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GLOBALLY ADAPTIVE CONTROL VARIATE FOR ROBUST
NUMERICAL INTEGRATION

ANTHONY PAJOT , LOÏC BARTHE , AND MATHIAS PAULIN∗

Abstract. Many methods in computer graphics require the integration of functions on low-
to-middle-dimensional spaces. However, no available method can handle all the possible integrands
accurately and rapidly. This paper presents a robust numerical integration method, able to handle
arbitrary non-singular scalar or vector-valued functions defined on low-to-middle-dimensional spaces.
Our method combines control variate, globally adaptive subdivision and Monte-Carlo estimation to
achieve fast and accurate computations of any non-singular integral. The runtime is linear with
respect to standard deviation while standard Monte-Carlo methods are quadratic. We additionally
show through numerical tests that our method is extremely stable from a computation time and
memory footprint point-of-view, assessing its robustness. We demonstrate our method on a partic-
ipating media voxelization application, which requires the computation of several millions integrals
for complex media.
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1. Introduction. Integration is a fundamental and indispensable mathematical
tool widely used in different domains such as physics, applied mathematics and in our
case, computer graphics. It allows us to compute global function information over
a large continuous domain (sum of values, averages, errors, etc), from local function
informations. As soon as functions (here denoted as integrand) cannot be integrated
analytically, a numerical integration method has to be used. Unfortunately, no cur-
rent single method is able to compute accurately, efficiently and robustly integrals of
arbitrary functions. Thus, when integrating numerically, a specific method dedicated
to a set of integrals has to be selected in order to get a maximal efficiency. This
requires a deep knowledge of the available methods and, in some cases, it is not even
possible to know in advance which method is the most adapted for a given integrand,
e.g. when no analytical properties of the integrand is available. In computer graphics,
most of the integrands are to be integrated on subsets of RD (D < 30, i.e. from low
to middle dimensionality), with values in R

N , N ≥ 1. When N > 1, we refer to
vector-valued integrands, such as the integration of colors with several channels.

Our technique addresses such integrands, for which no single integration method pro-
vides efficient and accurate computation (Section 2). We do not handle singular
integrals, as analytical methods have to be specifically designed for each case, but
we naturally handle quasi-singular integrals. We present a novel integration method
whose key feature is to tightly coupling deterministic quadrature rules and Monte-
Carlo estimation (Section 3). The accuracy, efficiency and robustness of our method
is assessed by several numerical tests presented in Section 4. We illustrate its effec-
tiveness on the voxelization of arbitrary participating media, according to a global
reconstruction error, with octrees (Section 5). This application is both of particular
interest in computer graphics and simulation, and especially challenging to handle
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since it requires the evaluation of millions of average and quadratic error terms per
voxelization, which are all expressed as integrals.

2. Previous Work. Methods targeting low-to-middle-dimensions numerical in-
tegration can be broadly split into two categories: deterministic and stochastic meth-
ods.

Deterministic methods: A large number of deterministic integration methods are based
on so-called quadrature or cubature rules. Interested readers can refer to [1]. These
methods build a precise analytically-integrable approximation of the integrand. Even
though fast to evaluate, the integration with a high precision of high-frequency func-
tions over large and high-dimensional domains can lead to extremely important mem-
ory consumptions. Additionally, an accurate estimation of the error is difficult to ob-
tain. Another kind of deterministic methods is based on Quasi-Monte-Carlo (QMC)
sampling, which we present below. For a given integrand, integration domain and
precision, deterministic methods have the common property to always give the same
result. An important consequence is that failure cases (inaccurate result but small
computed error) are difficult to detect automatically without already knowing the
reference value.

Stochastic methods: These methods are based on the Monte-Carlo estimator. Even
though very general, the standard Monte-Carlo estimator is computationaly inefficient
for complex integrands. It remains thus the core of several improved methods. The
numerical integration library CUBA, developed by physicists, includes two reference
state-of-the-art methods called SUAVE and DIVONNE [7]. These methods can be
used to integrate, with an estimation of the error, any low-to-middle dimensionality
integrands defined over the unit hyper-cube at a given absolute or relative precision,
without requiring any a-priori information. An integrand with an arbitrary integration
domain has thus to be mapped so that its integration domain is the unit hyper-cube.

The Monte-Carlo estimator evaluates an integral as the mean value of weighted inte-
grand evaluations done at randomly generated samples of the integration domain. The
efficiency of Monte-Carlo estimation can be measured by its variance, and the variance
highly depends on the sample distribution. Standard methods thus adapt the sample
distribution to lower this variance and improve Monte-Carlo estimation. Monte-Carlo
estimation makes use of random numbers obtained through pseudo-random number
generators (PRNG), generally distributed uniformly on the [0, 1) interval. The prac-
tical uniformity of these random numbers is of importance for robustness, and a high-
quality distribution can lead to major variance reduction. QMC methods [9] replace
PRNGs by deterministic sequences, whose uniformity is largely improved compared
to standard PRNGs. All methods in CUBA can use either PRNGs or QMC.

Two standard methods amongst others exist to improve the samples distribution: adap-
tive sampling and importance sampling. Adaptive sampling relies on the property of
additivity of integrals, by splitting the integration domain into regions and estimating
the integral in each region independently. By subdividing more where the integration
error is larger, samples are focused on the regions where the integrand is harder to
integrate. On the other hand, importance sampling reduces the variance of an esti-
mator by generating samples according to the integrand values: more samples where
the integrand is larger.

SUAVE combines these two methods. First, it uses a globally adaptive subdivision



to achieve adaptive sampling. A globally adaptive subdivision splits the integration
domain according to an integration error measure, in a progressive way, until the
total error or variance is below a desired threshold. At each step, the region of the
integration domain with the largest error is subdivided, and a new estimation is com-
puted in each sub-region. Second, for each estimation, the VEGAS algorithm [10],
which performs importance sampling, is used to compute the integral and the inte-
gration error. VEGAS builds iteratively a separable approximation of the integrand
using piecewise-constant functions, and uses it for sampling. Note that in our case of
vector-valued integrals, correlation amongst the components of the integral should be
present to get an adequate sampling for all components at once.

The SUAVE algorithm has few parameters, and default values are given in the paper
for the Mathematica implementation. However, our numerical tests presented in
Section 4 show that SUAVE has major flaws. First, its computation times and memory
consumptions are not stable: they vary a lot from an integrand to another, and even
for a same integrand when using a PRNG to generate the uniform numbers used.
Second, for some integrands, the method leads to extremely large computation times
(in the order of ten minutes against ten seconds for our method) and unacceptably
large memory consumption (ten gigabytes of memory against 47 megabytes for our
method). Third, this method is not well adapted for arbitrary vector-valued integrals,
especially when correlation between the components is low. Fourth, our tests on
complex participating media functions, presented in Section 4, show that this method
can have robustness problems with functions with large almost constant parts, which
in our case lead to largely underestimated integrals. All these flaws are a mark of
a global lack of robustness, being mathematical or computational, which is highly
impairing when handling arbitrary vector-valued integrals.

