priori estimates on the mass and on the discrete energy,
and to pass to the limit in the equation by a compactness argument. We first consider
the conservation law for the mass. By (3.7), we get

an(t) = (un(t)) = (vp)e 7, =0,

and

(un(t)) = Blvp) + (up) — Ban(t), t>0. (3.27)
By assumption, (u)) — (ug) and (v)) — (vo) in R, so that aj converges uni-
formly on R4 to the function a(t ) (vo)e P, and (uy,) converges uniformly on
R to the function S{vg) + (up) — Ba(t). The estimates below show that (up)p~o is

bounded in L>®(R; L?(2)), so that, up to a subsequence, uj, converges weakly * in
L®(R; L?(£2)) to some u and so (up) — (u) weakly « in L°(R,). By uniqueness

of the limit, we find
(u) = Blvo) + (uo) — Ba(t).

By differentiating, we recover the conservation law for the mass:
B@tt<u> + 8t<u) =0, t>0.

We now turn to the energy estimate. As pointed out in Section 3.1, the (unique)
solution (up, dyup) of (3.1)-(3.2) is in fact a solution (up, vp, zn, wy) of (3.1)-(3.2). In
particular, v, = Oyup, and z, = Apup. We have (recall (3. 22))'

1 .
E(up, vi) = S lMAnun|* =[G4 ]7 + (F(up), 1) + IAh Uhlt-

By using assumptions (3.25)-(3.26) and the Sobolev injection Hl,, < L*72(Q), we

per
see that &€(uf),v)) is uniformly bounded as h tends to 0. The energy estimate (3.15)
shows that there exists a constant C' independent of h such that

En(un(t), pun (1) /|atuh Py ads < C,

for all t > 0. By (3.24) and (3.23), we obtain that z, = Apuy and uy, are uniformly
bounded in L*(Q), that 1y, and 7y, := A, 041y, are uniformly bounded in Hper, and
that

/ | A, Loy, (t)[Fdt < C.
0



11

This implies that (uy)n>0 is precompact in the space C ([0, T]; L*(£2)), for all T > 0,
as a consequence of the Ascoli-Arzela Theorem. Indeed, let 77 > 0. The family

(up)n>0 is uniformly bounded from [0, 7] with values in ngr, and Hz}er is compactly

embedded into LZ(Q) by Rellich’s Theorem. Moreover, for all 0 < s < ¢t < T, we
have

lin(t) = an(s)* = 2/(3t7lh(0)ﬂlh(0)—@h(8))d0

~ / (Vin(@), Vlin(o) — in(s)])do

A7 wll oo sms, ) n | oo e, ) [ — 81 (3.28)

IN

Moreover, by (3.27) and the mean value theorem, we find

[{un(®)) — (un())| < [(wp)llt — 5.

Thus, (up)p>o is uniformly equicontinuous from [0, 7] with values into L?(f2), and
therefore pre-compact in C([0,T]; L?(Q2)), as claimed. Up to a subsequence, we have
the following convergence results

up — u weakly % in LOO(RJF;H;er)a

up, — wstrongly in C([0,T]; L*(Q)), for all T > 0,
up — wae in QxR

flup) —  f(u) weakly in L9(0,T; L9(2)), for all T > 0,
2, — 2z weakly % in L®(Ry; L*(Q)),
i — i weakly * in L°(Ry; Hp,,),
i — i weakly in L*(Ry; H,,.),

where ¢ = (2p +2)/(2p 4+ 1) > 1. Let now ) € H;er and let vy, = II,(¢)) so that
Q,Z}h — w strongly in H! . We have

per:
(atuh7¢h> = (Ahf'ha ¢h) = (anha VTPh) - (Tv ¢)
weakly x in L°°(R). On the other hand, 8t(uh,_¢h) — 04(1,v) in D'(0,00) (i.e. in
the sense of distributions), since (up,¥n) — (4,1) in L>(Ry) weakly . Thus,
(i, ) = (V7 Vi) = (0,9) ot gy (3.29)

pers;tiper

with v = A € L(Ry; H,.L). This shows that i = 0 € L(Ry; Hy ).

Next, we set ¢ € ngr and we let ¢, = I(p), so that ¢, — ¢ strongly in
H;eT. Let (62)1§1§Nh be an orthonormal basis of V}, with e}ll =1. Welet ¢, =
Zf-vzhl piel and ® = (p1,...,¢n, )" be the vector associated to ¢y, as in Section 3.1.

On multiplying (3.8) by ®*A~! and using z;, = Apuy,, we find

B(Ostttn, On)—1,n + (Octtn, on)—1,n + (Van, Vor) — 2(Vun, Voor) + (f (un), ¢n) = 0,
(3.30)
for all t > 0. We have that

(O, on)—1,n = (Thy @n) — (7, 0) = (Opth, 9) -1,
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by (3.29). The convergence above holds in L>(R;) weak x, so that
(Outttn, pn) 1,0 = Op(Ortin, on)—1,n — Oz, @)1 in D'(0,00).
Moreover,
(Vup, Vor) — (Vu, Vo) in L (Ry) weak *.

Since ¢p, = I, we have

(Vzn,Veon) = (Vzn, Vo) = (21, Ap) = (2, Ap),
in L*°(R4) weak . Concerning the last term in (3.30), we have

(f(up),on) — (f(u),9) weakly in LY(0,T), VT > 0.

Summing up, we have proved that

The equality holds in D'(0,0), for all ¢ € H]%er' Moreover, Oyt € L*°(Ry; Hp_e}q),

z € LRy L*(Q), u € L®(Ry; Hy,,) and f(u) € L®(Ry;H, ) so that dyu
belongs to L>®(Ry; H, %) and

per
A7 N(BOwi + 0p1) + Az — 2Au + f(u) — (f(u)) =0
in H2 ae. in Ry. Now, recall that z, = Apup. Let ¢ € H; and ¢, = II,¢, so

per?

that ¢;, — ¢ strongly in H! . We have

per:*

(Zhaqh) = (Ahuhvgh) = (VU}MVCh) - (VU,VC),
on one hand, and (zp,(}) — (z,(), on the other hand. Thus, we deduce

(2,¢) = (Vu, V),
in L*(R4). The equality holds for every ¢ € H;er, so z = Au, u € L®(Ry; H}%er)

and (u,u;) is an energy solution of (1.1)-(1.2). By uniqueness of the limit (u,u;),

er

the whole family (up, Opup,) converges to (u, ug). O
Remark 3.4. Let (ug,vg) € ngr X Hpp. If u) = I (ug) and v) = Py(vp), then

assumptions (3.25)-(3.26) are satisfied. Indeed, for all ¢}, € Vj,,
(Aug, ¢n) = (Vuo, Vop,) = (VIIyuo, Ver) = (An(Ipuo), on).
Then Ap,(ITpuo) = Pr(Aup) and by (3.19) we obtain
An(Thug) — Aug in L*(Q), as h — 0.
By definition, observe that
(Pr(v0)) = (Pr(v0),1) = (vo, 1) -1 g1 = (v).

perstiper

Moreover, for all ¢, € V},, we have

(Pu(d0)s¢n) = (00, 9m) gt g = (VA o0, Vip)

= (VI (A o), Vin) = (An(TTh(A™ ), én),
so that
Ph(?'}()) = Ah(Hh(.Aflijo)).
Thus, thanks to (3.21), we deduce

A (P (00)) = T (A 0g) — A g in H.

per:*
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4. THE FULLY DISCRETE PROBLEM

4.1. The fully discrete scheme. For the time discretization, we use the following
decomposition:

(H3) F = F, 4+ F_, where F; and F_ are polynomials such that Fj_iv) >0, F® <
0, and deg(F_) < deg(F) (here, deg denotes the degree of the polynomial).

