
HAL Id: hal-01118960
https://hal.science/hal-01118960v1

Submitted on 20 Feb 2015

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Virtual Things for Machine Learning Applications
Gérôme Bovet, Antonio Ridi, Jean Hennebert

To cite this version:
Gérôme Bovet, Antonio Ridi, Jean Hennebert. Virtual Things for Machine Learning Applications.
Fifth International Workshop on the Web of Things (WoT 2014), Oct 2014, Boston, United States.
�hal-01118960�

https://hal.science/hal-01118960v1
https://hal.archives-ouvertes.fr

Virtual Things for Machine Learning Applications

Gérôme Bovet (1)(3)

(1) Laboratory for Communication and Processing of Information
Telecom ParisTech

Paris, France
gerome.bovet@telecom-paristech.fr

Antonio Ridi (2)(3)

(2) Department of Informatics
University of Fribourg
Fribourg, Switzerland

antonio.ridi@unifr.ch

Jean Hennebert (3)(2)

(3) Institute of Complex Systems
University of Applied Sciences Western Switzerland

Fribourg, Switzerland
jean.hennebert@hefr.ch

ABSTRACT

Internet-of-Things (IoT) devices, especially sensors are pro-
ducing large quantities of data that can be used for gather-
ing knowledge. In this field, machine learning technologies
are increasingly used to build versatile data-driven models.
In this paper, we present a novel architecture able to ex-
ecute machine learning algorithms within the sensor net-
work, presenting advantages in terms of privacy and data
transfer efficiency. We first argument that some classes of
machine learning algorithms are compatible with this ap-
proach, namely based on the use of generative models that
allow a distribution of the computation on a set of nodes.
We then detail our architecture proposal, leveraging on the
use of Web-of-Things technologies to ease integration into
networks. The convergence of machine learning generative
models and Web-of-Things paradigms leads us to the con-
cept of virtual things exposing higher level knowledge by
exploiting sensor data in the network. Finally, we demon-
strate with a real scenario the feasibility and performances
of our proposal.

Categories and Subject Descriptors

I.2.1 [Computing Methodologies]: Applications and Ex-
pert Systems; H.1.0 [Information Systems]: General

General Terms

Design

Keywords

Machine learning, Sensor network, Web-of-Things

1. INTRODUCTION

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
WoT ’14 October 08 2014, Cambridge, MA, USA.
Copyright 2014 ACM 978-1-4503-3066-4/14/10 ...$15.00.

Nowadays, machine learning (ML) techniques are increas-
ingly used in the context of sensor networks. ML approaches
are able to learn from data and infer knowledge for two dis-
tinct objectives: (1) optimization of the network parameters
for problems such as energy aware communication, optimal
node deployment and resources allocation [7], and (2) infor-
mation processing for tasks such as event detection, human
activity recognition, human tracking, electricity consump-
tion monitoring and smart heating control [16][13][15]. This
paper focuses on this second type of applications.

So far, typical implementations are pushing the data ac-
quired by Internet-of-Things (IoT) devices to server-side com-
puters or cloud services in charge of performing data storage
and ML computation. While this is a satisfactory configu-
ration for some scenarios, it is not conceivable for many
applications where privacy is a concern. Some settings are
also decoupled from the external network (intranet mode)
or are targeting to reduce data transfer for energy efficiency.
Another concern is the traffic generated by the transfer of in-
formation through a border router, which can be overloaded
and also representing a single point of failure. Finally, hav-
ing the sensor network connected to the Internet represents
a point of entry for attacks. With respect to the afore-
mentioned problematic, deporting the ML runtime into the
sensor network appears as a meaningful strategy. We also
observe that IoT devices are showing increasing capacities
in terms of storage and cpu, underlining the interest of such
strategy.

In this paper, we propose an architecture for distribut-
ing machine-learning algorithms in a sensor network. The
computational power of so-called things is exploited, form-
ing a cloud space for ML algorithms. Moreover, we rely on
Web technologies to form an open and reusable framework
according to the Web-of-Things paradigm [9].