DIVONNE relies on numerical optimization methods to find peaks of the integrand
and sample them accordingly. This method has a lot of intrinsic parameters which
depend on the integrand, making it difficult to use. More precisely, finding a set of
parameters which work well for all integrands seems difficult, as, for instance, some
of these parameters are linked to the smoothness of the integrand. An illustration of
this problem is that the use of the default parameter values given in [7] produces good
results for some functions both in terms of accuracy and rapidity, but fails for others.
More specifically, these parameters are well adapted for the Genz test functions [5],
which are used in [7] to assess the accuracy and robustness of the method. However,
it gives values between 1.08 and 1.45 after large computation times when estimating
several times an integral of practical interest whose analytical value is known to be
1.7035, with a required precision of 0.001. As we want to compute arbitrary integrals
without requiring any prior information and therefore without having to set integrand-
dependant parameters, we decided to avoid the use of DIVONNE.

Other approaches do not rely on a priori information. [12] uses a control variate based
on a low-order approximation of the function reconstructed in a grid. The use of a
grid prevents the method from handling integrands with dimensionalities larger than
3 or 4. Moreover, the grid size must be computed a priori, which greatly reduces the
robustness of the method with respect to very different integrands. A large number
of Monte-Carlo integration methods rely on local exploration with samples mutations
for improving the estimation [2, 11]. However, these methods use dependent samples
to perform the estimation, which makes the precision difficult to compute.



3. Globally Adaptive Control Variate.

3.1. Overview. Our goal is to compute values of the form:

(3.1) I =

∫

Ω

g(p)dp

where g is an arbitrary function from Ω ⊂ R
D to R

N . Function g (and its integral)
has N components: g = (g1, . . . , gN ). In the following, Ω is assumed to be a compact
(bounded) axis-aligned subset of RD. We show how to handle unbounded and/or
non-axis-aligned subsets of RD in Section 3.7.

We introduce the globally adaptive control variate (GACV) algorithm, which com-
putes an estimate < I > of I. The precision of the estimation is controlled through
confidence intervals, of the form P (|< I > −I| < ǫ) = 95% for the N components
of the integral, where ǫ is determined from relative and absolute precision require-
ments given by the user (Section 3.3). As presented in Algorithm 1, we use a globally
adaptive subdivision strategy, similarly to the SUAVE algorithm. At each step of the
algorithm, the region with largest error is subdivided along the longest axis into two
sub-regions of equal size, and an estimation is computed for each sub-region. This is
efficiently done through the use of a heap.

The subdivision process generates an estimation tree, whose leaves form a partition
of Ω, and are used to obtain the final estimation. Section 3.2 presents the estimation
of the integral inside a region R of Ω, which is the main contribution of our method.
To obtain an accurate, robust, and efficient estimator, we combine:

• a new locally-refinable approximation of the integrand, detailed in Section 3.4,

• a control-variate-based estimation,

• a standard Monte-Carlo estimation,

• a dedicated stratified sampling effective even for large D values and non-cubic
regions (Section 3.5).

We additionally show that all the estimations of the leaves of the tree are unbiased and
independent, and that their distribution can be made close to a Gaussian distribu-
tion. The globally Gaussian nature of the leaf estimations, and more specifically the
variance information, allows us to derive the error used to choose the estimations to
split, the variance of the complete estimation (Section 3.6) and the actual convergence
criterion (Section 3.3).

Global estimation and variance: As all the leaf estimations can be assumed to
have a Gaussian distribution, the complete estimation and its variance are obtained by
summing each leaf estimate and variance, and has itself a Gaussian distribution with
mean value I. This means that our algorithm is theoretically unbiased. The Gaussian
distribution of the result is confirmed to a large extent by our tests (Section 4). Note
that the two global sums (global estimate and variance) are updated on the fly in
Algorithm 1. From an implementation point-of-view, using double precision for all
the components of these sums is mandatory to avoid numerical instabilities.



3.2. Estimations. Control-variate-based integration makes use of the following
identity:

(3.2) I(R) =

∫

R

(g(p)− ĝ(p))dp+

∫

R

ĝ(p)dp

where ĝ is an analytically integrable function approximating g, and is called control

variate. The more constant g(p)− ĝ(p) is, the lower the number of samples required
to estimate the first integral with Monte-Carlo. For our estimator, we use stratified
sampling to enhance the robustness of the estimator, and further reduce variance.
Using Np independent passes of stratified sampling with S strata (we show how we
choose Np and the S strata in Section 3.5) yields our control-variate-based estimator:

(3.3) < Ic > (R) =
1

Np

Np
∑

i=1

(

V (R)

S

S
∑

s=1

(g(Pi,s)− ĝ(Pi,s))

)

+

∫

R

ĝ(p)dp

where Pi,s is a point uniformly sampled in the s-th strata. Any sampling strategy can
be used as long as uniformity is ensured and the variance of the estimation can be
computed. However, variations of the sampling should be kept minimal as important
variations (for instance when using only a subset of the strata by randomly choosing a
few of them) are likely to produce large differences in several estimations of the same
integral, which decreases the computational stability of the method.

Equation (3.3) is an effective way for mixing Monte-Carlo estimation for high-frequencies
of g, and deterministic quadratures for its smooth part. As detailed in Section 3.4,
our control variate is based on a kd-tree, each leaf being a first-order approximation
of the function on the region covered by the leaf. In the literature, the control variate
is built before any integration is done [4]. The key difference of our method is that we
refine this kd-tree locally based on the global subdivision scheme during integration,
allowing us to tightly approximate the function where needed.

The major drawbacks of using control variate are:

• Negative integrals estimates can be obtained even for positive functions.

• It can perform worse than standard Monte-Carlo when g − ĝ contains more
variations than g (see Figure 3.1 for a 1D example).

To robustly address these two issues, we also compute, with the same samples and
thus a minimal overhead, a standard Monte-Carlo estimation:

(3.4) < Im(R) >=
1

Np

Np
∑

i=1

(

V (R)

S

S
∑

s=1

g(Pi,s)

)

.

Note that here, the uniformity of the stratified samples is crucial for < Ic > and
< Im > to be equally well sampled.



Fig. 3.1. Illustration of a function g for which control variate-based estimation requires a lot
more samples than standard Monte-Carlo: the function (green) is constant everywhere except near
p1. The control variate ĝ (red dashed) matches g for the left-most part, but leads to non-constant
g − ĝ for the right-most part, thus requiring more samples.

Once the Np passes have been performed, the final vector-valued estimation is ob-
tained by taking, independently for each component, the estimation with lowest vari-
ance between standard Monte-Carlo estimation and control-variate-based estimation.
For a given component, if g is known to be positive for this component and the
estimate of control variate is negative, the standard Monte-Carlo estimate is taken.