As a consequence, deg(F) = deg(F') and Fy, F' have the same leading coefficient.
We denote f = F' = f_ + f_, where f, = F'_ and f_ = F’ . For the energy estimate,
we will use the fact that there exist two constants c¢; > 0 and ¢g > 0 which depend
only on f and on the decomposition f = fi + f_ such that

(s =P+ ) < es(F () + F(s) + 6, (41)

1
SO+ 176 + 5

for all r,s € R.

Remark 4.1. A decomposition (H3) is always possible for a polynomial potential
such as (2.2). Indeed, for a quartic polynomial (for instance (2.6)), we can always
choose F;, = F and F_ = 0. For a polynomial with higher degree, we notice that
F) being a polynomial of even degree with strictly positive leading coefficient, is
bounded from below, i.e.
Fi)(s) > —¢; VseR,

for some constant ¢4 > 0. A possible (but not unique !) choice is then Ff”) =
F@) 4 ¢y and F™) = —¢y, iee. Fy(s) = F(s) + cy4s*/24 and F_(s) = —cy5%/24.

We use the same notation as in Section 3. In particular, V} is a family of finite-
dimensional subspaces of H,, which satisfies assumptions (H1)-(H2).

Let 7 > 0 denote the time step, and (u)),vY) in V;, x V} the initial datum. The
fully discrete scheme reads: for n > 0, find (u"*1,v"*1, 27w t) € (V3,)* such
that

(™ = u) /7, 0n) = )

B((op ™t — o) /7, p) = — <"“/2,¢h> (Vwp+!, Vi)
(= G) = (VT2 v e
(Wit &) = (V21 Ve,) — 2(Vay ™2 96 + ((F(up) + f(uft) /2, 6)

o5 (=) (FY () + 2 (up™)) &)

( n+1/2

(4.2)
for all pp, ¥n, Ch, &, in V. Here, we have denoted

W = @ )2 and ot = () 2

Notice that zj) and w) do not need to be defined. In fact, zZH (resp. (wzﬂ))
is a second-order (in time) approximation of zp(t,y1/2) (resp. wp(t,41/2)), where
tn+1/2 =(n+ 1/2)7’.

Let (62)195% be an L2-orthonormal basis of V},, with e}l = 1, so that we have
the identification Vj, 3 uj, ~ U € RNr. In RNr | the scheme reads: let U?, VO in RN»
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and for n > 0 find (U Vbl zntl jyntl) ¢ (RVh) which solves

(Un—i-l _ U”)/T — Vn+1/2
ﬁ(vn—i—l _ Vn)/T _ _Vn+1/2 — AWntl

gn+l — AUn+1/2 (43)
Wwntl — Aznt+l _ 9 Apynt1/2 + (VFh(Un) + VFh(Un+1)) /2
\ —G(Un, Un—&—l)’
where
n n 1 n n n n i
G, U™ = o (™ —up)* () + /2 y™) b)) cien, - (44)

On eliminating Z"*! and W"*!, the scheme becomes
(Ut —un) /7 —Vrtl2 =0
ﬁ(V”'H _ V")/T + Vntl/2 + A(A2Un+1/2 _ 2AUn+1/2) (4'5)
LA ((VE((U™) + VEL(U™) /2 — GU™, U™)) = 0.

In Section 6.1, a numerical example indicates that our fully discrete scheme (4.2)
has a second order convergence error in time (and also in space if V}, is the space of
P! finite elements). By arguing as in Gomez and Hughes [18], we check here that:

Proposition 4.2. The scheme has a second order consistency error in time, i.e.
that any solution of the space semi-discrete problem (3.4) satisfies the fully discrete
scheme (4.5) with order O(7?).

Proof. Let (U, V) be a solution of (3.4) on a finite time interval [0,7]. Since f is a
polynomial, by a bootstrap argument, we know that (U, V) € C*([0,T]; V;, x V3). In
the time discrete scheme (4.5), we replace U, UL, V7 V"t by U(ty,), Ultni1),
V(tn), V(tn+1) respectively. The purpose of this replacement is to find a local
truncation error (or consistency error) in O(72) in the right-hand side of (4.5), instead
of (0,0)*. Now consider the midpoint scheme, which is the same as (4.5) without the
term G(U™, U™1). Standard results show that the midpoint scheme has a second
order consistency error, so that it is sufficient to show that G(U(ty),U(tn+1)) =
O(7?%). This is obvious by definition (4.4). Indeed, using the assumption on p and
appropriate Holder inequalities and Sobolev injections, we have

G(U(tn), U(tas)| < Cllutnr) — ultn)lf5.

Moreover, by Taylor expansion, ||(up(tns1) —un(tn))?|]1 = O(72), so the local trunca-
tion error is O(72) as well. Notice that the constant in the consistency error depends
on h, on T', and on maximum norms of derivatives of U, V up to order 3. ]

4.2. Existence, discrete energy estimate and uniqueness. Let us prove the
following

Theorem 4.3 (Existence for any 7). For any (u),v)) € Vi, x V},, there exists at least
one sequence (u}, v, 2% wi),>1 in (Vi)* which complies with (4.2).

Proof. We work with the R version (4.5). We will show that this problem is
variational, and that we can find U"*! by a minimization procedure. Let (U™, V")
be fixed in RV». Consider the polynomial of two variables

Ls— (1) + 17(s)) (s R).

9(rs) = 35
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By assumption (H3), we have deg(f-) < deg(f) and deg(f+) = deg(f) so deg(f”) <
deg(f) — 2, and deg(f) = deg(f) — 2. Thus, g is a polynomial of total degree less
than or equal to 2p—+1, and its partial degree with respect to the variable s is strictly
less than 2p + 1. We can write

g(r,s) = Z by s, (4.6)
k,l
for coefficients by, ; € R, where 0 <k <2p+1and 0 <! <2p+ 1. Let us set now

h(r,s) = Z kark
k.l

Sl+1

[+1’

(4.7)

so that O;h(r,s) = g(r,s). We define H}'(U) = (h(u},up), 1) with u, ~ U, so that
VH;(U) = (g(up,un), ei)1<i<n, = GU",U).
By (4.7) and Holder’s inequality, we get

H(U)] < Co (lunll ity +1) VU € RYY, (4.8)

where the constant C,, depends on ||u}|| 12p+2(q). Now, by eliminating V"1, we find
that (4.5) is equivalent to

n+1l _ 7mn n+1l _ 7mn n+1 n
D (AU ) OO e
T

T T 2
n+1 n n n+1
—2A(U 2+ um) n VE,U )+2VFh(U ) B VH,?(U"H)} _ 0
Writing U = (uq, U), we see that this is equivalent to
n+l n n+l _ . n
B (2(U1 ut) v?) Lt Yy, (4.9)
T T T
{—1 m+1 _ 1T . . ‘™m+1 _ 1T . rn+1 I
B4 <2<U U>_Vn>+A_1<U U") |, @+ 0
T T T 2
L (7Tn+1 m - n - n-+1 .
— 2A(U +U") + VE(U") + VEU™T) vVHN U™ = 0. (4.10)