2. RELATED WORKS
The idea of distributing machine learning algorithms for

building automation purposes has already been explored
in [5]. Fuzzy logic is distributed across several agents by
furnishing a XML document containing the model parame-
ters. With this document, agents are able to automatically
generate Java objects for the JADE agent framework, which
is used for synchronization between the entities. Inference
agents collect the outputs of the fuzzy logic agents and make

a decision before executing some predefined rules. Although
going in the direction of decentralised systems, this solution
requires a rather heavy infrastructure of powerful nodes and
is probably not compatible with current IoT devices.

Trying to avoid heavy technologies such as Java by reusing
common well-adapted Web technologies, the Actinium con-
tainer [11] allows to execute applications written in JavaScript.
It forms a cloud of machines dedicated to the execution of
mashups that use sensors as input parameters. RESTful
APIs are provided for configuration purposes and deploy-
ment. The container itself takes care of retrieving sensor
data and forwarding the output of the applications to other
nodes. In a similar approach, T-Res [6] targets a distributed
space of applications running on constrained devices. They
opted for Python as scripting language that is deployed and
managed through a RESTful API split according to func-
tionalities. The main improvement beside Actinium relies in
the lower memory requirement of the container. Requiring
less memory opens the possibility to empower constrained
IoT devices with distributed computational capabilities.

Following the trend of using machine learning, the Google
Prediction API [2] and BigML [1] are offering Web services
running in the cloud for data analytics, prediction and clas-
sification purposes. These commercial products works with
RESTful APIs for training and executing models. From a
machine learning point of view, these systems are rather
opaque regarding the type of algorithms used to train the
models with no or few choices allowed for the user. In ad-
dition, no possibility to retrieve the model parameters is
offered, making the customer dependent to the provider.

3. MACHINE LEARNING
In our discussion here, we assume to handle classification

problems that represent the main type of problems tackled
in machine learning. A classification problem typically re-
quires two steps: inference and decision. The inference pro-
cess (or training process) allows to extract knowledge from
an observed system through the training data. The deci-
sion process (or testing process) associates a model (Mk) to
a new observation (x). Assuming a probabilistic bayesian
framework, two approaches can be used for this task :

Generative models. The inference problem consists in build-
ing a mathematical model for the likelihood p(x | Mk)
for each model Mk. The decision part is performed us-
ing the Bayes theorem to compute the posterior model
probabilities with:

p(Mk | x) =
p(x | Mk)p(Mk)∑
k
p(x | Mk)p(Mk)

(1)

where p(Mk) are the class prior probabilities. The class
membership for the new observation x is obtained by
comparing the posterior probabilities and selecting the
one with the highest value.
The term generative comes from the fact that new ob-
servations can potentially be generated by the models.
Naive Bayes classifiers, Gaussian Mixture Models and
Hidden Markov Models are examples of models belong-
ing to this category.

Discriminative models (or conditional models). The in-
ference consists here to compute a mathematical model
of the posterior probability P (Mk | x). As for the

generative models, the class membership for the new
observation x is obtained by comparing the posterior
probabilities. Support Vector Machines (SVMs), Ar-
tificial Neural Networks (ANNs) and Multinomial lo-
gistic regression are examples of algorithms belonging
to this category. The term discriminative is related
to the fact that the models are generally computing
a decision border between classes instead of the class
conditional probability density functions.

Both approaches have different strengths from a classifi-
cation point of view. Discriminant models are usually pre-
ferred, leading to good tradeoffs between performance and
size of training data. In fact, discriminative modelling can
be seen as an easier task as we try to directly solve a problem
(find the posterior probabilities) without solving a more gen-
eral problem as in the generative modelling (find the likeli-
hoods). Evidences show that discriminative modelling leads
to a lower asymptotic error, however generative modelling
approaches his error faster than the discriminative [8]. Fi-
nally the generative approach are reported to deal better
with missing input values, outliers and unlabeled data [12].
Both approaches offer different possibilities for distributed
computation. In our case we are interested in the possibility
to distribute the computation load of the inference and de-
cision processes on several devices. With generative models
this is naturally done considering that each model contribu-
tion Mk can be computed individually. In other words, the
likelihood computation of a given model is independent to
the others and the computation of class conditional proba-
bilities p(x | Mk) (likelihoods) can be distributed in differ-
ent nodes. This distribution is usually not possible or more
difficult for discriminative models such as ANNs or SVMs
where class parameters are shared in the model and where
class decisions are computed in one pass.