3.3. Convergence Criterion. The convergence of our method is based on the
estimated accuracy of the estimation. For each component of the function we would
like to find an estimate < I >n of the exact value In that satisfies:

(3.5) |< I >n −In| < ǫa

or

(3.6) |< I >n −In| < ǫr × In

where ǫa is an absolute tolerance parameter and ǫr a relative tolerance parameter.

As < I >n is assumed to have a Gaussian distribution with mean value In and
variance σ2

n for each component n ∈ {1, . . . , N}, we have:

(3.7) P (|< I >n −In| < 2
√

σ2
n) = 0.95.

Using the absolute tolerance parameter ǫa, the relative tolerance parameter ǫr and
the Gaussian nature of the distribution, we define our convergence criterion as:

(3.8) 2
√

σ2
n < max(ǫa, ǫr × |< I >n|)) .

We therefore consider that the computation of the integral of a component converged
when:

(3.9) σ2
n <

max(ǫa, ǫr × |< I >n|)2
4

where, similarly to [7], we use < I >n instead of In because In is not known. As soon
as Equation (3.9) is satisfied for all the components, the computation is stopped.

As we do not know the exact variance of the Gaussian distribution of the global
estimation, we use the global variance estimate to perform the convergence test. Since



this convergence criterion relies on confidence intervals, its exact interpretation is
subtle. It ensures that when a large number of estimations of the same integral is
done, 95% of the estimations actually respect the precision requirements.

3.4. Kd-tree as Control Variate. Our control variate is based on a kd-tree,
each leaf representing the integrand with a first-order approximation. When a leaf is
split into two parts, the split plane is placed at the middle of the longest axis. This
allows us to associate a node of the kd-tree to each estimation.

The first-order approximation of the integrand inside a node of the kd-tree covering
a region R ⊂ Ω, of extents e1, . . . , eD in each dimension, with centroid c, is based on
two quantities ∇+ and ∇− computed using finite differences:

∇+gn(c)d =
gn(c+ (0, . . . , ed/2, . . . , 0))− gn(c)

ed/2
(3.10)

∇−gn(c)d =
gn(c− (0, . . . , ed/2, . . . , 0))− gn(c)

ed/2
(3.11)

where ed/2 is the d−th component of the vector (0, . . . , ed/2, . . . , 0).

The value of the n−th component of the control variate at a point p belonging to R
is then given by the integrand approximation:

(3.12) ĝn(p) = gn(c) +∇gn(c, p) · |p− c|

with ∇gn(c, p)d = ∇+gn(c)d if pd ≥ cd, and ∇gn(c, p)d = ∇−gn(c)d otherwise, for the
D components of ∇gn(c, p). This interpolant function gives an adequate compromise
between smoothness, memory storage, and evaluation cost. In the remaining, we call
the N -components function defined from Equation (3.12) a gradient interpolator. The
integral of this function over R for a component n is:

(3.13)

∫

R

ĝn(p)dp = V ×
(

gn(c) +
D
∑

d=1

(∇+gn(c) +∇−gn(c))×
ed
8

)

,

where V is the volume of the region. The important point is that even though our
approximation defines N × 2D hyperplanes, we store only 2 × N ×D values for ∇+

and ∇−, and the integral is computed in a linear time with respect to D.

Any suitable higher-order approximation could replace the gradient interpolator.
However, the use of a separable approximation instead of a tensor-product-like in-
terpolation to avoid a huge memory overhead, and the tendency of higher-order ap-
proximations to oscillate are likely to lead to a poor approximation. Oscillations would
combine in an undesirable and uncontrollable manner when evaluating the separable
approximation, introducing higher frequency in the g(p)− ĝ(p) term than what actu-
ally exists in g(p), making g(p)− ĝ(p) more complicated to integrate than the original



Fig. 3.2. Illustration of leaves representation and refinement: suppose a leaf covers the interval
[p0, p1]. Its coarsest interpolator is in blue, and the two more precise interpolators, in red, are
obtained by cutting [p0, p1] in two halves. Here, I1 is the integral of the blue interpolator, and I2 is
the sum of the integrals of the red interpolators.

problem. In addition, higher-order approximations require more function evaluations
for their construction, and are more costly to evaluate. For these reasons, we found
the first-order approximation a good compromise between accuracy and speed, while
limiting the introduction of undesired high-frequencies with arbitrary integrands.

Local selective refinement: The control variate is never globally refined: refinement
is applied locally on the sub-tree containing the region of interest. As most methods,
our refinement is based on an approximation error [6]. As illustrated on the 1D case
in Figure 3.2, our error is estimated using three gradient interpolators inside each
leaf: the first covers the whole leaf and the two others cover the two halves of the
region. Let I1 be the integral of the coarsest gradient interpolator, and I2 be the sum
of the integrals of the two others. We refine the leaf if, for at least one component:

(3.14) |I1 − I2| > max(ǫcr ×
∣

∣

∣
Ĝ
∣

∣

∣
, ǫca)

where Ĝ is the integral of the global control variate computed before the refinement
starts. We use ǫcr = 10× ǫr and ǫca = 10× ǫa to get a sufficient approximation while
not being yet as precise as required for the whole estimation.

Control variate evaluation and integral: We use the two interpolators, each
covering half of the region covered by a node, as ĝ function. The control variate
integral in a leaf is the sum of the two interpolator integrals, and the complete control
variate integral is the sum of each leaf integral.

3.5. Control Variate and Estimations Interactions. Non-combinatorial
stratified sampling: The structure of our control variate directly provides the strata
of our stratified sampling scheme. Indeed, the middle split strategy of our kd-tree
ensures that for a node N , the best S = 2d strata covering N are the nodes at d levels
below N . This way, the number of strata is constant whatever the value of D and
strata are dominantly cube-shaped, providing an adequate samples distribution.

The value d thus determines the robustness of the estimator, while Np determines
its distribution. The combination of d and Np allows us to determine the accuracy
of the estimation, as 2d ×Np samples are used for each estimation. A good starting
point to set these variables is to use Np = 15 and d = 4, which allows avoiding
an important loss of samples when refining an estimation while ensuring both an



Fig. 3.3. Left: illustration of a selective refinement failure: the computed error is far from the
actual error. Right: after refinement when d = 1 (leading to the green leaves), the error is correctly
detected as large, and selective refinement for this node will lead to a more correct control variate.

estimator distribution close to a Gaussian and a correct stratification. We use these
values for all our examples (whatever the integrand dimension or characteristics) and
they can be used safely for any function to integrate.