2 2

+1 uniquely. The second equation can be solved by

letting U be a minimizer on RV~ of the function:

g

T

The first equation determines uy

. B ot i—1er . Lo | IR,
G:U ﬁ|U—U 2, - Z(V")lA 1U+§|U—U\2_1+1\A(U+U)]2

PR VEL U™ . FMU) -,
—2\A1/2(U+U)\2+( h; ))U+ h2 — HV(U),

where
F(U) = Fp(ui*'U),  Hj(U) = Hji(u™, 0).
By (2.2), we deduce

T a2p+1 2p+2 2p+1 . —
FI?(U) > ﬁ”uhulgz;%g) - C;/)(HuhHLI;;&(Q) + 1)7 VU € RNh 17
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where the constant Cz/v depends only on the coefficients of F'. Thus, by (4.8), we find

!

. a2p+1 2p+2 C 2p+1 .12 .
G(U) 2 5ot lunll ooy = (ot ) lunll oy + ellin]® = ]| = ¢,

where ¢ > 0 and ¢/, > 0 depend on h, F and uj. For the quadratic term, we
used that all norms are equivalent in RM»~1. As a consequence, G(U) — +oo as
|U| — +o0: the continuous function G has a minimizer in RV ~1 and the proof is
complete. ]

The behavior of (uf,v]) is straightforward, thanks to a discrete conservation law
for the mass. Indeed, choosing ¥ = 1 in the second equation of (4.2), we find
28 — T

n+1 _
Y1 28471

=qui, with ¢=4q(8,7) (4.11)

Thus, we obtain
o = ¢"o?. (4.12)
We also have v"+1/2 = qu"~1/2, so that v"T1/2 = ¢"v!/2. Notice that |g| < 1, since

g >0 and 7 > 0, so that v} — 0. If 7 > 24, then ¢ < 0.
On choosing ¢ = 1 in the first equation of (4.2), we find

1/2
u?"'l =ul + Tv?Jr /2,

By induction, we deduce
n—1 1—qgn
ut =ud 47 (Z qk) ’Ui/Q =ul + Tﬁv%ﬂ. (4.13)
k=0

For the energy estimate, we will need a technical lemma, adapted from [18]:

Lemma 4.4. Let g € C3([0,1];R). Then the following identities hold

/0 a(s)ds = 2(g(0) + g(1) — L g"(0) — 2 / K (0)g® (0)do,  (414)

2 12 2 J,
1 1
| ates = 560+ o) = 550" + 5 [ (@) P . (415)

where ky (o) = (1—0)%(2041)/6 and ky (o) = 02(3—20) /6. In particular, ki () >0
and ky (o) > 0 for all o € [0,1].

Proof. We prove (4.15) (the proof of (4.14) is similar). For a function ¢ € C2([0,1]),
let

1
Brr(e) = [ plolds = (560 + (1) - ')

denote the error of the quadrature formula. If ¢ is a polynomial of degree < 2, a
direct computation shows that Err(p) = 0. Now, let g € C3([0,1]). The Taylor
formula of order 2 at s = 0 reads

1
g(s) = pa(s) + ;/o (s — 0)39(3)(0)&7,

with pa(s) = g(0) + s¢’(0) + s2¢”(0)/2 and

(s ) s—o ifs>c
— o). =
+ 0 if s <o.
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In particular, Err(pe) = 0. By linearity of Err,

1
Err(g) = Err(p2)+ Err <S — ;/0 (s — 0)19(3) (O’)d0‘> )

By inverting the integration signs, we obtain

1

1
Brrte) = 5 [ 5 (@) (o)

where k; (s) = Err(s — (s — 0)2). Using the definition of Err, we find that for
o€[0,1),
! 1
ky (o) = / (s —0)ids — ([(o —0)i+(1—-0)3] - ) :
0 2 12
= 0%/2-0%/3.
The claim is proved. O
We have (compare with Lemma 3.1):

Lemma 4.5 (Energy estimate for any 7). If (U™, V", Z", W"),>1 is a sequence in
(RN which complies with (4.3), then for all n > 0,

En(U™MTL VY — &, (U V) 4 | V22 < o 2t (4.16)
As a consequence, for all k > 0, we have
k—1
gh(UNOJrk’ VNoJrk) + Z T|VNo+j+1/2‘§1
§=0
NO NO
< exp 1605T|q’ vi/Ql <Eh(UN°, Vv Noy 4 C7T|q‘ v%ﬂ) , o (4.17)
1—lq] 1— g
where No = No(B, ¢s, 7, |0?]) € N is such that
257l ™o’ < 1/2, (4.18)

c7 = 2c1¢5+c¢ depends only on f, fi, f— (see (2.4), (4.1)), and q is defined by (4.11).

Proof. Let duy = uZ'H —up. Since f; = F and f_ = F’, we have

R~ Fo(a) = 00 [ £+ soufs, (119
F_ () — F_(u}) = du] /0 U+ soul)ds. (4.20)
Choosing g(s) = f4(u} + séup) in (4.14), we find
[ et stuias = S + s - R )
oy’

1
: / k(o) () + oou)do. (421)
0
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Setting g(s) = f—(u} + sou}) in (4.15), we find

1 Sul 2
[ ati e svuyas = S0+ ) - SR

12
Sul 3 1
4 “2’1) /O ky (o) f" (u} + ooul)do. (4.22)
Adding (4.19) and (4.20) leads to
PO = F) = S| 3R + S0 )
(5un)2 1! " n n
- )+ 1) - an
where
Sum 4 1 1
o = ( u2h) </0 ky (o) f (uft + odu})do /0 ks (o) £ (up, +05uh)do> > 0.

by assumption
equation of (4.2

(H3) on the decomposition. Next, we choose &, = duy in the last
). This gives

(WPt sup) — (V2 veup) + 2(Vul ™2, voup)

= F(up™) = F(up) + (", 1).

+1

Using the vector form with 6U" = U™t — U", and eliminating 2", we obtain

1
Fy (U™ = Fy(U™) + (o, 1) = (WTH)6U™ — S (JAU™ 1 — |AU™?)
AR — | AVRUT R (4.23)

The second equation in (4.2) implies
cmil T
= A (,B(Vn ) 4 V"+1/2> |
T
Plugging this in (4.23), together with U™ = 7V" /2 we get

B(U) = By(U™) + (0, 1)+ 5 (712 = (772, 4 o022,

n+1/2
= 0] / n+1

This yields the energy estimate (4.16).
Choosing r = 1 in the last equation of (4.2), we find

w?Jrl 1(f(’LLh) + f( n+1)’ 1) - ((UZJrl i UZ)Q ( ( ) + f//( n+1)) , 1) .

