
HAL Id: hal-01118923
https://hal.science/hal-01118923

Submitted on 28 May 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A Domain-Specific Framework for Creating Early
Trusted Underwater Systems Relying on Enterprise

Architecture
Iyas Alloush, Charbel Geryes Aoun, Yvon Kermarrec, Siegfried Rouvrais

To cite this version:
Iyas Alloush, Charbel Geryes Aoun, Yvon Kermarrec, Siegfried Rouvrais. A Domain-Specific Frame-
work for Creating Early Trusted Underwater Systems Relying on Enterprise Architecture. MAS-
COTS 2014 - IEEE 22nd International Symposium on Modelling, Analysis & Simulation of Computer
and Telecommunication Systems, IEEE computer Society, Sep 2014, Paris, France. �10.1109/MAS-
COTS.2014.23�. �hal-01118923�

https://hal.science/hal-01118923
https://hal.archives-ouvertes.fr

A Domain-Specific Framework for Creating Early
Trusted Underwater Systems Relying on Enterprise

Architecture
Iyas Alloush∗, Charbel Geryes Aoun‡*, Yvon Kermarrec∗, Siegfried Rouvrais∗§

∗Université européenne de Bretagne
Telecom Bretagne, Institut Mines-Telecom

Email: firstname.lastname@telecom-bretagne.eu
§IRISA
‡ENSTA

Email: firstname.lastname@ensta-bretagne.fr

Abstract—In the context of service creation and development
according to functional and non-functional requirements (NFR),
Service Creation Environments facilitate the creation of complex
services and play a major role for the software industry. In
our scope, we are concerned with two activities: design, and
verification according to NFRs related to performance and QoS
requirements. To reach our objective, we aim at developing
a domain-specific framework (networking domain) that uses a
chain of existing ”off-the-shelf” tools integrated together from
the design to the verification activities. Model Driven Engineering
approach facilitates our task on reducing complexity through
modeling and code generation (using XPAND-Eclipse), to obtain
an auto-generated simulation scenario ready to run directly in
NS-3 simulator. In this paper, we propose a new meta-model
that extends the Open Group modeling language ArchiMate to
provide a domain-specific modeling language for the Deep Sea
Observatories (DSO). We instantiate, as a case study, DSO model
with identification and localization functions from this language,
and apply it to our framework that relies on IMS platform to run
the service model. These functions can be orchestrated with other
services (e.g. military or civil reaction) or interconnected with
other SOSystems. This illustrates, on one hand, our approach
in relying on Enterprise Architecture (EA) framework, that
respects multiple-views, perspectives of stakeholders, and domain
specificities. On the other hand, it shows the reusability of our
framework by changing applications from different domains:
Video Conference as a Telecom Service, and Localizations for
DSO.

I. INTRODUCTION

In the context of service creation [1] and development in
the domain of distributed systems, services are to be delivered
on time and should respect the expected quality requirements
[2]. Creating complex services consumes time and is subject
to errors and quality flaws. This reflects negatively in the time
to market competition factor and client intensions. Service
Creation Environments (SCE) help to manage and support the
different activities and phases of service creation taking into
consideration the following challenges: reducing complexity,
increasing reusability of tools at different abstraction levels,
and relying on efficient automation of activities during the
service creation process [1].

Our global objective is to provide the different stakeholders
that are involved in the activities of the design phase with
tools that help them to model and evaluate their design.
The application scopes that we work on are in the design
phase of Telecom Services (TS) ([3], [4]), and Underwater
Localizations (UL) in the context of Deep Sea Observatories
(DSO) [5]. Our research scope is in the first phase of an DSO
project: Marine e-Data Observatory Network (MeDON)1. This
initial phase aims at insuring the quality and experimenting the
platform before it is deployed.

The DSO processes take long periods (months or years) to
collect and analyze data. The mission to deploy the sensor
network platform may be far from coasts, takes long time,
and requires specific ships and tools to move and set the
equipment with qualified crew. Additionally, the deployment
of DSO equipments should take into consideration the difficult
environmental constraints (depth, temperature, obstacles, etc).
These constraints impact on the communication conditions
where, for example, the length of networking cables influences
(error rates, delays, packet drops, etc) the data transmitted. If
floating access points are connected to the deep underwater
sensors by cables, how to deploy these access points according
to wireless channel conditions (different scenarios) to commu-
nicate with other sensors or nodes. Such concerns should be
taken into consideration to insure that the data collected from
the sensors are received correctly and with acceptable rates
according to the communication channel conditions ([6], [7]).
In this context, our research question is: How to evaluate the
design model (communication wise) earlier than the imple-
mentation phase where software and hardware elements
are deployed on site?

In the services of telecommunication and localizations (con-
text of DSOs), the design contains two aspects: behavioral that
is related to the system functionality, and structural that is
related to the system components where functions should be
executed. In order to detect design errors and quality flaws,

1MeDON official website: http://www.medon.info/

we rely on simulation approach and tools such as network
simulators that enable a designer to perform simulations
under different scenarios and obtain qualified outputs. We use
classical tools that are widely used (NS-3 and OPNET), and
they provide users with trusted results in the network domain.

Nowadays, the IP Multimedia Subsystem (IMS) [8] offers
an advanced IP infrastructure that provides various added-
value services that are useful for the DSOs (e.g; storing video
streams and replaying them according to requests, detection
data transmissions, etc) with an advanced level of provision-
ing. In order to enable the designer to rely on IMS platform
and to take advantage from its features, we have proposed
an IMS meta-model (MM) [9]. This meta-model helps to
generate design tools thanks to Eclipse Modeling Framework
(EMF). The design tool helps to prevent syntax errors thanks
to the concrete syntax. In order to cover the rest of the errors:
behavioral and performance-quality flaws, we have proposed a
way to bridge the gap between design modeling and simulation
activities ([10], [11]). Simulation provides us with the ability
to obtain measures/traces (e.g. end-to-end delays, rates, and
packet drops, etc) that are helpful to evaluate the design earlier
than the implementation phase according to performance non-
functional (PNFRs) and Quality of Service (QoS) requirements
([4], [12]). These measures/traces can be analyzed using many
tools such: Wireshark (we use it in this paper), MatLab, etc.