4. ARCHITECTURAL DESIGN
We propose an architecture for ML algorithms in which

classification tasks are delegated to constrained things, ac-
cessing their capabilities using RESTful APIs either with
HTTP or CoAP [17]. The REST architectural style is ex-
tended to non-physical devices like model parameters for
offering a standard and flexible manipulation. Our archi-
tecture is based on a set of agents having the capability to
execute pre-deployed specific ML algorithms by receiving as
input the model parameters (pre-trained). We opted for
such an approach better than dynamically deploying code
due to the memory restrictions of constrained things where
an application container can not be usually executed.

In order to comply with a ML process for classification
tasks, we introduce two novel entities, namely the Virtual
Sensor and the Virtual Class. The general architecture and
the interaction between the different entities is represented
in Figure 1.

4.1 Virtual Sensor
Information processing applications can be considered as

high level sensors. They indeed merge other sensors mea-
sures in order to extract knowledge, as for example a class.
In our architecture, a Virtual Sensor instance stands for a
non-physical sensor exploiting a generative model. Within
the sensor network, they appear as regular sensors perform-
ing measurements. This approach of hiding the complexity

Sensor

Learning System

M
odels

Enterprise

Network

Sensor

Network

Model

M
easures

Model

Measures

Class

Configuration

Virtual Class

Likelihood

C
la
ss

Client

Virtual Sensor

Configuration
(Models deployment)

Runtime
(Class management)

Likelihood

Class

Configuration

Virtual Class

CoAP

HTTP

Figure 1: General architecture composed of Vir-
tual Sensor and Virtual Classes with information
exchanged during runtime.

of the data fusion by acting as a conventional sensor in-
creases reusability and ease of integration within already
existing sensor networks. Moreover we decouple the config-
uration API from the runtime API in order to hide the ML
part.

The configuration API is HTTP-based in order to be ac-
cessible by high-level applications like learning systems re-
siding on the enterprise network. New Virtual Sensors can
be created by PUTting to http://virtual-sensor.example.
com/virtualsensors/{id} with the models parameters con-
tained in the payload (the payload format is described in
Section 4.4). The role of the Virtual Sensor is then to dis-
tribute the models on the constrained devices. It will there-
fore query for agents able to execute the provided models,
becoming Virtual Classes. The selection is made according
to the complexity of the models and the available memory on
the agents. Once having successfully deployed the models,
it will create a new resource on the runtime API.

For its part, the runtime API represents the output of the
decision making task. Each Virtual Sensor instance owns
its own runtime resource accessible over CoAP by issuing a
GET request to an URI such as coap://virtual-sensor.

example.com/{virtual-sensor-name}. We opted for CoAP
as application protocol instead of HTTP as it is conceived
for sensor networks. CoAP differs from HTTP with its small
header and low memory requirement.

4.2 Virtual Class
As previously mentioned, a ML classification task relies on

the computation of several class likelihoods. These classes
holds a mathematical model composed for example of mean
and covariance matrices for GMMs. For simplifying the
interaction with those mathematical models representing a
complex structure, we apply the same principle of high ab-
straction level by categorizing them in Virtual Classes. In
our architecture, a Virtual Class is an entity running such
a mathematical model on a smart thing. Similarly to the
Virtual Sensor, we make them acting as regular sensors by
decomposing their interface in two distinct APIs accessible
with CoAP.

Virtual Class deployment is realized by a Virtual Sen-
sor through several resources located on the configuration
API. The API structure depends on the type of algorithm
the agent is able to execute. There will be a resource for
each model parameter type, allowing the replacement of
specific parameters instead of the whole model. The first

step is always the creation of the Virtual Class by sending
a PUT request such as http://virtual-class.example.

com/virtualclasses/{id} with the general model proper-
ties contained in the payload. The run subresource can be
POSTed to launch the execution engine of the model. Dur-
ing this phase, the Virtual Class will register as observer [10]
on the sensors used as input dimensions of the model. Ad-
ditionally, it will schedule the execution of the algorithm ac-
cording to the polling interval property of the model. HMM
and GMM algorithms are requiring a polling strategy for
executing the model at constant intervals even if no sensor
value has changed.

The class API appears as the sensor resource used for re-
trieving the current likelihood of a class. The output of an al-
gorithm will be copied by the execution engine as new value
to its class resource. Virtual Sensors will send GET requests
as in http://virtual-class.example.com/{class-name}.
We decided to make this resource observable for notifying
Virtual Sensors in a real-time manner.