Estimation-guided control variate refinement: The estimation of each stratum
is an independent Monte-Carlo estimation. Better estimations are obtained with at
least one control variate leaf per stratum. The control variate subtree with root N
must thus have a minimum depth of d. If not, we refine it systematically up to depth
d, and selectively afterward. This allows us to handle very difficult cases such as
illustrated in Figure 3.3. In fact, this largely improves the robustness of our control
variate to arbitrary-frequency content, and reduces the sensitivity of GACV to the
values of ǫcr and ǫar , as refinement occurs locally based on Monte-Carlo estimation.

3.6. Estimation Error. The globally adaptive subdivision selects the regions
to split according to an error measure. It is derived from our convergence criterion
(Equation (3.9)). At each step, we select the region in which the estimation is the
least converged. For scalar integrands, this is done by selecting the regions according
to the variance of their estimates.

For vector-valued integrands, scale differences between components have to be taken
into account. A criterion based on a scale-independent error is given by:

(3.15)
4× σ2

max(ǫa, ǫr × |< I >|)2 < 1.

As our global estimator is the sum of Gaussian estimators, one by estimation leaf, the
global error is the sum of the error of each leaf relatively to the global estimate, given
by:

(3.16)
4× σ2(R)

max(ǫa, ǫr × |< I >|)2 < 1.

We obtain the final scalar error from Equation (3.16) by taking the maximum over
all the components.

As Equation (3.16) uses < I > which changes at each step, we have to update the
errors and rebuild the heap accordingly. As this is too costly, we do not update the
errors at each step. Instead, they are updated and the heap is rebuilt very often at the
beginning, since the relative scales between components can change dramatically, and
less often after a few iterations because the relative scales estimations are stabilized.



We thus update the errors and rebuild the heap at the second step, the fourth step,
the eight-th step, and so forth.

3.7. Integrals over Arbitrary Finite-Dimensional Supports. As shown in
[8], Monte-Carlo estimation can be considered as computing an integral over the unit-
hypercube of uniform random numbers in [0, 1). Instead of computing the integral of
a function g over an arbitrary support Ω,

(3.17) I =

∫

Ω

g(x)dµ(x)

one can use a mapping X : [0, 1)D → Ω between numbers in [0, 1)D and elements of
Ω, which has the properties of a random variable defined over the uniform random
hypercube of dimension D. This random variable X defines a probability distribution
on Ω, and for the measure of integration µ, it has an associated probability density
function pX,µ. Then, Equation (3.17) can be reformulated as an integral over a
bounded axis-aligned support:

(3.18) I =

∫

[0,1)D

g(X(u))

pX,µ(X(u))
du

where u is a D-dimensional vector of numbers in [0, 1). This general reformulation
allows us to handle arbitrary supports whenever D is a finite constant and X satisfies
g(x) 6= 0⇒ pX,µ(x) > 0.

Combining GACV and importance sampling: Equation (3.18) also allows us to
use GACV and importance sampling at the same time. If a well adapted sampling

distribution X is known for g, integrating g(X(u))
pX,µ(X(u)) using GACV leads to a very

effective combination of importance sampling and control variate.

4. Numerical Evaluation. In order to experimentally verify that GACV reaches
our objectives (mathematical and computational robustness, efficiency, generality), we
have developed a set of numerical tests and compare GACV against two variants of
SUAVE: a deterministic using QMC (SUAVE-QMC) and a stochastic using a PRNG
(SUAVE-PRNG).

We use SUAVE with the default numeric parameters given for the Mathematica im-
plementation and we limit the maximum number of samples to 100 millions. With
SUAVE, we can use only the samples in the leaves of the estimation tree, or all the
samples to compute the global integral value. However, although slightly faster, this
last possibility has shown to largely decrease the accuracy of the method. We thus
use the leaves samples only.

4.1. Tests Functions. Genz test functions [5]: Genz defined six families of
functions to easily test the behavior of numerical integration methods with arbitrary-
dimensional scalar functions. These families of functions are parameterized by two
randomly chosen vectors. The first vector, denoted w, is non-affective, i.e. different
values of w should lead to similar performances. The second vector, denoted c, is
affective through its norm (called difficulty d): the larger the norm, the more difficult
to integrate the function. For a given difficulty d, the components of w and c are first
chosen randomly in [0, 1), and c is scaled so that its norm equals d. Note that for a
same difficulty, different c vectors should lead to similar performances.



The test functions are defined as:

Oscillatory : f1(x) = cos(c · x+ 2πw1)

Productpeak : f2(x) =
D
∏

i=1

1

(xi − wi)2 + c−2
i

Cornerpeak : f3(x) =
1

(1 + c · x)D+1

Gaussian : f4(x) = exp(−c2 · (x− w)2)

C0−continuous : f5(x) = exp(−c · |(x− w)|)

Discontinuous : f6(x) =







0 if x1 > w1

or x2 > w2

exp(c · x) otherwise

In a similar fashion to [7], we perform our tests following the process summarized
in Algorithm 2. We use the same difficulty values as in [7] (d(f1) = 6, d(f2) =
18, d(f3) = 2.2, d(f4) = 15.2, d(f5) = 16.1, d(f6) = 16.4), and we compute integrals
for ten values of w and c for each of the six Genz functions. The values used to
generate the functions in the tests analyzed below can be found in Appendix A.

For all functions, we set the convergence parameters of our confidence-interval-based
convergence criterion (Section 3.3) with ǫr = 10−3 as ǫa = 10−7 in Equation (3.9).

We test the computational stability of the stochastic methods – GACV and SUAVE-
PRNG – by performing 50 independent estimations of each integral. Compared to [7],
we perform the test for D = 6, a middle-dimensional integration problem. In order
to also evaluate the behavior of the integration methods on vector-valued integrands,
we propose the use of a seventh test function family defined as fc = (f1, . . . , f6).

Participating media integration: In addition to specifically designed test func-
tions, we use two 3-components functions defining the scattering coefficients of two
participating media represented by RGB triplets (D = 3 in this case). The rendering
of these participating media with ray-marching is shown in Figure 5.1.

The first participating medium, called Porsche, is the density of a Porsche car, trans-
formed by a colored transfer function. This medium is represented by a grid of
559× 1023× 347 nodes, with a total of 193 millions cells. It exhibits a lot of details
and sharp non-axis-aligned features.

The second participating medium, called cloud, has been produced using Ebert’s pro-
cedural system [3]. This model exhibits both smooth parts and very-high frequencies,
localized on the border of the cloud. No analytical properties are available for this
function.

Our test consists in integrating the scattering coefficients on the whole support of these
media with three different relative precisions: 0.1, 0.01, and 0.001. For each precision,
we evaluate the robustness and the accuracy of the three methods by computing the
integral, 1000 times with GACV and SUAVE-PRNG, and only once with SUAVE-
QMC as it is deterministic.

4.2. Analysis. In our figures, we use the following color code: blue for GACV,
red for SUAVE-PRNG and green for SUAVE-QMC.