2
Thus, by (4.1), we deduce

W] < (GO AR + o (i — a1 F ] + 17 i), 1)

< (es(F(ul) + F(uf™™)) + ¢, 1),
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As a consequence, by (3.16), we get
En(U™TL V) — &, (U, V) 4 £V

< 7oy ) (es(F (), 1) + es(F (™), 1) + o)

< T‘?}?—H/Q‘ (265Eh(U"+1) + 2¢5 ER(U™) + 2¢5¢1 + 06)
Let us set

& = Ep(U") + gmzl.
So far, we have proved that
E}TZH + T|V"+1/2|2,1 <&+ T]q\"\vi/z\ (2055{[ + 2055}3“ + 07),

where ¢7 = 2c5c1 + cg. Let No = No(B,c5,7, |[00]) € N satisfy (4.18). Then for
n > Ny, we have

1

(1 = 2es7]q|" vy 2 NEPTT + 7|VH212 L < (1 + 2e57|q" |0y 2 ER + crrlal™0)?).

We divide by this inequality (1 — 2C5T|q\"\vi/2|
inequality) for all z € [0,1/2],

) and we use that (by the mean value

1 1
and e <1+ 8z < exp(8x).
1—2z 1-2z

1<

VVe Oblain
g + “r + 1 1/2 1/2
}TLZ ! 7—‘ " 1/2‘2—1 < exp( 665T’Q‘n‘vl/ D (8}711 CIT‘q’n’vl/ ‘) )

for all n > Ny. By induction, for all k& € N, we deduce

k—1 k—1
5fJLvO+k + ZT’VN0+J'+1/2‘2_1 < exp 16657‘1}1/2’ Z ‘q’No-i-j 5}1270
j=0 j=0
k-1
1/2 —1—9 i 1/2
+Zexp (16057\1)1/ [(Jg|No + - 4 |g| Mot J)) C7T]q|N°+J|vl/ |.
j=0

Estimate (4.17) follows by using the inequality Zf;é lg|Noti < |q|No/(1 —|q]). O

Theorem 4.6 (Uniqueness for small 7). For any (u),v)) € Vi, x V},, there exists 7* =
7*(h) > 0 such that for any T € (0,7*), there is a unique sequence (u}, vy, 2", Wi )n>1
which complies with (4.2). Moreover, T* can be made independent of h if (u?, v9)p=0
is a family such that

(O] + En(up, vp) < Cn, (4.24)

for some constant C1 independent of h.

Proof. Assume that (u},v}) is uniquely determined for some n > 0. We have seen
that uft! = <uz+l> is uniquely determined (see (4.9)). It is sufficient to show
that iLZ'H ~ Ut is uniquely determined by (4.10), for 7 sufficiently small and

independent of n. Then UZH can be recovered by the first equation in (4.5).
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Assume that (4.10) has two solutions 4} 7 ~ U™+ and aptt ~ U " We subtract
the two resulting systems (4.10), and we multiply by U = U”H—Qnﬂ ~ dup = Oup,.
We obtain

26, .. 1 .. 1 : .
p|5uh|31,h + ;\5uh\31,h + §\|Ah5uh|!2 — [&n [}

o (O = F), ) — (gl ufl ™) — glodf, uf™), Su) = 0.(4.25)

By (2.1), f’ is a polynomial of even degree with strictly positive leading coefficient,
so that f’ is bounded from below. There exists an (optimal) constant ¢; > 0 such
that

f'(s) > —c; VseR. (4.26)
By the mean value theorem,

(flup ™) = flup ™), dun) > —cp||dinl|.

On the other hand, by (4.6), we have
= > ()l = ™,

0<k+I1<2p+1

g(up, UZ—H) - Q(UZ,QZ

+1)
so that by Holder’s inequality,

(gl u ™) — gl w1, 6u)| < CLl8] B anszr

where
G = C (gl zav+2(ay Il ooy, g amvaqey)

and C” is a nondecreasing function of its arguments. Thus, by (2.3), equation (4.25)
implies

26, . 1 .. 1 . Cfiie. .
§|5uh|2_1,h + ;|5Uh|2_1,h + §Hv4h<5Uh||2 < gfﬂ&thw +(C),Cs + 1)|0un 3. (4.27)

Let (u?,v)) be a given initial data and let 7 = min{283, (4c5/v?|)~}. Then for
7€ (0,7), g =28—-7)/(268+7) € (0,1) and (4.18) is satisfied for Ny = 0 since
|vi/2| = (1 + q)v?/2| < [v9]. Moreover,
T T
= — < 28.

o =B+5 <28
By the energy estimate (4.17), C/, is bounded by a constant independent of n and
7. Since all norms are equivalent in V},, estimate (4.27) implies that for 7 > 0 small
enough (but dependent on A !), dup = 0.

Now, assume that the bound (4.24) is satisfied, and replace T by

7 = min{23, (4c5C1)"1}.
By the energy estimate (4.17), &,(U", V") is bounded by a constant independent of
h, n and 7. Thus, C/, is bounded by a v constant €’ independent of i and n. We
apply Lemma 4.7 below with e = 1/(4(C"Cs+1)) and €2 = 1/(2¢y), and we obtain
28, .. s L. cp (1 1\ CCs+1Y\ ..
ﬁ|5uh|—1,h + ;’5%’_1,}1 < (2 o) + 1 + = |07 -
We see that for 7 > 0 small enough (independent of h now), d4, = 0 and the proof
is complete. O
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Lemma 4.7. Let 1,69 > 0. Then, for all 1, € Vi, there hold

. - 1 .
anlt < erllAnimll® + —5linl s (4.28)
4e7 ’
w2 < eallAnin? + (g + = ) Jinf? 4.29
lunll® < eal|Aptnll” + 2t |n |y p- (4.29)
€5 4

Proof. By arguing as in (3.12), we see that
|AV207| = (AUYT < ZHAUPR + — U2,
2 251

Let & > 0. Similarly, we have

]2 = [(AV20) A200] < | AM2O2 + 4%114*1/2()\2. (4.30)
Thus, we get
o .. 1 o 1 . )
|AV20] < AU + — <5|A1/2U]2 + \A_1/2U2> :
2 281 4e
By choosing € = €1, we obtain (4.28). Next, we plug (4.28) into (4.30), with ¢ =1
and €1 = €9, and we deduce (4.29). O

4.3. Convergence as (h,7) — (0,0). For a time step 7 > 0, let (u}}, vy, 2}/, W} )n>1
be a solution of the fully discrete scheme (4.2). We define the following functions
from Ry into Vj:

up(t) = ((n+1) —t/7)up + (t/7 — n)uﬁ“, te[nr,(n+1)1) (neN),
up(t) = uzﬂ, tenr,(n+1)1) (neN),

up(t) = wy, tenr,(n+1)r) (neN),

up(t) = (up + uZ‘H)/Q, tenr,(n+1)7) (neN).