Our objective in this paper is to propose a new meta-
model in the context of DSOs. This meta-model will generate
DSO-specific design tool. In this meta-model, we introduce
elements that are needed when designing an DSO model such
as data fusion functions/elements [13] to our proposed DSML.
Additionally, we provide a solution for the interoperability
between the different layers of a design during the simulation
runtime.

We keep the technology layer extended meta-model for
IMS [9], and experiment the replacement of the application
(context) layer model. We have represented previously video
conferencing system in the application layer ([4], [11]). In this
paper, we replace it by another model from different context
(DSO). This highlights the reusability of our approach for
different applications.

In other words, our approach presents a way to use core-
networks in the different applications that are from different
domains. It provides a method to compile (syntax check,
parsing, and generating executable code for NS-3) the design
model [14] in order to obtain simulation scenario that is
complex, and time consuming to be implemented by human
efforts. The criteria to do that is to use a Service-Oriented
core-networks (such as IMS in our case) that are represented
in the modeling language.

We illustrate our implementations for the framework with
two case-studies: a Video Conference Service relying on
IMS, and a localization application (DSO context) relying on
the same IMS meta-model that was proposed previously in
[9]. Both of these cases are applied to the framework [11]
that contains generation of simulation scenarios ready to run
directly in the NS-3 simulator.

In Section II, we present the related work that is connected
the Service Creation Environments. Section III presents the
service creation activity and our approach to detect design
errors and reduce its complexity. In section IV, we present
MDE fundamentals and related tools. Section V presents the
localization techniques and focuses on the relation with the
design language in our approach (subsection. V-A). It also
explains the DSMLs shortly and contains our proposal for
the DSO/MeDON meta-model (subsection. V-B). In Section
VI, we present the simulation approach. Section VII presents
our method to generate simulation code. In section VIII, we
present our example for the DSO/MeDON case-study and
analyze the results. Then we conclude and discuss our future
work in section IX.

II. RELATED WORK

In this section, we present the related work in connection
with service creation environments and frameworks, in relation
to the design and simulation approaches.

A service engineering frameworks [1] include different ac-
tivities and phases. In our scope, we consider the design phase
and we propose the addition of an early verification activity
before the implementation phase ([3], [11]). In relation with
concepts of: (1) software frameworks; (2) architectural de-
scription languages [15]; (3) types of requirements ([2], [16]);
(4) and the requirements of service creation environments in
the service engineering framework [1]; we are interested in
the following concerns that we shall examine in details in this
section:

1) Multiple views are represented in the architectural de-
scription;

2) Hiding complexity from the SCE user;
3) The reusability of the service creation framework in

different applications and contexts;
4) The extensibility of the framework;
5) The consideration of the behavioral and structural ele-

ments in the architectural description;
6) Tools and platforms that are used.
• According to the Multiple views concern, SCEs may

differ from each other according to their users. In ([17],
[18], [19]), in the context of value-added TSs, the SCE
is used by the end-user who can customize, provision his
service from his terminal. Second case, where SCE users
are designers who are not the target of the service, as
in ([20], [21], [22], [23], [24]). In this case, the designer
relies on modeling tools that ease the design activity and
manage complexity thanks to the MDE fundamentals.
However, in both two cases, only one view that fits
the stakeholder tasks is provided by the design tool, as
the design tool does not provide the ability to share
the design between different stakeholders or designers.
Our approach considers this point thanks to the different
layers of EA standard, that separate between domain
specificities and perspectives.

• The second concern is hiding complexity. Hiding com-
plexity from the SCE-user’s reduces the need to the

detailed specification, and minimizes the errors during
the design activity. Design tools play an important role in
reducing complexity, as they use modeling interfaces that
are followed by code generators as in ([17], [24]). These
code generators provide scripts which describe the service
behaviors as in ([17], [18], [19], [23]). Then relying on a
middle ware they can use APIs that are supported by the
underlying platform such as IMS ([18], [24]) or an open
service architecture (OSA) [23].

• Regarding to the reusability concern, the designer in
([23], [24], [18], [19], [17]) is not able to use the
underlying platform (e.g. IMS) or the OSA with dif-
ferent applications that belong to different domains. A
platform like IMS provides functions that can be used
with different contexts (e.g. DSOs, value-added telecom
services). For example, IMS can be used to exchange
messages between terminals (e.g. cameras, hydrophones,
smart sensors, and Fusion Servers, etc) and store video
streams to replay them to other terminals.
In our approach, we rely on ArchiMate language [25]
for the design activity. ArchiMate2 relies on Enterprise
Architecture (EA) framework ([26], [27]) which has three
layers (business, application, and technology). These lay-
ers decompose the design according to different view-
points (e.g. business process description is different from
IMS functional description). A way of using these multi-
ple views is presented in [9] (video conference service):
the business layer can be used by end-users, application
layer describes the system applications (capabilities) and
APIs, and the technology layer describes the underlying
platform (e.g. IMS).
Like in [21], and relying on Eclipse IDE and Model
Driven Engineering (MDE) [28] discipline, we can reduce
complexity by generating design tool from the syntax
(abstract and concrete). As the tool provides the ability
to model the service specifications in multi-layered ar-
chitecture views, and it also offers help to prevent syntax
errors during the design time (e.g. prevents designer
from connecting function to another through assignment
relationship). This design tool [3] conforms to the EA
framework as it is generated from the meta-model of
ArchiMate after extending it with our DSMLs [9].

• Regarding to the extensibility concern, in ([22], [20],
[21]), the authors rely on meta-modeling and model
transformations from MDE to generate tools and simu-
lation codes. Extending the meta-models makes it pos-
sible to develop/extend the generated tools by adding
new concepts and constraints. Relying on ArchiMate
and MDE makes it possible for us as well. This is
because ArchiMate is a language that respects the object
oriented approach where inheritance [29] is available (e.g.
specialization relationship). Relying on this concept, one
can extend the tools as they are generated from models
(as we did recently in [9], [12], [30]).

