
HAL Id: hal-01118958
https://hal.science/hal-01118958v1

Submitted on 20 Feb 2015

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A Scalable Cloud Storage for Sensor Networks
Gérôme Bovet, Gautier Briard, Jean Hennebert

To cite this version:
Gérôme Bovet, Gautier Briard, Jean Hennebert. A Scalable Cloud Storage for Sensor Networks.
Fifth International Workshop on the Web of Things (WoT 2014), Oct 2014, Boston, United States.
�hal-01118958�

https://hal.science/hal-01118958v1
https://hal.archives-ouvertes.fr

A Scalable Cloud Storage for Sensor Networks

Gérôme Bovet
Laboratory for Communication and Processing of Information

Telecom ParisTech
Paris, France

gerome.bovet@telecom-paristech.fr

Gautier Briard
Department of Computer Science
University of Belfort-Montbéliard

Belfort, France
gautier.birard@utbm.fr

Jean Hennebert
Institute of Complex Systems

University of Applied Sciences Western Switzerland
Fribourg, Switzerland

jean.hennebert@hefr.ch

ABSTRACT

Data storage has become a major topic in sensor networks
as large quantities of data need to be archived for future
processing. In this paper, we present a cloud storage solu-
tion benefiting from the available memory on smart things
becoming data nodes. In-network storage reduces the heavy
traffic resulting of the transmission of all the data to an
outside central sink. The system built on agents allows an
autonomous management of the cloud and therefore requires
no human in the loop. It also makes an intensive use of Web
technologies to follow the clear trend of sensors adopting the
Web-of-Things paradigm. Further, we make a performance
evaluation demonstrating its suitability in building manage-
ment systems.

Categories and Subject Descriptors

H.2.4 [Information Systems]: Distributed databases

General Terms

Design

Keywords

Cloud storage, Web-of-Things, Sensor networks

1. INTRODUCTION
Since a few years, Web technologies are gaining more im-

portance for communication between so-called things. Fol-
lowing this direction, the Web-of-Things (WoT) paradigm
has emerged with, as central vision, a common application
layer targeting a seamless integration of heterogeneous de-
vices [5]. The strengths of this approach is to rely on well
accepted protocols and patterns such as HTTP and Repre-
sentational State Transfer (REST) services, providing high

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
WoT ’14 October 08 2014, Cambridge, MA, USA.
Copyright 2014 ACM 978-1-4503-3066-4/14/10 ...$15.00.

scalability while decoupling applications from software and
hardware concerns.

We can nowadays find many of such smart things, for ex-
ample sensors in buildings or daily-life objects in our homes.
Smart environment applications are also emerging, aiming
at increasing the user experience (or more generally the com-
fort) while optimising the energy consumption. Having ac-
cess to historical data of sensors is often required by those
applications. The field of smart buildings is a compelling
example where control loops, or data-driven techniques tar-
geting an intelligent adaptation of the building according
to the users behaviour make an intensive use of historical
data [9]. Current approaches are deporting the storage out-
side of the sensor network in a single database or using a
commercial cloud service. Although being viable solutions,
they involve a series of constraints which are often not ac-
ceptable for building owners. The first worry is about the
privacy of sensitive data such as presence sensor or electric
consumption data. Secondly, forwarding the data outside
the sensor network implies a gateway that is susceptible to
be overloaded by the traffic and that represents a single point
of failure as well as a point of entry for attacks. Consider-
ing those problematics, it appears that the best solution for
owners would be to disconnect the sensor network from the
rest of the world, thus increasing security while ensuring pri-
vacy by storing historical data within the sensor network.

In this paper, we present a mechanism for distributing his-
torical sensor data on things, forming an in-network cloud
relying on Web technologies. Our system distinguishes it-
self from others by being fully autonomous and requiring no
human in the loop. We put special attention on limiting
the network traffic while ensuring maximum fail safety and
scalability.