4.3 Operating Modes
The decision making task is dedicated to the Virtual Sen-

sor which will collect the current likelihoods of all its Vir-
tual Classes. It then compares the likelihood values and,
according to the Bayes rule, the model having the highest
likelihood is designated as winner (assuming equal priors1).
Depending on requirements of client applications, this deci-
sion making task can be executed according to two different
modes, selectable during the creation of the Virtual Sensor.

In the End-to-end mode, the Virtual Sensor will sequen-
tially request all its Virtual Classes for retrieving their cur-
rent likelihood. Once having collected all the data, it will be
able to perform the decision and returning the winning class
to the client, as visible in Figure 2 (a). This mode, which
can also be considered as on-demand approach, is partic-
ularly suitable for not time-critical applications where the
round-trip time does not play a key role.

In contrary, the Sync-based mode is fully event-driven and
is especially designed for real-time systems. Instead of re-
trieving the likelihoods only when requested, the Virtual
Classes will notify their Virtual Sensor each time the likeli-
hood has changed, as visible in Figure 2 (b). The decision
making is performed as soon as a likelihood changes and
is cached on the Virtual Sensor. This allows to avoid the
sequential requesting of Virtual Classes and improves the
scalability as well as the round-trip time. Clients can op-
tionally observe a Virtual Sensor that will send notifications
as soon as the winning class changes.

4.4 Model Representation and Deployment
Exchanging information between different systems is al-

ways a tricky task. One has to agree about formalisms of
data representation and structure. This is especially true
for machine learning applications having to exchange mathe-
matical models. The Data Mining Group attempted to solve
this problematic by proposing the Predictive Model Markup
Language (PMML) [4]. This XML schema semantically de-
scribes how to represent in XML several widespread predic-
tive models. However, PMML do not describe widespread
generative models such as GMMs or HMMs that we intend
to use and matching our constraints as explained above.

1Unequal priors can simply be taken into account by multi-
plying the likelihoods by the priors.

http://virtual-sensor.example.com/virtualsensors/{id}
http://virtual-sensor.example.com/virtualsensors/{id}
coap://virtual-sensor.example.com/{virtual-sensor-name}
coap://virtual-sensor.example.com/{virtual-sensor-name}
http://virtual-class.example.com/virtualclasses/{id}
http://virtual-class.example.com/virtualclasses/{id}
http://virtual-class.example.com/{class-name}

Client Virtual Sensor Virtual Class Virtual Class

GET /{virtual-sensor-name}
GET /{class-name}

GET /{class-name}

2.05 Content: Likelihood

2.05 Content: Likelihood

2.05 Content: Class name

Determine
wining class

Compute
likelihood

2.05 Content: Likelihood

Determine
wining class

2.05 Content: Class name

(a)

(b)

GET /{virtual-sensor-name}

Figure 2: (a) End-to-end mode and (b) sync-based
mode.

Furthermore, the PMML structure is rather complex and in-
duces a high verbosity which is less suitable for smart things.
We therefore developed our own data model, the Machine
Learning Exchange Format (MaLeX) for describing genera-
tive models, including HMMs and GMMs. Our model relies
on JSON commonly used in WoT applications and is de-
fined as a JSON schema [3] describing general properties
and mathematical models entities2.

Numerical analysis systems performing the learning task
will generate a JSON document provided during the cre-
ation of a Virtual Sensor. The Virtual Sensor first validates
the document according to the MaLeX schema for ensuring
semantic correctness. The general properties of the Virtual
Sensors will be used to form an RDF document allowing
its semantic discovery. Although MaLeX providing a strong
formalism for representing models, it can not be used as
such for creating Virtual Classes. Constrained devices have
not enough memory for handling big JSON files. First, the
representation of matrices made of float values is extremely
verbose in JSON, as each character produces one byte of
data. For this reason, we opted for a binary representation
following the IEEE 754 notation of floats, already decreas-
ing the required memory size by about 75%. Nevertheless,
this does not allow a model deployment in one step on most
devices, the matrices being too big. We overcome this re-
striction by deploying matrices stepwise. The whole process
of model deployment is depicted in Figure 3.

Model

parameters

Binary

JSON

General properties

Model 1

Model N

.

.

.