2ArchiMate: http://www.opengroup.org/subjectareas/enterprise/archimate

Requirements
refinement

Artifacts
synchronization

Service analysis

Service design

Service
implementation

Early verification

Service validation
and testing

Define:
•use cases

•user interfaces
•service interaction

diagrams
•service design class

diagram
•service architecture layers

Satisfies
Requirements?

no

yes

•Syntax checking (code generator)
Auto-generate:{

• simulation scenarios
•Configuration of measures/traces
•analysis based on analytic theories

}

modify

Design
modeling
language

uses

Fig. 1. Our approach: Extending the design activity by early verification in
the service development framework, inspired from [1]

• Concerning elements of architectural description (fifth
concern in our initial list), all of the previously mentioned
related works consider only the behavioral description
of the service. When the design contains an underly-
ing platform like IMS from the networking domain,
the network simulation is needed. Network simulators
require topologies and nodes in the scenario of the
simulation, which is needed to be considered in the
design language. Therefore, in our approach, we have
extended the technology layer of ArchiMate to include
the nodes, protocols, functions, and topology constraints
of IMS ([9], [10]). This enables us to make verifications
according to performance NFRs and QoS requirements
as well.

• According to the tool/platform concern, in [20], the
authors rely on work-flows and model transformation to
generate codes for simulators that are locally developed.
While in our approach, we rely on classical tools: Archi
extensions as a design tool ([31], [30]) including the
proposal in this paper, and network simulators: OPNET
[10], NS-3 ([11], [4]) that are widely used and provide
large set of tools and utilities to obtain measures/traces,
present network architectures through animations, etc.

III. SERVICE CREATION ENVIRONMENT

In this section, we present the service creation and devel-
opment environments.

In [1], a SCE is defined as follows: ”is a collection of
software tools (together with a reuse infrastructure) used
according to the service development methodology with
the aim to assist the service developer(s) when applying
the service development methodology by automating and
simplifying as much as possible the service creation process,
and facilitating consistency and verification checks”.

In our proposal (Fig.1), we focus on the service design
activity, where we propose set of tools to support it, including
early verification [11] according to the functional and non-
functional requirements (performance, and QoS requirements).

Extending the design activity by early verification helps the
service designer to perform tests to obtain valuable feedbacks

Softgoal
models

Design models

Linking

•Goal Operation
•Measurements

[1..Y]
•Design [All views]

Model
Adaptation

Scenario and
Measureme

nt scripts
Simulations Measures/Traces

Measurement
Analysis

Correction
Decision

Activity Model(s) Data flow

Legend

Fig. 2. Verification Activities in our approach [12]

about the design before starting the implementation phase,
where the software and hardware elements are installed or
deployed. Therefore, we have proposed (Fig.2) recently ex-
tensions ([11], [4]) to the design language that enable the
generation of configuration for measures during the simulation
time, including the automated selection of the proper simulator
according to its capabilities [12]. Additionally, we make syntax
and domain-specific rule checks during the code generation
activity, and during the design activity through the design tool
(Fig. 8) [9].

IV. MODEL DRIVEN ENGINEERING

In this section, we present the Model Driven Engineering
(MDE) discipline that we rely on in all of our contributions
in relation with early verification activity. MDE [3] is ”a
software development method which focuses on creating
and exploiting domain models. It allows the exploitation of
models to simulate, estimate, understand, communicate, and
produce code”. MDE helps to manage complexity thanks to
the modeling concept and model transformations.

Modeling helps to describe the design in a high abstract way.
In our approach, modeling tools follow the constraints and
represent the concepts that are defined in the meta-model. The
meta-model [28] ”defines by itself a language for describing
a Specific Domain of interest”. It permits to instantiate large
number of models that conform to it like in programming
languages; numerous of programs can be implemented relying
on a specific programming language (e.g. C, C++, Java etc).
Eclipse IDE provides a powerful environment that relies on
EMF which facilitates the modeling/meta-modeling activities,
it supports many model transformation languages as well.

Model transformations helps us to generate design tools and
simulation programs directly and automatically from meta-
models and instance models. Every model transformation
depends on a set of rules that describe and control the
transformation process. The transformation rules may map
models that conform to different meta-models (on the same
abstraction level) such as ATL [32], or map between different
domains using one meta-model for the source model to gen-
erate texts/codes (e.g. XPAND [33]). In our case (Fig. 3), the
input model represents the design of high abstract level, and
the meta-model is the extended ArchiMate meta-model which

Fig. 3. XPAND workflow engine [10]

represents the domain specific modeling language (DSML)
([3], [10]). Our code generation is an automatic process that
links directly the design model to the simulation script. Thus,
it helps to reduce the time of the implementations for large
simulation programs, and it minimizes the implementation
errors.

V. DOMAIN-SPECIFIC MODELING LANGUAGES (DSMLS)

In this section, we will present shortly the DSMLs to
highlight and explain our contribution of the MeDON/DSO
meta-model. The concept of DSMLs [34] relies on MDE
and Model Driven Architecture (MDA) disciplines. Modeling
languages are used to describe a system with high level of
abstraction (e.g UML 2.0).

For DSO, and in relation to our objectives, we describe
distributed systems. UML is not enough to cover our needs,
as it has only one layer that contains all of the concepts of
the design, and these concepts are too general and open. Thus,
we selected ArchiMate modeling language that meets UML in
some concepts, but it can describe the systems from IT domain
and share multiple viewpoints during the design as it relies on
TOGAF3 framework [3].