2. RELATED WORK
Accessing data sources over RESTful APIs has made its

way into databases especially built for storing time series.
InfluxDB [1] is an open-source distributed databases making
use of Web technologies such as HTTP, JSON and JavaScript
for writing and reading data of sensors. Although it states
itself as distributed and horizontally scalable, the documen-
tation section describing the clustering is currently empty.
StormDB [3] offers a cloud-based out of the box storage for
time series. It bases on the Postgres-XC project for dis-

tributing data across multiple Postgres databases. A load
balancer dispatches requests to coordinators who are respon-
sible for distributing those requests to data nodes. They are
also responsible during read queries for merging the data
coming from multiple data nodes. These freely available so-
lutions only run on common operating systems as Linux,
Mac and Windows. In addition, their core engines require
a certain amount of resources (CPU and memory) that are
not available on smart things. Applications using StormDB
were indeed developed successfully for smart city context
but relying on a remote cloud based implementation [4].

When considering a distributed in-network storage, the
placement of the data nodes is determinant when trying to
minimize the total energy for gathering data to the storage
nodes and replying queries. Several algorithms optimizing
the placement of the data nodes are proposed in [11]. All of
them are using trees as model structure for representing the
problem. Trees are categorized as fixed or dynamic, depend-
ing on the problem’s nature. Those algorithms, especially
for dynamic trees are relevant to our problematic as devices
can appear and disappear in a building.

The idea of storing historical data directly on sensor de-
vices is not a new topic. This was studied for example in [7]
where constrained devices used in sensor networks are con-
sidered for local storage. They developed Capsule, a rich,
flexible and portable object storage abstraction that offers
stream, file, array, queue and index storage objects for data
storage and retrieval.

3. AIM AND ARCHITECTURE
We are proposing here an architecture, processes and in-

terfaces supporting storage capacity on the already available
devices in the sensor network, like sensors and gateways.
With the advances made in electronics in recent times, sen-
sors embed a non-negligible amount of memory that is often
underused. This is even more the case for gateways hav-
ing storage capacities of several mega- or even gigabytes.
All this memory can therefore be used for storing historical
data on Storage Peers (SP) that will be managed by Storage
Coordinators (SC). We also propose to include the following
features:

Location based grouping SP are placed among the net-
work where data is produced to avoid traffic propaga-
tion over the whole network. This also ensures that a
failure in a specific part of the building will not affect
the rest of it. We hereby base our grouping according
to the logical room structure of the building.

Replication for prevention An active agent takes actions
for ensuring that data are replicated at least once on
the SPs. Every SC is also backed up by a second one.

Energy efficient retrieval The SC includes an algorithm
based on the data repartition table to select the ap-
propriate SP for limiting exchange of values.

Decoupling with network-layer The solution is decou-
pled from the network topology and routing protocol,
able to work with IPv4 addresses as well with IPv6.

On-demand storage Storage resources are dynamically an-
nounced for saving storage space.

Efficient application layer CoAP (Constrained Applica-
tion Protocol) [10] is used as application-layer proto-
col for accessing RESTful APIs. CoAP is lighter than
HTTP and contributes to the efficiency of the system.
The observe option [6] is used for implementing noti-
fications between sensors and the storage peers.

Multicast based Multicast is used for efficient communi-
cation with several peers at one time in combination
with the CoAP protocol.

3.1 Architecture
We propose an architecture based on the structural rooms

and floors composition of a building. The logical structure
of a building forms a tree where agents and producers are
disposed. We extend this perception of a building by intro-
ducing the concept of zones grouping contiguous parts of a
building, as illustrated in Figure 1. Each zone is managed
by two SCs, one master and one backup, having their knowl-
edge limited to their own content and to the references to
their parent and children zones. This allows to split a build-
ing into autonomous regions that are not affected by failures
in other zones. In addition, it avoids that each coordinator
knows the whole structure of the building, therefore reduc-
ing the amount of synchronization data. Zones are formed
dynamically during the operation according to the producers
and the peers repartition. The principle of zone management
is detailed in section 4.

!"

!"
!"

!"