We define similarly the functions vj, v, v, 0f associated to the sequence (v}')n>0
and the functions zj, wj. Notice that 4} = (uj, + uj)/2 for all t € Ry and that

Oyuy, = (uzJrl —up)/T in D'((O,oo);Vh).
The convergence results is as follows:

Theorem 4.8. Let (ug,v0) € Hp., x Hy;. Assume that (u),v))pso is a family
of functions in Vi, x Vi, which satisfies assumptions (3.25)-(3.26) as h — 0. Then
the solution (uj,v}) associated to the fully discrete scheme (4.2) tends to the energy

solution of problem (1.1)-(1.2) in the following sense, as (h,7) — (0,0):

ul — u weakly x in L°(Ry; HL),

per
uj — u strongly in C([0,T], L*()), for all T >0,
Apul, —  Au weakly * in L°(Ry; L*(Q)),
A}:l&gu; — A0, weakly « in L®(Ry; H.,) and weakly in L*(Ry; HL ).

per per

Proof. We proceed as in the proof of Theorem 3.3. We first consider the conservation
law for the mass. By choosing ¢, = 1 and ¢y, = 1 in (4.2), we find

(Bpuf, 1) = (0F)
{/3@@;9 +(87) =0, (4.31)
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in D’((0,00)). The estimates below show that (u] )n=0.>0 is bounded in L*(R4; HY,,),

per
so that, up to a subsequence, u; — u in L (Ry; ngr) weakly *, and so

(Opuj, 1) — (Opu,1) in D’((O,oo)), as (h,7) — (0,0).
By (4.12), [v}] < |v}| for all n. Thus, (9}) is bounded in L>(R), and so, up to

a subsequence, (07) converges weakly x in L*°(Ry) to some function a € L>(Ry).
Moreover, by (4.12), we have

2T
260+ T

ot =i | = lal"[1 — ql[e}] = ||

.
[f] < E!v?!,

Observe now that
vp — o = (/T — (n+1/2) (0} =), tenr,(n+1)7), (ReN). (4.32)

Therefore we get |(v]) — (87)| < 7|v?|/(28) and so |[(v]) — (07)| converges uniformly
to 0 in R4, as (h,7) — (0,0). Hence (vj) converges to a weakly % in L>(Ry). We
can pass to the limit in (4.31) in the sense of distributions on (0,00) and we find

(Opu, 1) = a(t)
Boa(t) + a(t) =0,

which is the conservation law for the mass.
We now turn to the energy estimate. Let

7 = min{20, (4c5 sup ‘<U}OL>D_1}‘

h>0
If 7 < 7*, then (4.18) is satisfied for Ny = 0 (and for all h > 0). Since
T
= 2<2
=B+ T/252,

the energy estimate (4.17) implies
n—1
k+1/2
En(up,vp) + ZT]vh+ / ’zl,h < exp(328¢s|v?)) (Sh(ug,vg) + 2ﬁ07]v?]) ,  (4.33)
k=0

for all n > 0. Assumptions (3.25)-(3.26) imply that &,(u2,v?) and [v?] are bounded
by a constant independent of h. The right-hand side of (4.33) is bounded by a
constant independent of A and 7. Thus, uj is uniformly bounded in H;er, z;, = Aptyp,
is uniformly bounded in L?(Q), and

i = Aoy, = A o]

is uniformly bounded in HI% By arguing as in (3.28), we see that for all 0 < s <,

er:

it (8) — R (I < ATl o 13, 1 oo s, £ — 1.

Moreover, for all 0 < s < t, observe that

t
(W 0) ~ (i) = | [ (@R o)do

Thus, for all T' > 0, there is a constant Cp independent of (h,7) such that
luf(8) = up(s)l| < Crlt — s['/2, (4.34)

< [(wp)llt = sl.
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for all 0 < s <t < T. By the Ascoli-Arzela Theorem, (u}) is precompact in the
space C([0,T]; L*(Q2)), for all T > 0. Applying (4.34) with s = n7T and t = (n + 1)7
yields |Ju} ™ — ult|| < Cp71/2, so that

lur, =gl 0.2 — 0 and  lup, — wpll Lo (0,7522(0)) — 0,
as 7 — 0. Up to a subsequence, we have

up, Gy — wweakly x in L®(Ry; Hp,,),
up,u;,  — wstrongly in C([0,T7; L*(Q)), for all T > 0,
up,up  —  wa.e. in Q x Ry,

Z, — weakly x in L®(Ry; L*(Q)),

7;, — 7 weakly x in L®(Ry; H! ) and weakly in L2(R+;H1 ),

per per

as (h,7) — (0,0). Let ¢ € H!, and set ¢, = II,(¢), so that ¢, — ¢ strongly in

per

H], .. The first equation in (4.2) reads

per*
(Opurs on) = (0F, ¢n)-
By arguing as in (3.29) and letting (h,7) — (0,0), we obtain that

815(“7()0) = (VT7V()0) - <®7¢>H71 H}

perstiper

in D’((0, 00)), with & = Ar. This shows that &yt = © € L®(R,; HL, ).

per

Next, we set ¢ € ng,, and we let ¢y, = I, () so that ¢, — 1 strongly in ngr.

We have v, = vazhl Wiel and W = (¢1,...,9p,)" is the vector associated to ¢p,. On
multiplying (4.5) by W*A~! we find

B(Ostq, dn) -1+ (0, ¥n) -1 + (V2 Vi) — 2(Vif, Vi)

1 T —T j 1 —T T T —T j
S (F(R) + £, ) — 55 (] — w2 E) + 77 (@), ) = 0. (4.35)
By arguing as in the proof of Theorem 3.3, we get

(6}:7¢h)—17h — ('U,’(?b)fl, (VE;7 vd}h) — (Zw‘w)), (V’LALZ, V¢h) — (VU, V¢)
in D’'((0,00)). Thanks to the Sobolev injection H},, < L*12(Q), for all T > 0, the
terms
1 (i) Laco,rsrace))s 1 @) lLago,rsLa)s
and
(@, = uf)* (i (uh) + F2 @) Lao.ria(e)
are bounded by a constant independent of h and 7, for ¢ = (2p+2)/(2p+1) € (1,2).
We can therefore pass to the limit in the nonlinear terms, and we find that

%(f(gg) + f @), dn) — (f(w), )

and .
12 (@ — up)*(f2 (up) + £ (@7)) ) = 0

in D'((0,00)). Thus, the first term in equation (4.35) has a limit in D’((0, )),

B(Oe0h,n)—1,n — M-
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As a consequence,
T N h - 7
(U, — Op, ¥n)—1,0 = T(O¢0p, Yn)—1, — 0

in D'((0,00)). Thus, by (4.32), we have
(07, bn) 1. — (0,90)_1.