ArchiMate relies on Enterprise Architecture (EA) frame-
work ([3], [27]). It decomposes the system design into 3 layers:
business, application, and technology. In our approach, we
approach these layers in the following way (Fig. 4):

• Business layer: specifies the end-user functions and ac-
tors. It describes the service activities as perceived by the
end-user, and the flow between them;

• Application layer: specifies the functions and software
components of the service. It describes the capability of
the system under study, and the way of performing its
tasks;

• Technology layer: specifies the functions, topology, hard-
ware elements, and signaling protocols of the underlying
platform. It describes the execution platform that offers
functions to be used by the functions of the application
layer.

Additionally, ArchiMate adds many design concepts (business
events, application components, technology infrastructural el-
ements, etc) and relationships (e.g. triggering) that are very
useful to describe a service from the IT domain.

In MDA [34], a meta-model provides the modeling language
that is used to model and describe a system. It contains the

3TOGAF: is a synonym for ”The Open Group Architecture Framework”

Activity 1 Activity 2 Activity n

Application
Function1

Application
Function i

Application
Function j

Application
Function j+1

Application
Component 1

Application
component 2

Node 1 Node 2

Technology
Function 1

Technology
Function 2

Technology
Function k

Node 3

Technology
Function n

Technology
Function n+1

Technology
Function k+1

Legend
Assignment
relationship

Triggering
relationship

Association
relationship

Business Layer

Application Layer

Technology Layer

n

Fig. 4. A simplified example of multi-layered architecture of ArchiMate

abstract syntax of the language, where its constraints describe
the concrete syntax that can be implemented in the design tool
such as Archi tool4 relying on Eclipse-EMF (tool generation
concept thanks to model transformations).

A. Underwater localization in deep sea observatories

In this subsection, we present the data fusion technique that
we consider in our application for the DSOs. In our context,
the localization activity aims to identify the location of an
object after being detected by a sensor or set of sensors in the
underwater environment. The target object is not communi-
cating through our network (e.g. IMS) thus can’t be localized
through the Home Subscriber Server unit (HSS) [8], and it
is in the water so electromagnetic waves are not propagating
for long distances. Thus, we are not using the localization
services that are offered by IMS nor other systems like GPS.
Acoustic hydrophones (underwater) are proper sensors for
our application, where we rely on IMS platform to enable
the communications (over IP) between the sensors and the
other components that are included in the localization tasks.
Additionally, IMS makes it possible to access the video/audio
streams offered by the underwater sensors from terminals that
are far away using the IP cloud.

We focus on the distributed architecture of the data fusion
in order to understand:

• the importance of relying on IMS as an underlying
platform for designs that use the multisensors data fusion
techniques;

• usage of ArchiMate as a design language for modeling;
Reducing complexity and errors of the design to the mini-

mum are our objectives in the design activity. ArchiMate sepa-
rates between the aspects of the design (behavioral, structural)
from one side, and design viewpoints (business processes,
applications, topologies, etc) on the other side, this helps
in reducing complexity. For example, ArchiMate separates
between the function description of the localization process

4Archi tool link: http://archi.cetis.ac.uk/

(Fig. 7) from the topology and architectural description of
the information graph 5 (Fig. 8) of DSOs. IMS (technology
layer of ArchiMate extension [9]) is a proper core-network to
exchange the information (over IP) between the elements of
the DSO and according to the information graph of the selected
architecture. It can execute the multimedia functions that can
be used for DSOs as well, such as storing and replaying video
streams. In order to link between the DSO architecture and
IMS, we consider the elements of the information graph as
terminals (end-users) in the IMS layer.

There are different architectures that can be applied to
achieve the data fusion objective [13]: centralized, hierarchi-
cal without feedback, hierarchical with feedback, and fully
distributed Information graphs (Fig. 5).

The process of the data fusion [35] combines information
that are obtained from sets of different sources to provide
robust and complete description of an environment or process
of interest. In our application, for the DSOs, these sources are
sensors [5] that provide large amount of data to be fused later
relying on the multisensors data fusion techniques [13].

Fusion architectures are described by information graphs.
The centralized architecture represents the simplest informa-
tion graph (Fig. 5), where every sensor manages independent
set of measurements that are processed at a local fusion node
to update the position of the object under tracking. The other
architectures rely on the centralized one to develop the method
of the tracking and its accuracy. In each architecture, the
complexity of the information graph (Fig. 5) is different from
the others where the sensors stay isolated from each other, and
communicate only with the fusion unit. The difference is that
more fusion nodes are operating and can communicate with
each other in different topologies.

Many localization algorithms can be applied in the under-
water environment such as: triangulation [36], bounding-box
[36], set-membership [37], and Dive’N’Rise(DNR) [38], etc.
All of these algorithms are compared to the triangulation one,
and the difference is in the positioning accuracy. The accuracy
of the trilateration or multilateration is acceptable. Thus, we
select to represent the trilateration algorithm in our design
model (Fig. 7) according to its simplicity. The localization
algorithm is run in the server node (e.g. fusion node) that
applies the algorithm to compute and update the location of
the target.

B. Contribution: Meta-Model Proposal for MeDON/DSO

In this subsection, we present our contribution of a new
meta-model that extends ArchiMate modeling language to
represent the domain specifications of MeDON/DSO. This
meta-model enables us to generate design tool that is coherent
with Archi but contains additional concepts that are specific to
the MeDON/DSO domain ([13] for data fusion concepts). The
generated design tool helps the designer to model the system
and avoid syntax errors that may be made during the design
activity.

5Information graphs are convenient means to understand how fusion
process flows impact a network system [13]

S1 S2 S3

F1

Centralized Fusion

S1 S2 S3

F1

Distributed Fusion

S4

F2

F3
S5

Sx Sensor element Fy Fusion node

Legend

Fig. 5. Information graphs for centralized and fully distributed fusion
architectures [13]

BusinessActor

SmartSensorDataFusion

BusinessFunction

Data Acquisition AlgorithmSelection

ObjectLocalization

DataTransmission

assigned to

ApplicationComponentApplicationFunction

FusionSystem SmartSensorSystem

Inform Server

ManageResources ComputeCoordinates

Coordinates Storage Handling TransmitLocData

Can't communicate with

assigned to

assigned to

assigned to

assigned to

assigned to

assigned to

Video Streaming

Voice Streaming

Business Layer

Application Layer

Legend

Structural concepts

Behavioral concepts

Fig. 6. Extending business and application layers of ArchiMate: proposal of
DSO Meta-Model

Our proposed (contribution) meta-model is composed of two
views: one for the business layer, and another for the appli-
cation layer. Regarding to the technology layer, we rely on
a meta-model for IMS underlying platform that we proposed
before in [9].