#

!# !#

#

#

!# !#

#

#

!# !#

#

!# !#

#

!#

#

!#

#

#

!""#$%&"'()*"'

*&+,-!(.$%/""!01%/""!2

!""#$%/""!2)&"'()*"'

*&+,-!(.$%3

!""#$%/""!0)&"'()*"'

*&+,-!(.$%,+4+.5

!""#$%,+4+.5)/""!0)&"'()*"'

*&+,-!(.$%3

Figure 1: In-network cloud storage architecture
based on building zones.

3.2 Entities and Roles
Our solution is composed of several agents having differ-

ent behaviours depending mainly on their memory capacity.
The agent applications are loaded in the device during de-
ployment. Powerful devices may run multiple agents.

3.2.1 Storage Peers

Storage peers (SPs) manage the access to historical data
according to the available local memory. They announce
their capacity at startup to the Storage Coordinator (SC)
managing the zone they reside in, indicating they are ready
to receive data from producers. The storage management
type used on the peer is hidden by a RESTful API providing
functions for creating new datasets, adding entries as well as

reading historical data. This approach allows for decoupling
the storage from database technologies and exposes a single
common storage interface for all peers. SCs and producers
have no clue about which technology is used for the internal
storage, as this could be for example MySQL, SQLite, flat
files or even only EEPROM storage with specific indexing
on constrained devices, for example using Capsule [7]. SPs
regularly announce their storage capacity to the SC agent
responsible for their location in the building.

3.2.2 Storage Coordinators

SCs manage the composition of the zones as well as the
repartition of data between the peers. It starts up by look-
ing after another coordinator already managing the location
it resides in. If there is already a SC, it will put itself in
stand-by, waiting to get promoted as backup. If no answer
is received, it will promote itself as master coordinator for
its location. It then periodically communicates with its par-
ent and children in order to take decisions about merging or
splitting zones. A major task of the storage coordinator is
to manage the repartition of data between SPs by ensuring
that each tuple of data is duplicated at least once. Finally,
it serves as entry point for retrieval requests and will use its
internal repartition table to find out which peers are con-
cerned by the query.

3.2.3 Producer

A producer can be a sensor, a daily life object or any kind
of thing that produces data in the form of notifications. The
observer pattern of CoAP is here used among with multicast
as notification mechanism for transmitting new values to
storage peers in a single packet.

3.2.4 Client

The client stands for humans or applications requiring
storage of historical data of a particular resource. Before
a resource gets stored, an announcement by a client has to
be sent to the storage coordinator responsible for the zone
where the resource resides. Clients will afterwards be able to
send read requests to the storage coordinator by indicating
a resource and an interval of time for filtering purpose.

3.3 Interfaces
We define three types of interfaces that are used in our

solution. Each one is accessible over a RESTful API and
targets specific functionalities.

General management interface: SCs implement the
server side of this multicast interface used for discovery pur-
pose. Each participant of the cloud will use this interface
to send a GET request for seeking after a SC managing
a zone. For example, a client looking for the SC manag-
ing resources in the kitchen will send the following request:
coap://229.0.5.32/home/floor1/kitchen. Each storage
coordinator within the building will check if this location
resides within their authority zone. Only the one that is
managing this location will respond with the multicast ad-
dress of its zone interface.

Zone interface: A specific zone interface is attributed to
every zone, which is a unique multicast address generated
during the zone creation. The purpose of this interface is for
synchronization needs between the master coordinator with
its backup, as well for the peers for communicating their fill-
ing ratio. In addition, this interface is used by the produc-

ers for notifying peers with new values. We avoided CoAP
groupcom [8] because of constrained devices being unable
to have multiple multicast addresses due to IP stack limita-
tions. Clients send GET requests to this interface for retriev-
ing historical data, as illustrated in the following request:
coap://233.56.175.90/home/floor1/kitchen/temp?from=

2014-02-13&to=2014-02-18. Finally inter-zone synchroniza-
tion is also achieved by using this interface.

Server interface: Each SC and SP has a server inter-
face bound with its unicast address. For SCs, this interface
allows to manage their participation in the observation of
resources by giving the observe token. This interface also
offers the possibility to retrieve the history of a resource
stored on the peer by specifying an interval. The promotion
of backup SCs is also managed using this interface.