For each family of scalar functions f1 to f6, we consider ten different functions defined
by ten different values of (w, c). For each of these functions, we perform 50 compu-
tations. In plots analyzing the integration of Genz scalar test functions (Figures 4.1
and 4.4), values are organized as 6 successive blocks of 500 values: one per function
family. Each block contains 10 contiguous sets of 50 values, one per function. Finally,
in Figures 4.1, 4.2, 4.4, and 4.5, plots illustrating the behavior of SUAVE-QMC are
presented by duplicating 50 times the result of single evaluations.

4.2.1. Accuracy and Mathematical Robustness. Scalar integrands: The
accuracy of our method is confirmed by the relative errors computed from reference
values, obtained with standard Monte-Carlo. Figure 4.1 presents the
log10(|< I > −I| / |I|) plot for the 3000 scalar integrals computed on the Genz func-
tions. All methods give results with a relative error of about 0.001, which matches
the precision requirements given in Section 4.1, i.e. the relative precision ǫr is below
10−3.

As presented in Section 3.2, GACV relies on two coupled estimators: a control-variate
estimator and standard Monte-Carlo. The Monte-Carlo estimator only avoids some
pitfalls of the control-variate estimator, and it is therefore used for very few esti-
mations in GACV. This has been verified for all our test functions: the standard
Monte-Carlo estimator is used for less than 1% of the estimations, which confirms the
gain provided by control-variate for variance reduction.

There is a noticeable accuracy exception both for GACV and SUAVE-PRNG, which
exhibit a very large variance for one or two of the ten integrands of the family of
functions f6 (Figure 4.1, right), as the returned value for the integral is zero for some
of the 50 computations, while others are close to the reference. In the case of GACV,
this is due to an insufficiently dense sampling at the first step. Indeed, all samples
may fall in the interval where f6 returns 0, depending on the w1 and w2 values. In this
case, although the w parameter should not be affective, it in fact affects the size of
the non-zero interval. It is important to notice that this failure case can be detected
by the large variance of several independent lower-precision estimates. When such a
failure is detected, it is possible to increase the number of samples for the first few
levels of estimations, or simply take the average of the non-zero estimates. SUAVE-
QMC is less sensitive to such failure cases because the samples cover the integration
domain very uniformly, and have thus more odds to hit the non-zero zones. However,
whenever all samples are zero, there is no way to tell that the algorithm has failed: as
the samples are deterministic, all estimations will give zero, while the true result is not
zero and can be arbitrarily large. In this sense, methods which include a stochastic
part are more helpful for arbitrary integrands because failure can be detected and
dealt with.

Vector-valued integrands: Figure 4.2 presents the log10(|< I > −I| / |I|) plot for
the 500 vector-valued integrals, plotting each component sequentially (first 500 points:
first component, etc.). Vector-valued integrands improve GACV robustness by avoid-
ing the failures appearing in Figure 4.1. In fact, since other components require
splitting, the sampling is denser for the sixth component as well.

Figure 4.3 presents histograms of the 1000 integral estimations of the scattering co-
efficients on the Porsche and cloud media, for the three relative precisions. Results
are displayed for the third component only as the same behavior is observed on each
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Fig. 4.1. Plot of the relative error for each scalar integrand. Ordinates are in logarithmic scale.

of them. The underestimation in the Porsche case is caused by regions where the in-
tegrand is zero almost everywhere, which often lead to zero estimates and variances.
However, we can see that GACV performs more accurate estimations, and better
handles this case than both variants of SUAVE.

Figure 4.3 also shows that the Gaussian distribution of the estimations of GACV
is in practice well verified. This validates the convergence criterion we defined in
Section 3.3 and the confidence intervals we return, as both are based solely on the
Gaussian nature of the distribution.

4.2.2. Efficiency and Computational Robustness. Scalar integrands: Fig-
ure 4.4 contains plots of the computation time, number of evaluations required and
the memory usage when available, for each scalar integrand of the Genz test.

As we can see in Table 4.1, SUAVE-QMC is consistently faster than SUAVE-PRNG.
It is also faster than GACV for five families of functions of the Genz test (families 2
to 6) with varying factors, but it is slower by an average factor of 100 for integrands
of the first family. However, on an absolute scale, for the cases where SUAVE-QMC
is faster, the absolute difference does not exceed a second, while the difference can
exceed ten minutes in favor of GACV for some integrands, with computation times for
GACV below 10 seconds, and in average below 0.5 seconds. Note that functions of the
families f2, f4 and f5 are separable on all the definition domain, and that functions of
the f6 family are separable on the non-zero domain. This separability strongly favors
SUAVE as VEGAS uses separable functions for sampling.
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Fig. 4.2. Plot of the relative error for the 6 components of each integrand. Ordinates are in
logarithmic scale.
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Fig. 4.3. Histograms of the values obtained for 1000 estimations with decreasing ǫr values (and
therefore increasing precision) on the Porsche medium (top row) and on the cloud medium (bottom
row), showing only the third component of the computed integral. The green line is the value obtained
by SUAVE-QMC, the magenta line is the exact integral value. Left: ǫr = 0.1, middle: ǫr = 0.01,
right: ǫr = 0.001.
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Table 4.1

Average time, in seconds, required by each method to compute an integral for each family.

f1 f2 f3 f4 f5 f6
GACV 0.45 0.16 0.06 0.76 0.64 0.34

SUAVE-PRNG 138.51 0.10 0.11 0.23 0.17 0.34
SUAVE-QMC 96.02 0.04 0.03 0.11 0.05 0.12

Figure 4.4 also shows that GACV is very stable in terms of both computation time
and number of evaluations for a same integrand, while SUAVE-PRNG exhibits large
variations. The memory consumption of GACV is also stable when evaluating several
times an integrand, except for the integrands where zero estimates are obtained. In
this case, memory consumption is lower since these zero estimates are handled using
a single node in the estimation tree.

The peak memory consumption for this test is 93MB for GACV, with a non-memory-
optimal implementation. Memory consumption data is not available for SUAVE,
but we did note that the memory used by our simple test program went as high
as ten gigabytes of memory with both SUAVE-QMC and SUAVE-PRNG for two of
the integrands of the first family (i.e. , the 100 estimations each required 10GB of
memory). This peak is confirmed by the number of integrand evaluations required by
SUAVE for each integral computation: the 100 millions samples limit has been reached
several times by SUAVE-PRNG and SUAVE-QMC. Increasing the maximum number
of samples would allow a complete estimation, at the cost of increased computation
time and memory consumption.

Vector-valued integrands: As in the scalar case, Figure 4.5 contains plots of the
computation time, the number of evaluations required and memory usage when avail-
able, for each of the 500 vector-valued integral evaluations.