We present the proposed Meta-Model as the following:

• Business Layer (Fig. 6): We have extended the business
actor of ArchiMate by two new concepts: the smart
sensor, and the data fusion.
Smart sensor is responsible of the Data Acquisition activ-
ity, while the data fusion is responsible of the activities:
AlgorithmSelection (performs a procedure to select the
proper algorithm), DataTransmission (to transmit the data
between the different fusion components), ObjectLocal-
ization (to make the necessary actions that localize an
object). These functions extend the business function
concept in ArchiMate;

• Application Layer (Fig. 6): We have extended the appli-
cation component by two elements: the fusion system,
and the smart sensor system.
The FusionSystem is responsible to perform the following
application functions: ManageResources (to manage the
resources needed for the algorithm execution), Coor-
dinatesStorageHandling (to store the coordinates corre-
lated with time), ComputeCoordinates (to compute the
coordinates according to a specific algorithm selected
previously by the Data Fusion actor), and TransmitLocal-
izationData (to exchange information between the fusion
servers/systems).
The SmartSensorSystem is responsible to perform the
following functions: InformServer (to inform the fusion
server about any detection of a specific object), Voic-
eStreaming (this function is useful for the case of hy-
drophones), and VideoStreaming (this function is useful
for the camera sensors).

VI. NETWORK SIMULATORS

Different approaches can be applied for the system experi-
mentation [39]:

• Analytic approach: Relies on modeling the system math-
ematically using applied analytic theories such as (e.g.
Queuing Theory);

• Simulation approach: Discrete event simulation (DES) is
a powerful research technique to investigate the protocol
designs, interaction, and the large scale performance
issues. Network simulators (NS-3 in our case) contain
compiler to check the syntax of the simulation scenario
and apply verification rules that conform to the net-
working concepts (e.g. IP network conflicts). This helps
the designer to detect errors in relation with networking
concepts and observe the interactions (behaviors) between
the different nodes of the design. Additionally, they
provide the service designer with measures that help to
detect the quality flaws.

Network simulators allow a service designer to experiment
the design models with lower cost and implementation time
than dealing directly with real network elements. They provide
a suitable way to execute the service design and evaluate it
according to networking domain. In our approach, we rely
on the network simulation activity to detect domain-specific
errors of the service design and to obtain measures that help
the designer to improve the performance and QoS. NS-3 is
configured through a C++ program that controls the simulation
flow. Additionally, using C++ to implement the simulation
program gives us the ability to fine-tune it, thanks to the
object oriented approach (class concept) that is applied in C++
language.

On the other side, implementing an NS-3 simulation sce-
nario for a complex model such as TS or MeDON/DSO case
studies is not a simple task. It consumes time to analyze
the mapping between the technical spaces in the different
domains (high abstract modeling, and network simulation
modeling), then to implement the C++ code correctly without

making errors and relying on NS-3 libraries and specifications.
To give an example, the generated code (in our automatic
code generator) for a design (multiple layers) instance of
MeDON/DSO application requires 3203 lines of C++ code
that is ready to be run directly in NS-3 simulator.

This shows the importance of having a compiler to trans-
form the design high abstract model into a simulation scenario.
The transformation and syntax checks (e.g. reject the associa-
tions between two layers that are not consequent) rely on the
constraints and abstract syntax that are described by the meta-
models: ArchiMate [25], IMS [9], and our new contribution
for MeDON/DSO in (Section. V-B).

VII. CODE GENERATION USING XPAND-ECLIPSE

This section presents the model-to-text (M2T) transforma-
tion that we rely on to generate the simulation scenario directly
from the design model.

In section IV, we have presented the MDE discipline that
is helpful to manage the complexity problem [3]. Model
transformations are conceptual activities when one needs to
exchange intrinsic information (concepts included in the de-
sign scenario) between the different tools (e.g. from design
tool to network simulator), where implementation languages
are totally different.

XPAND [33]: ”is a statically-typed template language
featuring polymorphic template invocation, aspect oriented
programming, functional extensions, a flexible type system
abstraction, model transformation and validation. It includes
an editor which provides features like syntax coloring, error
highlighting, navigation, refactoring and code completion”.
We rely on Eclipse IDE to use XPAND, this also enables us
to benefit from the environment of Eclipse that is rich of tools
for modeling thanks to the EMF.

Most of the network simulators are configured through text
file (configuration scripts). For example, OPNET simulator can
be configured by an XML file ([10], [9]). This is the first
motivation for using XPAND. The second motivation is that
XPAND, thanks to EMF, can rely on the abstract syntax that
is provided by the meta-model of the modeling language to
perform syntax checks before and during the code generation
process. Another motivation is that it permits us to add static
code side to side with the dynamic one which makes it possible
to generate codes of a new syntax that is not described in
the meta-model of the modeling language, and the proper
formalism that suits the target tool grammar of configuration.

We have recently described the method to map between
design models and the NS-3 simulator in [4]. The XPAND
template (Fig.3) contains the rules that are structured sequen-
tially to perform the mapping algorithm correctly.

The intrinsic information that are exchanged between the
design model and simulator are the information of the de-
sign scenario, but they take different formalisms and are
implemented in different languages. Thus, it is important that
the template of the code generation should cover all of the
elements of the design models, and adds new elements (when

Fig. 7. Part of the model of an underwater localization, done by design tool
that extends Archi. Layers are: Business and Application

necessary) to adapt the model to the target tool (e.g. using
concept of helpers in NS-3).