The decomposition into several interfaces is an interest-
ing approach, especially combined with multicast. First,
having one interface for each behavior and particularly for
each zone concentrates the communication within the spe-
cific zone without disturbing other zones or agents. Using
multicast allows impersonal communications between par-
ticipants. This impersonality improves the dynamics and
fault tolerance of the solution as participants do not know
the exact identity of their partners. We can illustrate this
principle by citing the zone interface. SPs regularly notify
their coordinator about remaining storage space. As this
is achieved with multicast, they do not address a specific
agent. This means that the agent can change over time
without any consequence for the peers. For example if the
master SC fails, peers will continue talking with the backup
that will promote itself as master.

4. ZONE COMPOSITION STRATEGIES
As previously mentioned, our cloud storage is split into

several zones forming a tree. Each zone is authoritative for
one or many contiguous locations of the building. The loca-
tion grouping process can be seen under several perspectives,
and many algorithms can be imagined for defining zones.
However, as our aim is also to build an energy efficient solu-
tion, we opted for an approach limiting the traffic between
all the agents. SCs face two types of decisions during the
grouping process: should they split their own zone into two
new ones, and should they regroup a child zone with their
current zone. Decisions are taken according to notions of
costs.

4.1 Splitting
The coordinator for a zone Z will first compute the cost

C(Z1, Z2) for each possible decomposition into two new zones
Z1 and Z2 according to Eq. (1). We limit this computation
to zones having at least two SCs and two SPs, and having
obviously enough space for storing the historical data of re-
sources residing within the zone. Finally, the minimum cost
value among the possible decomposition is compared to the
individual cost Ci(Z) of the zone Z. The zone will be split if
the evaluation of Eq. 2 is true, i.e. if the best decomposition
(minimising the cost) brings a gain of efficiency as compared
to the current situation.

C(Z1, Z2) = Ci(Z1) + Ci(Z2) + Ce(Z1, Z2) (1)

Ci(Z)−min(C(Z1, Z2)) > ǫs (2)

Ci Total number of hops (locations) between producers and

coap://229.0.5.32/home/floor1/kitchen
coap://233.56.175.90/home/floor1/kitchen/temp?from=2014-02-13&to=2014-02-18
coap://233.56.175.90/home/floor1/kitchen/temp?from=2014-02-13&to=2014-02-18

storage peers within the zone. We consider that for-
warding notifications to distant storage nodes is penal-
izing.

Ce Inter-zone costs depending on the filling rate of the child
zone. Children zones are regularly sending some status
data to their parent zone, which generates traffic. This
traffic essentially depends on the filling rate of the child
zone, as more messages will be exchanged as storage
space decreases.

ǫs A cost gain factor above which the splitting is performed.

4.2 Merging
A SC can decide to merge its own zone with a child one

in two situations:
Space: When one of the zones becomes full and has no

more storage capacity. Grouping the zones will allow to
increase the storage capacity and to postpone storage satu-
ration.

Efficiency: When the cost of a single zone would be less
than the actual situation. However, a SC has no knowledge
about the internal structure (locations, storage peers and
producers) of a child zone. This results in the incapacity of
computing the costs for the merged zone. We opted for a
solution where we compute an estimation of the cost Cp(Z)
for the merged zone depending on each zone’s costs and
internal location tree depth, as described in Eq. (3). The
merging is performed if the evaluation of Eq. (4) is true, i.e.
if the merging brings a gain.

Cp(Z) = (Ci(Z1) + Ci(Z2)) ∗ ln(D(Z1) +D(Z2)) (3)

C(Z1, Z2)− Cp(Z) > ǫm (4)

C(Z1, Z2) Two-zone cost computed as above.

D Depth of the zone’s internal location tree. Each zone is
composed of one or more contiguous locations repre-
sented as a tree. The depth of the tree influences the
probability of having distant producers and consumers.

ǫm A cost gain factor above which the merging is performed.

5. PROTOCOL DETAILS
In this section we detail some behaviours of our proposed

cloud storage for things. We assume that zones are already
built and that the client has performed the SC discovery.