A robust method for vector-valued integrand should not require more function eval-
uations than the sum of function evaluations required to compute each component
separately. In fact, each evaluation brings informations for all components at once,
leading to an automatic use of the correlation amongst components. Table 4.2 shows
that this is well verified in practice for GACV when integrating functions of the fc
family, while both SUAVE-PRNG and SUAVE-QMC do not benefit from any possible
correlation amongst components and require a lot more evaluations than computing
each component separately. This is a consequence of the use of importance sampling
on weakly-correlated vector-valued integrands. The plots of number of evaluations
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are in logarithmic scale. Middle: Number of evaluations required to compute each integral. Ordinates
are in logarithmic scale. Right: Memory consumption with GACV when all components are directly
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Table 4.2

Average ratio of number of evaluations required to compute fc and f1, . . . , f6 separately, for the
ten different values of w and c.

GACV 0.69 0.71 0.68 0.89 0.67 1.74 0.88 0.81 0.74 0.79
SUAVE-PRNG 1.73 2.76 1.85 1.96 1.85 0.98 2.59 1.96 2.09 1.45
SUAVE-QMC 1.70 3.46 1.72 1.78 2.07 0.99 2.75 1.89 2.42 0.76

and computation times assess that GACV is also computationally stable on vector-
valued functions, and much faster than both versions of SUAVE.

The right-most plot in Figure 4.5 shows that the memory used by GACV for each fc
integration is larger and globally proportional to the sum of the memory used to eval-
uate each component. Indeed, the adaptive control variate tree stores more elements
per gradient and value at centroid than each individual control variate tree when
components are computed separately. The ratio of memory consumption depends on
the correlation between components, the stronger the correlation, the lower the ratio.
Note that in theory, this plot does not have any per-evaluation meaning, as f1, . . . , f6
are evaluated independently of fc. However, as our memory use is stable, it allows us
to visualize the proportionality for a given family of functions.

The speed and computational time stability, is also confirmed by our tests on partic-
ipating media, shown in Figure 4.6. Moreover, Figure 4.6 shows that GACV exhibits
a linear behavior with respect to standard deviation both for computation time and
number of evaluation, while both SUAVE-QMC and SUAVE-PRNG are in between
linear and the standard quadratic behavior or pure Monte-Carlo methods with re-
spect to precision. For instance for the Porsche, 0.013 seconds are required by GACV
in average for a relative error ǫr = 0.1, 0.19 seconds for ǫr = 0.01, and 2.3 seconds
for ǫr = 0.001: the time/precision ratio (which is mathematically represented by the
product t× ǫr, as precision is inversely proportional to ǫr) is roughly constant. Mean-
while, for both SUAVE-PRNG and SUAVE-QMC, the time/precision ratio largely
increases when increasing the precision. This translates by the fact that even if both
SUAVE-PRNG and SUAVE-QMC are faster than GACV at low precision, they be-
come significantly slower when high precision is required, in a non-linear way. The
linear behavior of GACV allows one to tackle high-precision problems while still re-
quiring acceptable amounts of time.
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Fig. 4.6. Histograms of time, in seconds, required to compute the integral of the RGB scattering
coefficients for the whole Porsche (top row) and the cloud (bottom row) media, for decreasing relative
error (increasing precision). The green vertical line is the time needed by SUAVE-QMC. Left: ǫr =
0.1, middle: ǫr = 0.01, right: ǫr = 0.001.

5. Application to Voxelization of Participating Media. Volumetric ob-
jects such as smoke, fog, underwater and other participating media are often repre-
sented by a spatial distribution of absorption and scattering coefficients. We use RGB
triplets to encode these coefficients. The light transport equation handling arbitrary
media requires costly numerical integration and sampling along a ray [13]. To im-
prove efficiency, the original medium is usually approximated by functions allowing
analytical integration and sampling. Note that recently, sampling of arbitrary media
has received a lot of attention [14, 15]. An accurate and multi-resolution representa-
tion is the octree. It consists in representing the media by a tree, each intermediate
node having 8 equally-sized children distributed in a regular 2 × 2 × 2 grid. Each
node contains an approximation of the medium within the octree node, this approx-
imation being any function that can be efficiently integrated and sampled along a
ray. The precision of the approximation can be efficiently controlled using an error-
driven construction: the only parameter is then the maximum error ǫ allowed for the
approximation. We use a quadratic error:

(5.1) E =

∫

Ω

(h(p)− f(p))
2
dp

where Ω is the support of the participating medium, h is the approximation, and f
the original medium. This error is a 6-components error, as we have one RGB triplet
for absorption and one for scattering. The construction is done using an iterative
approach based on local errors: each time a node is added, its quadratic error is
computed. If it is below a limit ǫl, then it is a leaf. The complete construction
algorithm thus consists in first building an octree which ensures that each node has
an error below the maximum global error ǫ, then computing the global error by
summing each leaf local error. If this global error is below ǫ, the construction is
finished. Otherwise, the octree is refined up to a local error below ǫ/2, then, if
required, ǫ/4, etc., until the global error is below ǫ.



Table 5.1

Number of nodes and time needed to compute an octree representation for the Porsche and cloud
media. A constant approximation is used for the Porsche medium, and a linear approximation is
used for the cloud medium.

Porsche cloud
# nodes time # nodes times

GACV 8258463 20m24s 1003909 5m09
SUAVE-PRNG 8409633 38m49s 1017747 6m64s

Therefore, the number of integrals to compute when building an octree is proportional
to the number of nodes in the octree: there is one 6-components integral to compute
the local error, and a certain number of integrals, depending on the approximation
used in the leaves. We demonstrate constant and linear approximations, which both
require one 6-components integral per node. This leads in general to several millions
of integrals to be evaluated during the construction, for which we require a relative
precision of 10−2 and an absolute precision of 10−7 in our implementation. These
integrals cover a large range of integration domains, in which a large variety of inte-
grands are defined (from zero almost everywhere for the empty part of the Porsche
to highly irregular on the border of the cloud).

Table 5.1 shows the computation times needed to build an octree when GACV and
SUAVE-PRNG are used to evaluate the integrals. The structure sizes (and number
of integrals to compute) are very close, which shows that both methods give similar
results for the required global error. Therefore, the lower construction time of GACV
is only due to faster integral computations. The time difference for the cloud case
is lower because of the complete correlation between the components, allowing the
importance sampling used by SUAVE to give correct samples for all components at
once. However, even in this case, GACV remains faster. In addition to the numerical
validation of our method’s accuracy in Section 4, Figure 5.1 shows that the octrees
closely represent the original media, visually validating the accuracy of the evaluation
of the millions of integrals required to create the voxelized representation. Note that
in our implementation, the octree-construction process is sequential and not paral-
lelized. All the integral computations are thus done sequentially, and the maximum
memory consumption for the integrals computation is the memory cost of the costliest
integration. As shown in Section 4, this memory cost is low for GACV.