Summing up, we have proved that

/Bat(®7¢)—1 + (7)71/})—1 + (Z7A¢) - Q(VU, VTP) + (f(u)7¢) =0,

with v = dyu and z = Au. We conclude as in Theorem 3.3 that (u,u;) is an energy
solution of (1.1)-(1.2). Note that the whole family converges to (u,u;) due to the
uniqueness of the limit. O

5. CONVERGENCE TO EQUILIBRIUM

In this section, we prove that any solution of the fully discrete scheme converges to
a single equilibrium, for any time step 7 > 0. The parameter h is fixed (so that
assumption (H2) is not relevant). We adapt the proof from [25] in a discrete setting.
The main idea is to use the gradient-like flow structure of the problem and a suitable
Lojasiewicz inequality. In three space dimensions, in addition to (H1) and (H3), we
need the following assumption:

(H4) If d = 3, then either V}, C L>®(f2) or p = 1.
Theorem 5.1. Let 7 > 0 denote the time step and let (U™, V"),>0 denote any
sequence in RN x RNv which complies with (4.5). Then (U™, V™) converges to

(U*,0), where U™ = (u‘fO,UOO) 18 a stationary solution with average constraint,
i.e.,

{u‘l’o =M = uf + B, (5.1)

A2U® — 2AU>® + VF,(U>) = 0.
We first prove the following
Lemma 5.2. Let the assumptions of Theorem 5.1 hold. Then V"2 — 0,

Proof. Since |q| < 1, estimate (4.18) is satisfied for Ny large enough. By the energy
estimate (4.17), 320° v [V™HY212 ) < oo, In particular, VT2 — 0 in RNa -1

Moreover, U?+1/2 = q”vi/2 by (4.12), so V"T1/2 5 0, as claimed. O

For any M € R, we introduce the auxiliary function Fy;(y) = F(M + y) and the
following functionals

Fyp(U) = (Fu(un), 1), (5.2)
Bxa(0) = SJAUP — [AV20P + Fuu(©), (5.3)
EM,h(U,V) = EM,h(U')-Fg’VEI, (5.4)

defined for every U ~ w;, and every V in RVa—1,
For any M € R, we also consider

Sy ={Uc¢ RN . U satisfies (5.1)}.



25

For any sequence (U™, V"),>o in RVr x RVr | we define its w-limit set in RVr x RV
w (U™, V™ )nz0) ={(U*,V7) : In; oo, (U™, V") = (U, V)|}.
Similarly, we set
w((Un)nZ()) = {U* : HTL]' /‘OO, Ui — U*}.
We have:

Proposition 5.3. Let the assumptions of Theorem 5.1 hold. Then w (U™, V"™)n>0)
is a nonempty compact and connected set such that

@ (U™, V")az0) = w((UM)nz0) x {0} € {(U*,0) :U* € &},
with M = uf + Bv). Moreover, Engy, is constant on w((U™)y).
This result implies in particular that V"™ — 0, as proved below.
Proof. Since q = (268 — 7)/(25 + 7), we can rewrite (4.13) as
uff = uf + (1 - ¢")Bv]. (5.5)
Let M = uf + Bv. We introduce the auxiliary functions
fuly) = f(M+y)  and  fa(r,s) = f(M +7,M +5),

where

~

Flr5) = 5(7() + £() = 155 — (L0 + £25).
We also set
Fut(y) = Fe(M +y)  and fare(y) = f(M +y),
so that Fyy = Fy 4+ + Fy— and F]EZUJ)F >0, F]E}vz < 0. In particular, the function

Fyr satisfies the decomposition (H3), and we have

Far(r,) = S(r) + Far(5)) = 755 = 1) (P () + Flg ().
Then we rewrite the second equation in (4.5) in the following form:
BV — Yy fr 4 VU2 o A(A20HY2 9 AUV 4 (O, DY)
= A(Ju (U™, U™ — J(U,U™),  (5.6)
where
IO U = ((fa iy, ap ™
JU U = (g,
Multiplying (5.6) by (U™ — U™)*!A~!, using that (4.5) implies
gt —gr = ryntl/2, (5.7)

)7 ei))QSiSNh7

), ei))?gigNh'

we find
SUVTHE L = VPR ) 7| VIR 4 (AU — AU )
_(’A1/20n+1|2 _ |A1/2Un|2) + <JM(Un, Un-l—l)?Un—&—l _ Un>

= (fM(u27 uz-ﬁ-l) - f(uZ7 UZ+1)7 uz-‘:—l - UZ) (58)
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Using now Lemma 4.4 and arguing as in the proof of Lemma 4.5, we obtain
(Far(ay™),1) = (Far(ag), 1) < (Ju (U, 07, 074 = 0™). (5.9)
By (5.5), for any solution u} ~ U™ of (4.5), we have

Fluf, ™y = far(al — Bg™, ar ™ — B teY).

Thus we get
(Fau ity @ Z“) f(uh,u;:“) uz“ i)
(fM(uh) fM(uh /Bq Ulv n+l ﬁanrl 0) n+l - UZ)

= —Bq"v </ Or Far (i (), @ (5)) + qOs far (i (s), @) (s))ds, ap+ — u;;)

where @} (s) = 4} —sBq"™) for s € [0,1]. By the energy estimate (4.17), the sequence
(up)n>0 is bounded in H;er Moreover, the function fj; is a polynomial in (r,s) of

total degree equal to 2p + 1. Using the Sobolev injection H;GT — LPT(Q), we
obtain

(far(ag, i) = Fluf, ™), gt — i)

< Bla™ R C (gl fup ) et — gl (5.10)
= E|Un+1—Un|2—1+Co\Q|2n- (5.11)
Here and in the following, Cj (k =0, 1, ...) denotes a constant independent of n

(but which may depend on 7, h and other parameters of the problem). In the last

inequality we have used that all norms are equivalent in V;,. Adding up (5.8), (5.9)
and (5.11), we find

. . . . 37 .
5M,h(Un+17 Vn+1) - gM,h(Un7 Vn) + Z|Vn+1/2|2—1 < 00|q|2n7 (512)

for all n > 0.
Set now
G" = (A7tvn, ATHAPU" - 2AU" + VFyp(U™) 1
where (U,V)_, = UtA='V, for all U,V € RM~!. We have
gt —gn = (AN (vt vy ATHARU™ - 2AU™ + VEy ,(U™)) 4
ATV AT (AR = 24) (UM = U™) + VEyp (U™ = VEyp(U™) 21
Let 6G7" denote the first term on the right-hand side of this equality and denote
the second by §G§. Using (5.6), U™ = U1/2 — (U1 —U™)/2 and Jy (U™, U") =
VFuyp(U™), we obtain
5GT = _%<A—1Vn+l/2 +5n (jM<Un, Un+1) _ J'(Un’ Un-&-l)),A—len)_l
%<A—1Vn+l/2 4+ 5 - (J'M(Un’Un-H) B j(UnyUn-i-l))’A—lTl?m)_l
where
S'vn _ A2Un+1/2 - 2AUTL+1/2 + J]\/[(Un7 Un+1)’
T = (A2 —2A) (U™ —U™) + 20y (U™, U — 20 (U™, U™).
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Using that all norms are equivalent in Vj,, the Cauchy-Schwarz inequality, Young’s
inequality and (5.7), we deduce

507+ J5lATSP < Crr|V 22 4 G| (7, 0 = (U, U

2

‘ 2

+Cy | Jar (O, 07) = (0,07

By Bessel’s inequality, we get
(@, 0 — om0 < [ fartapug ) — Fag )|
Arguing as in (5.10), and using assumption (H4), we find that
(@, 0 — o, U"“)‘Z < Culgl?™. (5.13)

Similarly, we have

‘J’M(U'", Uty — (O, U™ (5.14)

2 ) 2
< C’5T’V”H/2‘

Summing up, we have proved
3T on rn n
oG + @\A LSMP < (O + C3Co)T[VIHP2 | 4 CoCulg ",

for all n > 0. We now consider the term 6G3. Using V"t = yntl/2(yntl_yn) /2,
equation (5.6), and arguing as for 0GY, we obtain

0G5 < IS+ Cor [V CrlglP
Thus, we get
gl _gn 4 %|A—15m|2 < CgT|V"+1/2|2_1 + 09|q|2n’ (5.15)
for all n > 0, with Cy = C1 + C3C5 + Cg and Cq = CoCy + Cy.
Let us introduce the sequence
W™ = 280, (U™, V™) + vG",

where v > 0 is sufficiently small so that ¥Cs < 1/2. From estimates (5.12) and (5.15),
it follows that

. VT + 1&n n
wrH |22 ) 4 2514 LSM? < Cuolal™, (5.16)

with C1g = 2Cy + vCy. By the energy estimate (4.17), the sequence (U™, V") is
bounded, so (W"),>0 is bounded. This implies that W" converges to some real
number W as n tends to co. Indeed, let

Cho
1—|ql?