5.1 Data Announcement
We here describe the process of announcement and the

internal communications as illustrated in Figure 2 part (a).
The first step for a client is to announce its intention of stor-
ing data for a particular resource and for a given amount of
time. This is realized by sending a multicast packet con-
taining the necessary information to the SC. In order to
offer a lightweight and robust mechanism for the announce-
ment, we decided to specify the interchange format with a
JSON schema, visible in Listing 1. JSON schemas [2] are
the equivalent to XML schemas and are used for validating
data interchanged with Web services. As we are working
in a world of constrained devices, using JSON appeared a
reasonable choice.

Listing 1: JSON Schema for data storage announce-
ment
{

”$schema ”: ”http :// json−schema . org /
dra f t −04/schema#”,

” t i t l e ”: ”Storage ” ,
”d e s c r i p t i o n ”: ”A re sou r c e s t o rage

announcement ” ,
”type ”: ”ob j e c t ” ,
”p r op e r t i e s ”: {

”u r l ”: {”d e s c r i p t i o n ”: ”The r e sou r c e
to s t o r e ” , ”type ”: ”u r i ”} ,

”max−age ”: {”d e s c r i p t i o n ”: ”How long
the data should be s to r ed ” , ”type
”: ” i n t e g e r ”} ,

”un i t ”: {”d e s c r i p t i o n ”: ”Unit f o r
max age ” , ”enum ”: [”day ” , ”month
” , ”year ”] }

} ,
” r equ i r ed ”: [” u r l ” , ”max−age ” , ”un i t ”]

}

The SC performs a validation for ensuring that the re-
ceived data is correct. It then ensures that the target re-
source is within its own zone. The selected appropriate SPs
will be notified with a token that is used by CoAP for ob-
serving the resource. Finally, the SC enables the observation
of the resource by providing the same token that was sent to
the peers. In order to limit the network traffic, we combine
observation and group communication. The resource will
send the notification to the zone’s multicast address, and
only peers enabled for the token contained within the CoAP
response will store the new data.

5.2 Data Retrieval
Once the announcement performed, clients have the possi-

bility to retrieve the stored data, as depicted in Figure 2 part
(b). This is achieved by the client sending a GET request to
the SC responsible for the resource. The request must hold
three parameters. The first one contains the URL of the re-
source, while the two remaining indicate the interval’s start
and end dates. This allows the client to filter the history by
dates. The SC verifies that the requested resource is within
its zone. If it is the case, it will then compute on which
peers the data has to be retrieved in order to minimize the
communications. Indeed, as each tuple of data is stored at
least twice with overlapping intervals, this could result in
unnecessary exchanges. The results are merged together in
order to form a sorted JSON array of historical data. Due to
the limited computational power of certain constrained de-
vices, applying compression algorithms such as GZIP is not
possible when exchanging historical data between SPs and
SCs. However, JSON could be transposed in binary format
for optimizing the communications.

6. EVALUATION AND DISCUSSION
In order to evaluate the performance of our system, and

especially the retrieval of data, we have set an experimental
zone. Our test zone was composed of one SC (Raspberry Pi)
and three SPs (one Raspberry Pi and two OpenPicus Fly-
port). Each SP was preloaded with storage data as follows:
15072 entries for the Raspberry Pi, 14499 entries for the Fly-
port Wi-Fi and 14072 entries for the Flyport Ethernet. The

Client Storage
Coordinator

Storage Peer Storage Peer Producer

Mcast PUT: Announce storage needs for resource R

PUT: Activate storage for resource R with token T

PUT: Activate storage for resource R with token T

GET Obsv Token T: Register token T

Watch resource R
Mcast 2.05 Token T Content: Notify new value

Server interface

Zone interface

Client Storage
Coordinator

Storage Peer Storage Peer

Mcast GET: Query for interval I on resource R

GET: Retrieve data for resource R

GET: Retrieve data for resource R

2.05 Content: Historical data for interval I on resource R

(a)

(b) Assemble data

Compute interval for each peer

Figure 2: The sequence of exchanged messages (a) for a client announcing data storage and (b) for a client
retrieving historical values.