VIII. CASE-STUDY: MEDON/DSO APPLICATION

In this section, we present an example of MeDON/DSO
design model to illustrate our approach according to two
points: (1) the ability of instantiation of the proposed new
meta-model (Section. V-B) and generate code to simulation
to evaluate it; (2) To show the ability of change applications
from different domains: video conference TS before in [4],
and localization application for MeDON/DSO in this paper,
while fixing the IMS meta-model in the technology layer [9]
and the code generation rules in both cases.

A. DSO Localization Model

In the context of DSOs, the objective of the object-
localization system is to identify and localize an object that
enters in the range of a sensor or a set of sensors. Sensors are
connected to fusion servers that apply a distributed algorithm
to compute the position of that object thanks to the data
collected from these sensors.

In our approach, we concentrate on the interactions between
the different nodes that are included in the DSO model.
Internal actions can be implemented by extending the modules
of the simulator. Our interest is to show our ability of modeling
the DSO scenario relying on IMS core-network and generate
simulation codes to be run directly in NS-3. This helps to
evaluate the design according to the networking concepts and
the constraints that are defined in the meta-model (DSML).

The design model is composed of 3 views according to the
layers of ArchiMate: Business, Application, and Technology
(Fig. 4). In Fig. 7, we present a part of the large model that
is designed by a design tool that extends Archi, and relies on
the proposed meta-model (section V-B). The model contains
behavioral elements, e.g. the InformA Application Function.
This function aims to inform the fusion server A that an object
is detected by the sensor 1A. A large series of functions are

Fig. 8. Part of the model of an underwater localization, done by design tool
in [3]. Represented in the technology layer-Structural view

associated in the technology layer (e.g. sendto) to execute
this application function. The sendto function forwards/sends
a message of type SIP or Diameter from one node to another.

Regarding to the technology layer, we have relied on the
IMS meta-model and ArchiMate to extend the Archi tool in
([9], [3]). We designed the model of DSO according to the
IMS specifications [8] and following the sequences in the
application layer (Fig. 8), thanks to the association relationship
that connects the application functions to the technology ones.

For all layers, the design tool prevents syntax errors thanks
to the meta-models, their constraints, and the grammar of the
DSML. It generates XMI file that represents the graphical
design model. This XMI file is fed to the code generator to
produce directly the simulation scenario for NS-3. The code
is run through the command in Linux ”sudo ./waf –run file-
name”, no errors or warnings appeared: none for the compila-
tion neither during the runtime or debugging through the ddd
debugger. An XML animation file is automatically generated
by NS-3 (animation configuration is generated automatically
by the code generator) to be run using the NetAnim tool.
The animator can visualize the topology of the design and
show the messages/packets (interactions) exchanged between
the different nodes according to the simulation scenario (Fig.
10)6.

B. Observations and Analysis after Simulation using NS-3

The design model starts by the function start in the business
layer which is of high abstract level (represents an activity).
It is represented as a function in the class (SmartSensor1A).
The generated code contains the instantiation of this object
and calling this function automatically (Fig. 9). The function
itself calls the next one, etc until calling the last function in the
technology layer. This results in a better fine-tuning level of
the simulation auto-generated scenarios thanks to ArchiMate
architecture. This shows also that our code generation does

6The names of the nodes were added to the figure manually according to
the node ids in the auto-generated simulation scenario for better clarity

Fig. 9. NS-3 code (auto-generated by XPAND): a partial snapshot

Fig. 10. Animation of the simulation scenario, snapshot from NetAnim tool

not change the architectural specifications of the original
design model, thus it is transparent regarding to the intrinsic
information of the design.

Using the Wireshark 7 analysis tool, we have analyzed
the packet information that are generated by NS-3 in the
(pcap) format. The chart in (Fig. 11) shows the number of
the SIP messages that are passed through every node interface
to execute the application function InformA (Fig. 7). The
results for the signaling packets are relative to the sendto
functions of the technology layer. This means that the code
generator didn’t miss any information from the design, because
exchanging data between nodes relies on the configuration of
both structural and behavioral elements of the network. This
confirms the transparency of the code generator in keeping the
intrinsic information of the design and representing them in
the simulation scenario.

IX. CONCLUSION AND FUTURE WORK

In this paper, we have presented our approach of a domain-
specific service creation framework that assists the service
designers to create and evaluate the design models, relying

7Wireshark network-traffic analyzer: http://www.wireshark.org/

on classical tools (widely-used network simulators) and code
generations. Extensibility is confirmed by extending Archi-
Mate with different DSMLs (IMS, MeDON/DSO), where we
could generate design tools from these extensions thanks
to the Eclipse Modeling Framework. Our approach includes
a method and a work-flow from the requirement analysis
activity to the measurement analysis one in the context of
service creation environments. Relying on MDE and model
transformations enables us to automate considerable parts of
our work-flow (default behavior in the context of software
frameworks), especially the model compiler that is able to
obtain NS-3 (and OPNET previously [10]) simulation sce-
narios from high abstract models. These transformations are
transparent in conveying information, and they are not subject
to change by the designer, only domain experts are allowed to
improve/develop them. Our framework defines the roles of the
different actors that deal with it. The user of the framework
is the service designer, and he is not supposed to change
the design language or the code generation templates, only
domain experts are allowed to develop these elements. It relies
on design tools to assist the designer, these design tools are
themselves generated from the extended design languages.

Additionally, in this paper, we have proposed a new meta-
model in the context of MeDON/DSOs. This meta-model
provides the syntax of the DSML that is specific for the
MeDON/DSO project, and conforms to the ArchiMate/EA
standard. The modeling language that we use in our approach
(ArchiMate) is extensible, and is suitable for the usage in
the IT domain. ArchiMate, thanks to EA, shares the dif-
ferent viewpoints in a project through its multiple layered
architecture. Our recent contribution, IMS meta-model, is
reused in this paper to run the localization application model
through simulation, replacing a previous case-study of video
conference TS. Relying on our code generator that works with
the ArchiMate meta-model and is implemented in XPAND-
Eclipse, we have compiled the DSO model to obtain a simu-
lation scenario that is run directly in NS-3 network simulator.
We have shown, in this paper and [10], the transparency of
our code generator in conducting the intrinsic information of
the design model to the simulation scenario.