General

properties

JSON

MaLeX

Numerical Analysis

Software

Virtual Sensor Virtual Class

Semantic

description

Figure 3: Model exchange between the different en-
tities.

5. IMPLEMENTATION
2Publicly available at http://www.wattict.com/web/
download/ml-model.json

Regarding the technological aspects of our implementa-
tion, we developed the Virtual Sensor agent using Java, al-
lowing to rapidly deploy it as a JAR application. For the
HTTP interface used for deploying models, we opted for the
embedded version of Jetty 3 requiring no dedicated server in-
stallation and being lightweight. For the runtime part using
CoAP, our main criteria was the size of the library, reason
why we chose JCoAP 4. However, as this implementation is
no longer maintained, we had to update it to comply with
the version 18 of CoAP. The basis version of JCoAP working
with a single-thread model, we improved it by parallelizing
query processing with a thread pool. The validation of the
MaLeX document is realized using the json-schema-validator
for Java5. Because of the use of Java and the large amounts
of data to be processed and validated (MaLeX documents),
the Virtual Sensor can only run on hardware offering a cer-
tain amount of memory, such as a Raspberry Pi.

For the Virtual Class agent, our main concern was to use
the lightest version possible of CoAP in order to leave the
memory space for the model. We therefore opted for a C
implementation of CoAP, namely microcoap6. This library
being very minimalistic, we had to improve it by adding
observation support.

6. EVALUATION
In this section, we report on the feasibility of deploying

ML algorithms on IoT devices and we evaluate its perfor-
mance with a real implementation.

6.1 Setup
We evaluate our proposal on a concrete scenario of ap-

pliance recognition using electricity consumption measures.
Smart plugs IoT devices are placed between the appliance
plug and the electrical wall socket. The aim of the recogni-
tion process is to analyse the electrical consumption signa-
ture to recognize the appliance category, e.g. coffee machine
and its state of use, e.g. stand-by. Five OpenPicus Flyport-
PRO WiFi7 modules are acting as agents able to execute
HMM models able to compute class and state likelihoods
through a standard Viterbi algorithm. A Raspberry Pi is
used for running a Virtual Sensor agent.

Training of the models is performed using data from the
ACS-F2 signature database [13]. The database contains 2
hours of recording for 225 appliances of different brands and
/ or models using a sampling frequency of 10−1 Hz. For
our evaluation, we selected 5 categories among the 15 avail-
able, in order to match the number of available OpenPicus.
The selected categories are Coffee machine, Laptop, Incan-
descent lamp, Compact fluorescent lamp and Mobile phone.
Six features are recorded by the smart plug: active power,
reactive power, phase angle, RMS current, RMS voltage and
frequency of the electrical network. We excluded the phase
angle, RMS Voltage and frequency of the network, demon-
strated to be not relevant or redundant [14].
We use Hidden Markov Models (HMMs) as machine learn-

3http://www.eclipse.org/jetty/
4https://code.google.com/p/jcoap/
5https://github.com/fge/json-schema-validator
6https://github.com/1248/microcoap
7http://space.openpicus.com/u/ftp/datasheet/
datasheet_flyportpro_wifi.pdf

http://www.wattict.com/web/download/ml-model.json
http://www.wattict.com/web/download/ml-model.json
http://www.eclipse.org/jetty/
https://code.google.com/p/jcoap/
https://github.com/fge/json-schema-validator
https://github.com/1248/microcoap
http://space.openpicus.com/u/ftp/datasheet/datasheet_flyportpro_wifi.pdf
http://space.openpicus.com/u/ftp/datasheet/datasheet_flyportpro_wifi.pdf

ing algorithm for the appliance recognition. HMMs belong
to the generative modelling category, permitting to easily
distribute the computation resources on the different Open-
Picus. Moreover they are particularly suitable for represent-
ing the state-based nature of the electrical signatures. The
training is performed offline and the models parameters, as
the transition and emission matrices are represented with
MaLeX. This document is further transferred to the Rasp-
berry Pi and models are then distributed on the OpenPicus
in order to classify in real-time the upcoming data. We used
a two states HMM topology to represent the on and stand-
by states of the appliances. In a previous work the system
provided good results when using about 30 Gaussians per
state [13]. Given the memory restriction of the OpenPicus
we scaled down the models to 8 Gaussians per state, trading
off slightly the accuracy rate.