SC was for its part preloaded with the repartition of data on
the peers. To know the consequence of using a SC instead
of directly talking to a REST data source, we set a second
test bed only composed of a SP (Raspberry Pi). This peer
was preloaded with the entire data set that was distributed
among the peers in the previous configuration (without du-
plicate entries). The same retrieval request was sent for each
test. It queries for historical data of a specific resource cov-
ering an interval of 12 hours. The answer for this request
returns 39 entries, each one containing the timestamp of the
measure and the associated value. Regarding the software
stack, JCoAP 1 was updated to comply with the draft 18 of
CoAP and used on the Raspberry Pi. For the Flyport, we
opted for the currently lightest C implementation of CoAP,
namely microcoap2. Both implementations of CoAP were
improved for supporting multicast.

6.1 Distributed vs. Centralized
We compare both access types described above and show

the round-trip time for each requests in Figure 3 part (a).
First, each request is sent to the SC that will collect the
distributed data on the SPs. For this case, the average
round-trip time for 2500 consecutive requests is 186 mil-
liseconds. In the second case, the client bypasses the SC
and performs the requests directly on a storage peer stor-
ing the whole dataset. In this case, the average round-trip
time was 70 milliseconds. Not surprisingly the performance
for direct communication is better. We can deduce that the
time used by the coordinator for retrieving the distributed
data and building the response is about 115 milliseconds.
However this additional delay is not that substantial so that
the distributed approach would be limiting certain applica-

1https://code.google.com/p/jcoap/
2https://github.com/1248/microcoap

tion scenarios.

6.2 Evaluating Concurrency
In this evaluation, we want to assess the difference be-

tween the approaches in terms of concurrent requests. Sim-
ilarly to the previous case, we performed requests using
the distributed approach and directly to the SP. Figure 3
part (b) shows the results when having up to 100 concurrent
clients running 5 requests. Not astonishingly, the centralized
approach scales much better as the rate of the distributed
approach drops as soon as the number of concurrent clients is
reaching 50. This limitation can be explained by the number
of sub-requests that are sent by the SC to the peers. Indeed
each client request will result in up to three peer requests. It
is very likely that the SC, having limited memory and CPU
is not able to handle such an amount of requests.

6.3 Discussion
Using our in-network cloud storage significantly eases the

storage of historical data in a sensor network. No specific in-
frastructure is required for enabling the storage, as all avail-
able devices contribute in the storage effort by offering their
capacities. While gateways offer large amount of memory,
other things only have a few kilo- or megabytes at disposal.
The total amount of memory within the network could thus
be very limited and not enough for satisfying the require-
ments. In this case, we could imagine in the same way as
for a cloud, to simply add more devices in the sensor network
that will only be dedicated for storage, e.g. several Rasp-
berry Pi offering cheap storage. The use of RESTful APIs
on the peers storing time-series is an interesting alterna-
tive to the common SQL. Indeed smart things being mostly
composed of constrained devices do not have the ability of
implementing SQL. REST allows standardizing the way his-
torical data are exposed in sensor networks, this in a very

https://code.google.com/p/jcoap/
https://github.com/1248/microcoap

!"

!#$"

!#%"

!#&"

!#'"

!#("

!#)"

!#*"

%!!!" %!(!" %$!!" %$(!" %%!!" %%(!" %&!!" %&(!" %'!!" %'(!" %(!!"

+
,
-
.
/
01
23
4
"1
35

6
"7
89
"

+6:-68;"<"

+,-./01234"1356"=646./3.>",.";?6"@;,2A>6"@;2A;6>B"

=38;23C-;6/" D6.;2AE3F6/"

(a)

!"

#!"

$!"

%!"

&!"

'!"

(!"

)!"

*!"

+!"

#!!"