This last test confirms that our method is fast, accurate and stable, and is therefore
well adapted for arbitrary integrands on low-to-middle-dimensional domains.

6. Conclusion. In this paper, we present globally adaptive control variate, a
numerical integration method based on control variate, targeting arbitrary scalar or
vector-valued integrands on low-to-middle dimensional spaces. This method relies
both on deterministic quadrature rules and Monte-Carlo estimation. We propose
to combine a globally adaptive subdivision and a locally-refinable kd-tree with non-
combinatorial first-order approximations. We perform the estimations required by the
subdivision using a novel estimator based on the control variate and standard Monte-
Carlo estimation, which avoids the flaws of standard control variate. We then link the
control variate and Monte-Carlo estimation, refining the control variate where needed
by the estimation, and using the structure of the control variate to ensure high-quality
non-combinatorial stratified sampling.
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Fig. 5.1. All images are rendered with ray-marching. On the left, the reference medium, in the
middle and on the right, the medium is approximated by an octree with an error of ǫ = 0.001 for the
Porsche and an error of ǫ = 0.5 for the cloud. Integral evaluations for the octree construction are
done with our GACV method for middle images, and with the SUAVE-PRNG method for images
on the right.

Extensive numerical tests have shown that GACV is accurate, highly robust compu-
tationally, fast, linear with respect to precision in practice, and requires a low amount
of memory both in the scalar and vector-valued case. Further analysis has shown that
GACV is particularly well-suited for vector-valued integrals, as it naturally exploits
the correlation amongst components.

Adding the fact that GACV is simple to implement, this allows us to propose an
effective method for the integration of arbitrary low-to-middle-dimensional scalar or
vector-valued functions as, for instance, those used in the field of computer graphics.

Source code: The source code of our C++ implementation is provided in the authors
webpage. It can be used as a black-box integration method whose integration in a
program is illustrated in an example reproducing the results of one of the tests used
to analyze our method.
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Appendix A. (w, c) values used for the Genz functions.

Tables A.1 to A.6 give the values of the 6D vectors w and c used in our tests to define
each of the ten particular functions of each family of functions f1 to f6.
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0.44938, 0.52892, 0.281008 4.3687, 6.13182, 3.18233
5 0.914651, 0.850319, 0.322005, 4.52565, 2.45289, 12.0526,

0.876983, 0.0317087, 0.345794 0.461079, 11.4524, 4.56795
6 0.0532465, 0.00868384, 0.718525, 10.5072, 2.91006, 10.1423,

0.937794, 0.57114, 0.741881 1.09684, 6.18868, 7.92214
7 0.3951, 0.152574, 0.919073, 0.589352, 9.19601, 8.12021,

0.696949, 0.441537, 0.462203 8.68783, 4.38641, 8.85603
8 0.991166, 0.615778, 0.564681, 6.27547, 11.3925, 10.8478,

0.126063, 0.0953054, 0.415221 2.23915, 5.46595, 1.50427
9 0.267232, 0.795007, 0.715033, 7.42719, 2.66605, 8.28847,

0.630328, 0.550335, 0.341469 7.67531, 10.2884, 5.31683
10 0.545652, 0.746504, 0.515225, 1.54522, 12.7007, 0.570941,

0.143778, 0.969368, 0.0235161 2.4756, 9.53185, 7.93679

Fig. A.2. (w, c) values used to define the ten functions of the f2 family.

w c
1 0.996066, 0.376039, 0.887316, 0.96975, 0.57819, 1.08347,

0.863883, 0.384113, 0.829629 0.895827, 1.25669, 0.0979791
2 0.357602, 0.925072, 0.492768, 0.939382, 0.941855, 0.912073,

0.686974, 0.0458702, 0.626419 1.17399, 0.887412, 0.269871
3 0.849646, 0.663811, 0.234495, 0.408072, 0.61592, 1.90626,

0.371386, 0.130394, 0.890768 0.271705, 0.712046, 0.28186
4 0.0786581, 0.206641, 0.375283, 0.879728, 1.42545, 0.61059,

0.231487, 0.498165, 0.191031 0.0188361, 1.28295, 0.122625
5 0.551665, 0.839076, 0.257181, 1.28573, 0.489953, 0.200566,

0.585792, 0.438252, 0.635576 1.18735, 0.98551, 0.724968
6 0.201327, 0.0135834, 0.361581, 0.995853, 1.24566, 0.520221,

0.0388229, 0.499115, 0.148871 0.608746, 0.948288, 0.869568
7 0.495741, 0.158877, 0.766538, 1.2897, 1.18381, 1.05858,

0.429599, 0.900511, 0.382842 0.535369, 0.282418, 0.536906
8 0.0104496, 0.265362, 0.0355459, 1.12325, 1.15131, 1.18702,

0.616955, 0.100258, 0.336547 0.00633924, 0.909974, 0.125272
9 0.731722, 0.327559, 0.979216, 1.06804, 0.667819, 0.930277,

0.530678, 0.762478, 0.906587 0.171766, 1.44546, 0.518697
10 0.283046, 0.123783, 0.16976, 1.29954, 0.0369464, 0.412623,

0.457489, 0.578025, 0.521378 1.26157, 0.465032, 1.08248

Fig. A.3. (w, c) values used to define the ten functions of the f3 family.



w c
1 0.156412, 0.831411, 0.923117, 6.30934, 7.61251, 7.90224,

0.616536, 0.847492, 0.0726565 7.37846, 4.02335, 0.455522
2 0.0658485, 0.640748, 0.303903, 2.08299, 11.4683, 7.91985,

0.212092, 0.310862, 0.27356 2.7432, 3.5787, 3.48176
3 0.844623, 0.466398, 0.158683, 0.0280169, 7.48258, 5.97921,

0.899149, 0.504761, 0.398144 3.77368, 4.3088, 10.3195
4 0.0558923, 0.451815, 0.946229, 5.30014, 5.34048, 0.353898,

0.874125, 0.441977, 0.379471 7.21785, 2.74046, 10.7096
5 0.112105, 0.546312, 0.278645, 10.3715, 6.48753, 5.96052,

0.993842, 0.0126269, 0.359657 3.88281, 0.318275, 5.53878
6 0.725662, 0.703412, 0.237615, 5.2219, 4.05204, 0.65907,

0.780385, 0.622797, 0.859203 2.50617, 10.2409, 8.70408
7 0.374777, 0.58377, 0.33161, 2.73198, 9.00276, 2.37713,

0.548093, 0.295435, 0.844483 7.47496, 6.14236, 6.57817
8 0.405656, 0.0588116, 0.395332, 6.57124, 3.06293, 7.76751,

0.617291, 0.972787, 0.896758 9.35606, 5.49367, 0.653307
9 0.580609, 0.101322, 0.686808, 1.03936, 4.86077, 4.49374,