6.2 Performance
The performance of the architecture can be evaluated from

two perspectives: machine learning and system. Regarding
the first one, experiments showed a correct identification
rates of appliances of about 90% which is comparable to
server-side implementations and high enough for practical
applications [13]. Regarding system evaluation, we evalu-
ate the round-trip time and scalability for the two different
operating modes.

In Figure 4 (a) we first compare the round-trip time for
consecutive requests according to the end-to-end and sync-
based modes. First, each request will have as consequence
the sequential questioning of Virtual Classes. For this case,
the average round-trip time for 3000 requests is 268 millisec-
onds. In the second case, the sequential questioning is by-
passed and the current class is directly returned to the client.
In this case, the average round-trip time was 32 milliseconds.
The observation that the sync-based mode performs far bet-
ter is not surprising. Indeed, each request is served from the
cache of the Virtual Sensor without communicating with the
Virtual Classes.

In the second evaluation, we evaluate the difference be-
tween the operation modes in terms of concurrent requests.
As for the previous evaluation we performed requests using
the end-to-end and sync-based modes. Figure 4 (b) shows
the results when having up to 100 concurrent clients issu-
ing 5 requests. Not surprisingly, the sync-based mode scales
much better. The success rate of the end-to-end approach
drops abruptly as soon as the number of concurrent clients
is reaching 33. We can explain this limitation by the high
amount of subrequests that are generated by the Virtual
Sensor to the Virtual Classes. Indeed each client request
will result in 5 requests to Virtual Classes. The bottleneck
is in the Virtual Classes running on the OpenPicus which
has no threading and handles requests one at a time. This
creates a long queue of requests having as result some time-
outs on the client side.

6.3 Discussion
Distributed machine learning architectures open new di-

mensions for enhancing sensor networks with intelligent in-
formation processing. We show the possibility to use the
computational power of constrained devices already present
in the sensor network to run machine learning tasks, reduc-
ing the need of pushing data on dedicated computers located
outside of the sensor network. However, we faced memory

Figure 4: Round-trip time for 500 consecutive re-
quests (a) and scalability in terms of concurrent re-
quests (b).

constraints that limited the deployment to 2-3 models on
each node. As expected, not all information processing ap-
plications can be deployed in-network but this initial result
is, according to us, convincing and encouraging. These limi-
tations will be pushed back with future IoT devices that will
embed more memory and more computing power.

RESTful APIs and Web technologies play a key role in our
architecture. Beyond the fact that plenty of constrained de-
vices are following the WoT paradigm, they bring together
the machine learning community around one common archi-
tectural style. REST allows to simplify the manipulation
of mathematical models by decomposing them in Web re-
sources. Although MaLeX being today limited to HMM
and GMM, it can be extended to other model representa-
tions and algorithms by defining new entities in the JSON
schema, ensuring expandability towards new applications.

The performance evaluation tends to demonstrate that
our system does not suffer from architectural mistakes lim-
iting its usage. Moreover, it comes out that the sync-based
mode should be preferred for real-time applications. How-
ever, the selection of the mode should also be done accord-
ing to traffic efficiency. There is no clear answer to this as
it depends on many parameters such as the number of cus-
tomers, the frequency of queries, and the polling frequency
of the models. The variability over time of these parameters
also complicates the mode selection.

7. CONCLUSIONS
In this paper we have presented an architecture unifying

the worlds of IoT and machine learning. The ever grow-
ing computational power of smart things is used for ex-
ecuting data-driven algorithms, usually located server-side
or in clouds. Being able to run higher-level information pro-
cessing tasks within the sensor network paves the way for
new types of applications. The fact of keeping the sensors
data inside the sensor network increases privacy while less-
ening the traffic. Web technologies are the foundations of
our solution, allowing a full compatibility with today’s sen-
sor networks following the Web-of-Things paradigm. Using
abstract entities like the Virtual Sensor and Virtual Class
for representing ML processing tasks increases the ease of
use of the system. For its part, the MaLeX format for ex-
changing ML models is the federating element for ensuring a
low-coupling between numerical analysis software perform-
ing the training part and the runtime interface represented
by Virtual Sensors.