#" ##" $#" %#" &#" '#" (#")#" *#" +#"

,
-
..
/
00
"1
2
3/
"4
5"
1
/
6
-
/
03
0"
78

9"

:4;.-<</;3":=>/;30"?'"1/6-/030"@":=>/;3A"

,.2=2B>=>3C"D/03"E>3F":4;.-<</;3":=>/;30"

G>03<>B-3/H" :/;3<2=>I/H"

(b)

Figure 3: Round-trip time for 500 consecutive re-
quests (a) and scalability in terms of concurrent re-
quests (b).

simple manner, and probably sufficient for most scenarios.
The scalability test showed that the recomposition of data
distributed on peers limits the number of concurrent clients.
Nevertheless, it is unlikely that an average building manage-
ment system issues such a high amount of history retrieval
requests for a specific zone. Current machine-learning adap-
tation techniques only perform a few queries per hour, for
which our proposal is more than compatible.

7. CONCLUSION
We have presented a system that composes a cloud-like

storage space from several distributed smart things. Web
technologies are at the heart of our system allowing a seam-
less integration into future building automation systems re-
lying on the Web-of-Things as federating paradigm. The
most relevant advantages of our approach are self-adaptation
and autonomy. The storage automatically adapts itself to
environmental changes when devices are added or removed
by dynamically recomposing the zones. No human in the
loop is required thanks to the agent technique that ensures
auto-promotion and synchronization. Another important
aspect is the efficiency that is part of every decision that the
system takes. Traffic reduction is an important issue that
is too often left aside by commercial technologies. Working
in the field of smart buildings where the final aim is to save
energy, it would be difficult to defend an additional layer
that is itself not optimized.

Performance tests showed that even using very constrained
devices as storage peers allows to obtain satisfying results in
terms of round-trip time and scalability. Still, we plan op-
timizing the system in order to make it ready for future
data-driven techniques requiring larger amount of historical
data at higher frequencies. For this, we plan to compress
the historical data exchanged between a storage coordinator
and the peers, in order to accelerate the retrieval request.
Furthermore, we intend to deploy our system for cloud stor-
age in a real-life scenario to evaluate the splitting/merging
strategy in a realistic situation.

8. ACKNOWLEDGMENTS
The authors are grateful to the Swiss Hasler Foundation

and to the RCSO grants from the HES-SO financing our
research in this exciting area of smart buildings.

9. REFERENCES
[1] influx db. http://influxdb.com/.

[2] Json schema. http://json-schema.org/.

[3] Stormdb. https://www.stormdb.com/.

[4] D. Difallah, P. Cudre-Mauroux, and S. McKenna.
Scalable anomaly detection for smart city
infrastructure networks. IEEE Internet Computing,
17(6):39–47, 2013.

[5] D. Guinard. A Web of Things Application Architecture
- Integrating the Real World into the Web. PhD thesis,
ETHZ, 2011.

[6] K. Hartke. Observing resources in coap.
draft-ietf-core-observe-14, 2014.

[7] G. Mathur, P. Desnoyers, P. Chukiu, D. Ganesan, and
P. Shenoy. Ultra-low power data storage for sensor
networks. ACM Transactions on Sensor Networks,
5(4):33:1–33:34, November 2009.

[8] A. Rahman and E. Dijk. Group communication for
coap. draft-ietf-core-groupcomm-20, 2014.

[9] A. Ridi, N. Zakaridis, G. Bovet, N. Morel, and
J. Hennebert. Towards reliable stochastic data-driven
models applied to the energy saving in buildings. In
Proceedings of the International Conference on
Cleantech for Smart Cities and Buildings (Cisbat ’13),
2013.

[10] Z. Shelby, K. Hartke, and C. Bormann. Constrained
application protocol (coap). draft-ietf-core-coap, 2014.

[11] B. Sheng, Q. Li, and W. Mao. Data storage placement
in sensor networks. In Proc. of the 7th ACM
international symposium on Mobile ad hoc networking
and computing, pages 344–355, 2006.

http://influxdb.com/
http://json-schema.org/
https://www.stormdb.com/

	Introduction
	Related Work
	Aim and Architecture
	Architecture
	Entities and Roles
	Storage Peers
	Storage Coordinators
	Producer
	Client

	Interfaces

	Zone Composition Strategies
	Splitting
	Merging

	Protocol Details
	Data Announcement
	Data Retrieval

	Evaluation and Discussion
	Distributed vs. Centralized
	Evaluating Concurrency
	Discussion

	Conclusion
	Acknowledgments
	References