The design tool assists the designer to avoid syntax errors
thanks to the meta-model and the concrete syntax constraints.
This is expressed to detect the errors that are related to network
domain. Simulation makes it possible to detect domain-specific
(network specific) errors and generate measures to be analyzed
in order to improve the qualities (performance, and QoS). In
the context of MeDON/DSO, simulation helps the designer to
evaluate the design before DSO equipments are deployed.

On the first hand, our code generator provides a fine-grained
simulation scenario, as the structural elements of our interest
are represented by classes which contain functions. Addition-
ally, it separates the control (signaling) and user planes from
each other, thanks to the multiple layers of ArchiMate/EA.
On the other hand, the implementation time of the code
generation template consumes considerable time, and needs
domain experience in both domains: modeling and network

0

0.5

1

1.5

2

2.5

SIP-Instant method

ACK-AutoTest to check sequence

Fig. 11. SIP signaling messages (P2P) per node-interface, that are exchanged
to execute InformA application function. Results are collected by Wireshark
and the figure is drawn using Excel

simulation. Running our code generation on both cases (video
conferencing and localization application) generated scenarios
that are applied directly to the NS-3 simulator without any
problem in the compilation neither in the runtime.

In the future, we intend to obtain real measures from the
DSO network that relies on our design and compare them
to the measures that we have obtained during the simulation.
Additionally, we intend to generate analysis scripts for tools
(e.g. MATLAB) automatically using model transformations,
and relying on the non-functional requirements to obtain
feedbacks that help to decide wither to modify the design or
not.

ACKNOWLEDGMENT

The authors would like to thank Dr. Vanea Chiprianov for
his help by providing the design tool that enables us to use the
DSML (extends ArchiMate and includes IMS specifications)
[3].

REFERENCES

[1] D. Adamopoulos, G. Pavlou, and C. Papandreou, “Advanced service cre-
ation using distributed object technology,” Communications Magazine,
IEEE, vol. 40, no. 3, pp. 146 –154, march 2002.

[2] L. Chung, B. A. Nixon, E. Yu, and J. Mylopoulos, Non-Functional Re-
quirements in Software Engineering, ser. II, V. R. Basili, Ed. KLUWER
ACADEMIC Publishers, 1999, vol. I, no. 65 1999.

[3] V. Chiprianov, “Collaborative construction of telecommunications ser-
vices. An enterprise architecture and model driven engineering method,”
Ph.D. dissertation, Telecom Bretagne, France, 2012.

[4] I. Alloush, Y. Kermarrec, and S. Rouvrais, “A transversal alignment
between measurements and enterprise architecture for early verification
of telecom service design,” in Advances in Communication Networking,
ser. Lecture Notes in Computer Science, T. Bauschert, Ed., vol. 8115,
IFIP International Federation for Information Processing. Springer
Berlin Heidelberg, August 2013, pp. 245–256.

[5] O. Zein, J. Champeau, D. Kerjean, and Y. Auffret, “Smart sensor
metamodel for deep sea observatory,” in OCEANS 2009 - EUROPE,
May 2009, pp. 1–6.

[6] A. Tengberg, C. Waldmann, P. Hall, D. Atamanchuk, and M. Kononets,
“Multi-parameter observations from coastal waters to the deep sea:
Focus on quality control and sensor stability,” in OCEANS - Bergen,
2013 MTS/IEEE, June 2013, pp. 1–5.

[7] J. Aguzzi, C. Costa, J. Company, Y. Fujiwhara, P. Favali, V. Tunnicliffe,
M. Matabos, M. Canals, and P. Menesatti, “The new synthesis of
cabled observatory science: Technology meets deep-sea ecology,” in
Underwater Technology Symposium (UT), 2013 IEEE International,
March 2013, pp. 1–8.

[8] G. Camarillo and M. A. Garcı́a-Martı́n, ”The 3G IP Multimedia Sub-
system (IMS) Merging the Internet and the Cellular Worlds”, third
edition ed. A John Wiley and Sons, Ltd, Publication, 2008.

[9] V. Chiprianov, I. Alloush, Y. Kermarrec, and S. Rouvrais, “Telecommu-
nications service creation: Towards extensions for enterprise architecture
modeling languages,” in 6th Intl. Conf. on Software and Data Technolo-
gies (ICSOFT), vol. 1, Seville, Spain, 2011, pp. 23–29.

[10] I. Alloush, V. Chiprianov, Y. Kermarrec, and S. Rouvrais, “Linking
telecom service high-level abstract models to simulators based on model
transformations: The IMS case study,” in Information and Communi-
cation Technologies (EUNICE 2012), ser. Lecture Notes in Computer
Science, R. Szabó and A. Vidócs, Eds., vol. 7479. Springer Berlin
Heidelberg, August 2012, pp. 100–111.

[11] I. Alloush, Y. Kermarrec, and S. Rouvrais, “A generalized model trans-
formation approach to link design models to network simulators: Ns-3
case study,” in International Conference on Simulation and Modeling
Methodologies, Technologies and Applications (SIMULTECH 2013).
SciTePress Digital Library, July 2013, pp. 337–344.

[12] ——, “An Automated Tool Selection Method based on Model Transfor-
mation: OPNET and NS-3 Case Study,” in International Symposium on
Performance Evaluation of Computer and Telecommunication Systems,
M. S. Obaidat, Ed., vol. 45, no. 9. The Society for Modeling
and Simulation International (SCS), IEEE CommunicationsSociety, July
2013, pp. 10–17.

[13] M. E. Liggins, D. L. Hall, and J. Llinas, Multisensor Data Fusion,
Theory and Practice. Taylor & Francis Group, LLC, 2009.

[14] A. Kleppe, “Mcc: A model transformation environment,” in Model
Driven Architecture – Foundations and Applications, ser. Lecture Notes
in Computer Science, A. Rensink and J. Warmer, Eds. Springer Berlin
Heidelberg, 2006, vol. 4066, pp. 173–187.