Wn — W + ‘Qn'

lq

Using (5.16), we see that Wt W <0, i.e. W™ is nonincreasing. and since W is
bounded, W™ has a limit W = W, o
Adding up estimate (5.16), we obtain that > oo |A71S"|? < co. In particular,

S™ — 0. Moreover, by (5.13), we have
Ju (U™, U — g, Ut -0
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as n — co. From (5.6) and Lemma 5.2, it follows that V"1 — V™ — 0 and that
Vn _ Vn+1/2 _ (VnJrl _ Vn)/Q 0.

If (U "/)n/ is a subsequence which converges to some U*, then U" ! — U* as well,
since U™ 1 — U™ = 7V *+1/2, Since S — 0 and Jyy is continuous at (U*, U*) with
Ju(U*,U*) = VEy,(U*), we obtain that

AU — 24U + vFMﬁ(U*) =0.

Using the conservation law (5.5), we see that U* € &)s. Finally, the sequence
(U™, V") is bounded, and we have seen that U™t — U™ — 0, V™ — 0 so the w-limit
set w((U™, V™)p>0) is a nonempty compact and connected subset of &7 x {0}, equal

to w((U™)n) x {0}.
Since V"™ — 0 and W™ — We°, we have G" — 0 and

Enrn (U™, V™) = (1/2)(W" — vG") — W™/2.

By definition, Enr,(U") = Epn(U™, V™) — S|V 2, so Epp(U™) — W /2. This
implies that E)yy, is constant and equal to £ := W /2 on w((U"),). The proof
of Proposition 5.3 is complete. O

We notice that the functional Ey, is a polynomial of the variables (us, ..., un,)
of total degree 2p + 2, so the following Lojasiewciz inequality holds:

Lemma 5.4 (Lojasiewicz’ inequality [30]). Let U* € RM~1 be a critical point of
Enn. Then there exist constants 6 € (0,1/2) and § > 0 such that for any U € RMn—1
satisfying |U — U*| < 8, there holds

|Exin(U) = Expn (U0 < |AU = 24U + VEyu(U)). (5.17)

Proof of Theorem 5.1. Let M = uY + Bv{ as previously. By Lemma 5.4, for every
U™ € w((U™)y), there exist some § > 0 and § € (0,1/2) that may depend on U™
such that the inequality (5.17) holds for all U in

Bs(U®) = {U e RM~L . |U - U*®| < 6}

and ‘EMh(U) - EM,h(UOO)‘ < 1. The union of balls {Bs(U*®) : U® ¢ w((U”)n)}

forms an open covering of w((U")n) Due to the compactness of w((U”)n) in RN» =1
we can find a finite sub-covering {Bgi(Ulpo)}i:1727._.’m, where the constants 9;, 6;
corresponding to U,L-OO in Lemma 5.4 are indexed by <.

From the definition of w((U ”)n), we know that there exists a sufficiently large ng
such that U™ € U := U™, By, (U) for n > ng. Taking § = min™ {6;} € (0,1/2),
we infer from Lemma 5.4 that, for all n > ny,

|Erpn(U™) — E®10 < |A2U™ — 2AU™ + VFy (U™, (5.18)

where E> = W/2 is the constant value of Ezj, on w((U™)y).
Let us now set

1/2
_ | Tiyrnt1/2)2 VT i—1am)2 n
n = (GIVHPR L+ TUATSE) g (5.19)



29

From (5.16), it follows that

oo

Z ai S Wn - WOO + 011]q|2”.

k=n
On the other hand, using the Lojasiewicz inequality (5.18) and the fact 1/(1—60) < 2,
we deduce that, for all n > ny (changing ng into a larger integer if necessary),

W™ =W < 2lEyu(U") — B>+ BIV" 2, +v|G"
< 2JAM — 2AUM + V(U™ V=0 4 gV 2,
+Cyo| V|1 |A2U™ — 2AU™ + V(U™
Cis (\AQU" — QAU 4V Fyy y(U™)V/00) |V"!1,/1(H’>)5.20)

IN

Using V" = V12 — (V7Hl — 77) /2, we deduce from (5.6) and (5.13) that
V71 < g (V2 4 | A7 87+ gl (5.21)

Similarly, from

A2U™ = 2AU™ + VEyp(U") = 8"+ (A2 = 24)(U" - U"H1/?)

+ I (U™, U™) — Iy (U, U™,

Untl — Un = 7V t1/2 and (5.14), we infer that

|A20™ — 2A0™ + V(U™ < Cua (|A*15m| + |V”+1/2\_1) . (5.22)
Collecting (5.20), (5.21) and (5.22), we obtain

W = W] < Cs (VY00 A 1gn /A0 4 (g a=0))
for all n > ng. This gives

i a? < Cieal/0=9 wn > ng.

k=n

From Lemma 5.5 below, we conclude that Y >° ;a, < co. In particular, we have

[e.9] oo
PSR = 30 [0 - 0 < o,
n=0 n=0
This shows that the whole sequence (U™), has a limit U as n — co. From (5.5),
we know that u} — M. Thus, (U"), tends to some U™ in R and the proof is
complete. O

For the following lemma and its proof, we adapt Lemma 4.1 in [29] in a discrete
setting (see also Lemma 7.1 in [13]).

Lemma 5.5. Let 0 < 0 < 1/2. Assume that (an)n>0 is a sequence of nonnegative
real numbers such that Y o> a% < oo, and there are a constant C > 0 and an integer
ng such that

Z ai < Ca%/(lfe) for all n > nyg. (5.23)
k=n
Then > 02 an < 00.
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Proof. First replacing a, by max{a,, 1} for 0 < n < ng, and then taking C large
enough to ensure C' > >"°° a2, we observe that (5.23) becomes valid for all n > 0.
So we may assume ng = 0. Set now

o0 n
Pn ::Zaz and Un:Zak for n > 0.
k=n k=0

Given any n > 0, we first raise inequality (5.23) to the power 1 — 6 > 0:

Next, we sum this relation and we obtain

n n

1-0
E P < Ch E ap, = Croy,.
k=0 k=0

We now apply a discrete integration-by-parts on the left-hand side

n

MIk+2)=(k+ Dl " = +2)p, " —pp " + D (k+ 102 — ")
k=0 k=1

Next, we notice that

Pk—1
B B _ —0
=l = / (1-0)s%ds > (1 - 0)aj_,p; 7,
Pk

since px_1 = pi + ai_l. This gives
n
(n+2)py " —py "+ (1=0)Y (k+1)aj_1p,’) < Crog.
k=1