0.260081, 0.729378, 0.00742915 8.40651, 5.8042, 9.04327
10 0.1014, 0.220474, 0.922888, 0.385814, 10.0233, 1.19794,

0.48539, 0.605545, 0.12674 9.20775, 5.5423, 3.67275

Fig. A.4. (w, c) values used to define the ten functions of the f4 family.

w c
1 0.699375, 0.337099, 0.871819, 8.64799, 4.31424, 7.17919,

0.000552281, 0.698181, 0.64596 6.5203, 7.69509, 3.54121
2 0.823514, 0.759641, 0.911051, 6.34773, 1.79925, 6.7601,

0.944551, 0.84612, 0.452632 8.17347, 6.05731, 8.15374
3 0.713824, 0.410764, 0.0418437, 8.54249, 8.72665, 0.149624,

0.766876, 0.375302, 0.201961 0.0242227, 9.79776, 3.74998
4 0.884308, 0.0391942, 0.535062, 10.6363, 7.53445, 1.9196,

0.88745, 0.726834, 0.936557 0.527894, 0.570466, 9.22075
5 0.710651, 0.503139, 0.506865, 6.21455, 11.0014, 9.1579,

0.244169, 0.667725, 0.625358 1.61052, 2.15093, 2.91071
6 0.404809, 0.234661, 0.176505, 8.69045, 8.52838, 3.43345,

0.535546, 0.621093, 0.381746 1.04642, 8.53511, 5.02205
7 0.535115, 0.509324, 0.143797, 9.16423, 0.544608, 12.3572,

0.841992, 0.0724578, 0.397606 3.59163, 0.496033, 3.01415
8 0.151991, 0.658569, 0.0749296, 3.50677, 1.09029, 12.1249,

0.517615, 0.902215, 0.184896 9.74568, 1.72369, 0.873078
9 0.814709, 0.574238, 0.936322, 1.45015, 8.43709, 4.38327,

0.596951, 0.011037, 0.459489 3.36197, 7.8732, 9.66537
10 0.581242, 0.847791, 0.698418, 3.38784, 8.96986, 2.92174,

0.594835, 0.652784, 0.526436 6.69807, 6.47016, 8.4859

Fig. A.5. (w, c) values used to define the ten functions of the f5 family.



w c
1 0.436771, 0.493293, 0.259059, 1.50625, 2.42764, 7.60764,

0.137752, 0.595294, 0.875485 7.47758, 3.76944, 11.5238
2 0.347839, 0.660524, 0.733129, 2.02171, 6.94311, 7.65485,

0.344827, 0.640028, 0.745164 9.97186, 0.580807, 7.63505
3 0.590739, 0.500432, 0.543543, 0.399808, 1.78879, 9.14919,

0.149174, 0.151892, 0.677399 8.20287, 10.6605, 0.978947
4 0.66794, 0.550362, 0.187651, 12.1508, 6.24695, 7.48941,

0.217448, 0.440115, 0.307107 0.978312, 3.42574, 3.67556
5 0.0179835, 0.487045, 0.747625, 11.8462, 0.284885, 6.05758,

0.859514, 0.428717, 0.883062 2.67283, 2.94544, 8.71967
6 0.988677, 0.873975, 0.329262, 11.2553, 6.9405, 2.56681,

0.639251, 0.137602, 0.561776 4.95619, 3.90756, 6.90553
7 0.778948, 0.386086, 0.514636, 6.74786, 6.14656, 8.0325,

0.870759, 0.754161, 0.426763 3.20713, 9.54122, 4.45024
8 0.918717, 0.873334, 0.500004, 2.47032, 9.62646, 11.4787,

0.326895, 0.576678, 0.845766 3.05882, 5.37268, 0.452856
9 0.388402, 0.00858075, 0.388238, 9.2885, 6.62937, 8.21457,

0.761494, 0.424288, 0.193555 2.49354, 6.60472, 4.62773
10 0.0431003, 0.930203, 0.434156, 9.47776, 8.78537, 7.02012,

0.902293, 0.452968, 0.664225 5.89177, 4.17177, 0.742157

Fig. A.6. (w, c) values used to define the ten functions of the f6 family.



Algorithm 1 Top-level integration routine, computes an estimate < I > of I, and
the size of the 95%-confidence interval wC of this estimate.

1: proc (< I >, wC) = integrate (g, Ω, ǫa, ǫr):
2: ĝ ←initialize acv(g, Ω, ǫa, ǫr)
{make a first estimate}

3: (< I > (Ω), σ2(Ω))← estimate(g, ĝ, Ω)
{Add the estimate to an error-based heap for zone selection.}

4: E ← maxn=1...N (σ2
n)

5: pushHeap ((Ω, < I > (Ω), σ2(Ω)), E)
{For scale-independent error computations (Section 3.6)}

6: errorScaling ← 1, stepNumber ← 1, stepUpdateError ← 1
7: loop
8: {test convergence}
9: σ2

max = max(ǫa,ǫr×|<I>|)2

16
10: if σ2 < σ2

max for all components then
11: {The estimate satisfies the convergence criterion, finished}
12: return (< I >, 4×

√
σ2)

13: end if
14: {Take the estimate with largest error and improves it}
15: (R, < I > (R), σ2(R))← pop heap()
16: (R1,R2)←split(R)
17:

{Remove the estimate from this region}
18: < I >=< I > − < I > (R)
19: σ2 = σ2 − σ2(R)
20:

{Potentially update the error computation (Section 3.6)}
21: if stepUpdateError = nbSteps then
22: errorScaling ← 1/σ2

max

23: recomputeHeap(errorScaling)
24: stepUpdateError ← stepUpdateError ×2
25: end if
26: for i ∈ {1, 2} do
27: {Perform the estimation (Section 3.5)}
28: (< I > (Ri), σ

2(Ri))← estimate(g, ĝ, Ri)
{Add the estimate for this region to the global estimate}

29: < I >=< I > + < I > (Ri)
30: σ2 = σ2 + σ2(Ri)

{Add this estimate to the heap, for further refinement}
31: Ei ← maxn=1...N (σ2

n(Ri)× errorScalingn)
32: push heap ((Ri, < I >, σ2), Ei)
33: end for
34: stepNumber ← stepNumber +1
35: end loop



Algorithm 2 Test of the behavior of Genz functions integration.

1: for i = 1 to 10 do
2: {Scalar integrands test}
3: for f ∈ {f1, . . . , f6} do
4: (w(f), c(f))← generate(d(f))
5: for r = 1 to 50 do
6: computeIntegral(f, w, c, 0.001)
7: end for
8: end for
9: {Vector-valued integrands test}

10: fc = (f1, . . . , f6)
11: wc = (w(f1), . . . , w(f6))
12: cc = (c(f1), . . . , c(f6))
13: for r = 1 to 50 do
14: computeIntegral(fc, wc, cc, 0.001)
15: end for
16: end for