[15] N. Medvidovic and R. Taylor, “A classification and comparison frame-
work for software architecture description languages,” vol. 26, no. 1,
Jan 2000, pp. 70–93.

[16] I. Sommerville, Software Engineering, 9th ed., M. Horton, Ed. PEAR-
SON, 2011.

[17] Y. Shin, C. Yu, S. Chung, and S. Kim, “End-user driven service creation
for converged service of telecom and internet,” in AICT ’08. Fourth Ad-
vanced International Conference on Telecommunications, 2008., 2008,
pp. 71–76.

[18] J. Yelmo, J. del Alamo, R. Trapero, P. Falcarm, J. Yi, B. Cairo,
and C. Baladron’, “A user-centric service creation approach for next
generation networks,” in Innovations in NGN: Future Network and
Services, 2008. K-INGN 2008. First ITU-T Kaleidoscope Academic
Conference, 2008, pp. 211–218.

[19] R. Glitho, F. Khendek, and A. De Marco, “Creating value added services
in internet telephony: an overview and a case study on a high-level
service creation environment,” vol. 33, no. 4, Nov 2003, pp. 446–457.

[20] L. Touraille, M. K. Traoré, and D. R. C. Hill, “A model-driven software
environment for modeling, simulation and analysis of complex systems,”
in Proceedings of the 2011 Symposium on Theory of Modeling &
Simulation: DEVS Integrative M&S Symposium, ser. TMS-DEVS ’11.
San Diego, CA, USA: Society for Computer Simulation International,
2011, pp. 229–237.

[21] A. Achilleos, K. Yang, and N. Georgalas, “Context modelling and a
context-aware framework for pervasive service creation: A model-driven
approach,” Pervasive and Mobile Computing, vol. 6, no. 2, pp. 281 –
296, 2010.

[22] ——, “A model driven approach to generate service creation en-
vironments,” in Global Telecommunications Conference, 2008. IEEE
GLOBECOM 2008. IEEE, 30 2008-dec. 4 2008, pp. 1 –6.

[23] J.-L. Bakker and R. Jain, “Next generation service creation using
xml scripting languages,” in Communications, 2002. ICC 2002. IEEE
International Conference on, vol. 4, 2002, pp. 2001–2007 vol.4.

[24] A. Hartman, M. Keren, S. Kremer-Davidson, and D. Pikus,
“Model-based design and generation of telecom services,”
2007. [Online]. Available: https://www.research.ibm.com/haifa/projects/
services/sce/papers.shtml

[25] The Open Group, ArchiMate 1.0 Specification, The Open Group Std.,
2009.

[26] O. Noran, “An analysis of the zachman framework for enterprise
architecture from the GERAM perspective,” Annual Reviews in Control,
vol. 27, no. 2, pp. 163 – 183, 2003.

[27] D. Quartel, W. Engelsmanb, H. Jonkersb, and M. van Sinderenc, “A goal-
oriented requirements modelling language for enterprise architecture,” in
Enterprise Distributed Object Computing Conference, 2009. EDOC ’09.
IEEE. University of Twente, 2009, pp. 3 – 13.

[28] J. Bezivin, “In search of a basic principle for model driven engineering,”
Novatica Journal, vol. 2, pp. 21–24, 2004.

[29] B. Henderson-Sellers, Book of Object-Oriented Knowledge, Object-
Oriented Analysis, Design and Implementation: A new approach to soft-
ware engineering, A. Binnie, Ed. PRENTICE-HALL, INC., Englewood
Cliffs, N.J. 07632, 1992, iSBN: 0-13-059445-8.

[30] V. Chiprianov, Y. Kermarrec, and S. Rouvrais, “On the Extensibility
of Plug-ins,” in ICSEA 2011, 6th Intl. Conf. on Software Engineering
Advances, Bercelona, Spain, October 23-28 2011.

[31] ——, “Meta-tools for Software Language Engineering: A Flexible
Collaborative Modeling Language for Efficient Telecommunications
Service Design,” in FlexiTools2010: Workshop on Flexible Modeling
Tools (in conjonction with 32nd ACM/IEEE ICSE Intl. Conf. on Software
Engineering). Cape Town, South Africa: ACM/IEEE, May 2010.

[32] Atlas transformation language. The Eclipse Foundation. [Online].
Available: http://www.eclipse.org/atl/

[33] Eclipse modeling. Eclipse. [Online]. Available: http://www.eclipse.org/
modeling/

[34] I. Kurtev, J. Bézivin, F. Jouault, and P. Valduriez, “Model-based DSL
frameworks,” in Companion to the 21st ACM SIGPLAN symposium on
Object-oriented programming systems, languages, and applications, ser.
OOPSLA ’06. New York, NY, USA: ACM, 2006, pp. 602–616.

[35] H. Durrant-Whyte, Multi Sensor Data Fusion, 1st ed., Australian Centre
for Field Robotics, Australia, January 2001.

[36] M. Erol, F. Vieira, and M. Gerla, “Auv-aided localization for underwater
sensor networks,” in Wireless Algorithms, Systems and Applications,
2007. WASA 2007. International Conference on, Aug 2007, pp. 44–54.

[37] A. Caiti, A. Garulli, F. Livide, and D. Prattichizzo, “Localization of
autonomous underwater vehicles by floating acoustic buoys: a set-
membership approach,” Oceanic Engineering, IEEE Journal of, vol. 30,
no. 1, pp. 140–152, Jan 2005.

[38] M. Erol, L. F. M. Vieira, and M. Gerla, “Localization with dive’n’rise
(dnr) beacons for underwater acoustic sensor networks,” in Proceedings
of the Second Workshop on Underwater Networks, ser. WuWNet ’07.
New York, NY, USA: ACM, 2007, pp. 97–100.

[39] T. Issariyakul and E. Hossain, Introduction to Network Simulator NS2.
Springer verlag, 2009.