It follows that, for every n > 0,
(n+1)p, " < Co(1+04),

and
n

Z(k + 1)ai_1p,;fl < Co(1+oy),

k=1
where Cy > 0 is a constant independent of n. Since the sequence (o) is nondecreas-
ing, the former estimate yields

pr—1 < C3(1 + Un)l/(lfa)kfl/(lfa), 1<k<n<oo,

which we insert into the latter one, thus arriving at
n
Zkue/(ke)az_l < Ca(1 + g1 F0/0-0)
k=1

The constants C3, Cy are independent of n > 0. As a consequence, using the Cauchy-
Schwarz inequality, we obtain for n > 1,

On-1= Z ag—1 < <Z kl/(l_‘g)a%1> (Z k—l/(1—9)>
k=1 —

k=1
< Cs5(1+0,) /2079,
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We conclude that the sequence (0,), must be bounded, since 2(1 — 6) > 1. Indeed,
assume by contradiction that (o), is unbounded, and set r,, = 1 + o, > 1. Then
(rn) is nondecreasing, r, — oo and

rno1 < Cory/ 2070,

so that r,_1/r, — 0, and we deduce that r, — 0. Contradiction. Thus (o) is
bounded, i.e. > o7 a, < 0o, as claimed. O

Remark 5.6. In the proof of convergence to equilibrium, we have used the fact that
all norms are equivalent in V},. An interesting open question would be to prove a
similar result for the time semi-discrete version of our problem.

Remark 5.7. By arguing as in the continuous case (see [25]), using the energy
estimate (cf. Lemma 3.1) and the Lojasiewicz inequality 5.17, it is possible to prove
that any solution (up,vp) of the space semi-discrete scheme (3.1) converges to a
single equilibrium, provided assumptions (H1) and (H4) hold.

6. NUMERICAL RESULTS

We present some numerical results in one space dimension (obtained with the Scilab
software! and in two space dimensions (obtained with the Freefem++ software [27]).
In every case, the nonlinearity f is given by (1.3) for some parameter ¢, and we set
f+ = f, f- = 0 in assumption (H3). The space V}, is the space of piecewise linear
(P1) finite elements.

6.1. Simulations in one space dimension. We first choose an interval 2 = (0, L)
with L = 47. In Table 1, we compute the error in the C°([0, T]; L?(£2))-norm (which
appears in Theorem 4.8). The parameters are ¢ = 0.5, # = 0.5 and 7' = 2. We use a
uniform grid with space stepsize h = L/M and time stepsize 7 = T'/N. The initial
value (ul),vY) is the Pl-interpolate of ug(z) = cos(z) + 0.3 cos(3z), vo(z) = 0.1.

TABLE 1. Convergence error for the time (left) and for the space
(right) discretization

[N=T/r ] errp(r) [ratio | M=L/h | err"(h) |ratio
80 0.5018208 - 40 0.7770682 -
160 0.1455507 | 3.45 80 0.2735932 | 2.84
320 | 0.0368516 | 3.95 160 [ 0.0706798 | 3.87
640 0.0091325 | 4.04 320 0.0175677 | 4.02
1280 0.0022163 | 4.12 640 0.0041882 | 4.20

For the error of the time discretization, h = L/160 is fixed. Since the exact
solution uy, of the space semi-discrete scheme (3.1)-(3.2) is unknown, we use instead
the solution on a fine grid with stepsize 75,y = T7'/5120. Table 1 (left) shows the error

_ T _ o, Tsol
errp(T) = o nax llup, (te) — up® (te)ll 22 (0,1
evaluated on the fine grid ¢ = k75 (k =0, 1, ..., 5120), and the ratio
errp(7)/erry(1/2)

lscilab is freely available at http://www.scilab.org/
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of consecutive errors. The computed ratio is close to 4, which means that the con-
vergence error for the time discretization is O(72), as expected.

For the error of the space discretization, 7 = T'/160 is fixed. We use again the
solution uy  on a fine grid with stepsize h = L /2560 for the comparison. Table (1)
(right) shows the error

err” (k) = | max ([uh(t) = uf,, ()] 20,

evaulated on the grid t;, = k7 (k =0, 1, ..., 160) and the ratio err”(h)/err™(h/2)
of consecutive errors. Again, the computed ratio is close to 4: the convergence error
for the space discretization is O(h?), as expected.
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2nd order |
— - —2nd order
1st order
— — —1storder
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1st order 0.24

0.22

1!
0.2 «
T

0.181)

<
N / Y
0.4f Ml ! ! ¥ \ Y vy /

0.12F

FIGURE 1. (Pseudo-)Energy vs time

Figure 1 shows the plot of the pseudo-energy &(uj,vy) (see (3.22)) versus the
time ¢ (in solid line). The domain is 2 = (0,L) with L = 4w. The parameters
are ¢ = 0.5, 4 = 5, h = L/320 and dt = 0.005. The initial condition is the P!-
interpolate of ug(z) = 0.1/(1 4 0.7 cos(z)), vo = 0.034. The black color corresponds
to the second-order scheme (4.2); the blue color corresponds to a first-order scheme
obtained by applying to the space semi-discrete scheme (3.1) the time discretization
proposed by Wang and Wise [37, 38]. Both schemes are unconditionally stable.

The left figure shows the pseudo-energy on the interval [0, 40]. If we had (vg) = 0,
then by (4.16), the pseudo-energy would be nonincreasing in both cases. Here, the
pseudo-energy exhibits oscillations due to the fact that (vg) # 0. In both cases, the
evolution is driven to a stationary state, as predicted by the theory (see Theorem 5.1).
We notice that the first-order scheme has a smoothing effect which creates more
dissipation, especially at the beginning of the evolution. This is seen in the right
figure which shows the energy Ej,(uj) on the interval [0,2.5] (in dashed and dashdot),
in addition to the pseudo-energy & (up,vp,) (in solid line). The difference &, (u}, v}}) —
Ep(up) = (B/ 2)\@2]2_17,1 can be interpreted as a “kinetic energy”.

6.2. Simulations in two space dimensions. The domain €2 is the square (0, 67) x
(0,67). It is decomposed in 50 x 50 squares, and each square is divided along the lower
left /upper right diagonal, resulting in a uniform triangulation of w. The parameters
are § = 0.1, ¢ = 2 and the time step is 7 = 0.25. The initial condition is the P!-
interpolate of ug(z,y) = 0.2+ 0.2 cos(z) cos(y) and vo = 0. Figures 2 and 3 show the
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evolution from stripes to a triangular distribution of drops. Numerical tests up to
time ¢ = 1250 indicate that the triangular distribution of drops is the steady state
for this simulation.

For the continuous problem (1.1), using the translation invariance, from a trian-
gular distribution of drops we easily build a two dimensional continuum of steady
states. For the fully discrete scheme (4.2), the translation invariance is broken by the
space discretization, but we expect a large number of steady states. This simulation
illustrate the convergence to equilibrium result (Theorem 5.1) in a situation where
the steady state is not unique.

FIGURE 2. t =05 (left) and ¢t = 26.25 (right)

FIGURE 3. t=27.75 (left) and ¢t = 50 (right)
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