Even if relying on constrained devices, the ML runtime
shows very promising results. The round-trip time and scal-
ability are satisfying for many IoT applications. Nonethe-
less, deploying large models composed of a large quantity
of states and / or Gaussians is not yet feasible due to the
memory restriction of smart things. In the future, we plan
to apply our architecture to Smart buildings for executing
models aiming at the recognition of user activities in houses.
We also intend to reconsider the training part according to
the Web-of-Things percepts for creating a common repre-
sentation that can be distributed among multiple physical
devices. Finally, we envision a cloud of machine learning
entirely composed of smart things, eliminating the need of
a dedicated architecture.

8. ACKNOWLEDGMENTS
This work is supported by the grant Smart Living Green-

Mod from the Hasler Foundation in Switzerland and by the
HES-SO.

9. REFERENCES

[1] Bigml. https://bigml.com/, 2014.

[2] Google prediction api. https:
//developers.google.com/prediction/?hl=EN, 2014.

[3] Json schema. http://json-schema.org/, 2014.

[4] Predictive model markup language (pmml). http:
//www.dmg.org/v4-2-1/GeneralStructure.html,
2014.

[5] G. Acampora and V. Loia. Fuzzy control
interoperability and scalability for adaptive domotic
framework. IEEE Transactions on Industrial
Informatics, 1(2):97–111, 2005.

[6] D. Alessandrelli, M. Petraccay, and P. Pagano. T-res:
Enabling reconfigurable in-network processing in
iot-based wsns. In Proc. of the 2013 IEEE
International Conference on Distributed Computing in
Sensor Systems, pages 337–344, 2013.

[7] M. Di and E. M. Joo. A survey of machine learning in
wireless sensor networks from networking and
application perspectives. In Proc. of the 6th
International Conference on Information,
Communications and Signal Processing, 2007.

[8] T. G. Dietterich, S. Becker, and Z. Ghahramani. On
discriminative vs. generative classifiers: A comparison
of logistic regression and naive bayes. In Proc. of the
2001 Conference on Advances in Neural Information
Processing Systems, 2001.

[9] D. Guinard. A Web of Things Application Architecture
- Integrating the Real World into the Web. PhD thesis,
ETHZ, 2011.

[10] K. Hartke. Observing resources in coap.
draft-ietf-core-observe-14, 2014.

[11] M. Kovatsch, M. Lanter, and S. Duquennoy.
Actinium: A restful runtime container for scriptable
internet of things applications. In Proc. of the 3rd
IEEE International Conference on the Internet of
Things, pages 135–142, 2012.

[12] C. E. Rasmussen and C. K. I. Williams. Gaussian
Processes for Machine Learning. the MIT Press, 2006.

[13] A. Ridi, C. Gisler, and J. Hennebert. ACS-F2 - A New
Database of Appliance Consumption Analysis. In
Proceedings of the International Conference on Soft
Computing and Pattern Recognition (SocPar 2014),
2014.

[14] A. Ridi, C. Gisler, and J. Hennebert. Appliance and
State Recognition using Hidden Markov Models. In
Proceedings of the International Conference on Data
Science and Advanced Analytics (DSAA 2014), to
appear, 2014.

[15] A. Ridi, C. Gisler, and J. Hennebert. A survey on
intrusive load monitoring for appliance recognition. In
Proc. of the 2014 International Conference on Pattern
Recognition, 2014.

[16] A. Ridi, N. Zarkadis, G. Bovet, N. Morel, and
J. Hennebert. Towards Reliable Stochastic
Data-Driven Models Applied to the Energy Saving in
Buildings. In International Conference on Cleantech
for Smart Cities & Buildings from Nano to Urban
Scale (CISBAT 2013), pages 501–506, 2013.

[17] Z. Shelby, K. Hartke, and C. Bormann. Constrained
application protocol (coap). draft-ietf-core-coap, 2014.

https://bigml.com/
https://developers.google.com/prediction/?hl=EN
https://developers.google.com/prediction/?hl=EN
http://json-schema.org/
http://www.dmg.org/v4-2-1/GeneralStructure.html
http://www.dmg.org/v4-2-1/GeneralStructure.html

	Introduction
	Related works
	Machine Learning
	Architectural Design
	Virtual Sensor
	Virtual Class
	Operating Modes
	Model Representation and Deployment

	Implementation
	Evaluation
	Setup
	Performance
	Discussion

	Conclusions
	Acknowledgments
	References

