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Abstract. In this paper we propose an approach to discover functions
for IR ranking from a space of simple closed-form mathematical func-
tions. In general, all IR ranking models are based on two basic variables,
namely, term frequency and document frequency. Here a grammar for
generating all possible functions is defined which consists of the two
above said variables and basic mathematical operations - addition, sub-
traction, multiplication, division, logarithm, exponential and square root.
The large set of functions generated by this grammar is filtered by check-
ing mathematical feasibility and satisfiability to heuristic constraints on
IR scoring functions proposed by the community. Obtained candidate
functions are tested on various standard IR collections and several sim-
ple but highly efficient scoring functions are identified. We show that
these newly discovered functions are outperforming other state-of-the-
art IR scoring models through extensive experimentation on several IR
collections. We also compare the performance of functions satisfying IR
constraints to those which do not, and show that the former set of func-
tions clearly outperforms the latter one3.

Keywords: IR Theory, Function Generation, Automatic Discovery

1 Introduction

Developing new term-document scoring functions that outperform already ex-
isting traditional scoring schemes is one of the most interesting and popular
research area in theoretical information retrieval (IR). Many state-of-the-art IR
scoring schemes have been developed since the dawn of IR research, such as the
vector space model [19], the language model [17], BM25 [18], and, more recently,
the HMM [15], DFR [1] and information-based models [2]. All these scoring
schemes were developed along what one could call a “theoretical line”, in which
theoretical principles guide the development of the scoring function, and then
the developed function is assessed on different standard IR test collections. There

3 The program code and the list of generated scoring functions can be found on
http://ama.liglab.fr/resourcestools/code/ir-functions-generation/



is however a chance, or more precisely a risk, that some high performing scoring
schemes will not come into light through such an approach, as they are not so
intuitive and/or are not so easily explainable theoretically. Quoting [9]: There is
no guarantee that existing ranking functions are the best/optimal ones available.
It seems likely that more powerful functions are yet to be discovered.

These considerations have led researchers to explore the space of IR func-
tions in a more systematic way, even though such attempts have always been
limited by the complexity of the search space (of infinite dimension and con-
taining potentially all real functions) with regard to the current computational
power. The first attempts to this exploration were based on genetic program-
ming and genetic algorithms, which were seen as a way to automatically learn
IR functions by exploring parts of the solution space stochastically [12, 16, 6]. [9]
applied genetic programming to discover optimal personalized ranking functions
for each individual query or a consensus ranking function for a group of queries.
The approach shows the power of automated function discovery using machine
intelligence tools. But, being a non-deterministic method, the solutions gener-
ated by these genetic programming approaches are often difficult to analyze.
Moreover, there is another issue associated with genetic programming, namely
“code bloat” – the fact that almost all genetic programming algorithms have a
tendency to produce larger and larger functions along the iterations. Thus there
is a high risk of missing simple functions of high quality. To this end, [5] pro-
vides metrics to measure the distance between rank lists generated by different
solutions, and thus explaining their position is the solution space. More recently,
researchers have focused on particular function forms as linear combinations or
well-defined kernel functions, the parameters of which are learned from some
training data. This approach has been highly successful in IR, through the var-
ious “learning to rank” methods proposed so far: pointwise approaches, e.g. [4],
pairwise approaches, e.g. [3, 11, 13], or list wise approaches, e.g. [20].

Even though all the methods mentioned above enlarge the space of scoring
functions, they are still limited in two aspects: first, they usually assume that the
IR scoring function takes a particular form (e.g. linear or polynomial), and they
require some training set in order to learn the parameters of the function given
a particular collection. Two questions, directly addressed in the current study,
thus remain open: (a) is it possible to explore the space of IR scoring functions in
a more systematic (i.e. exhaustive) way? (b) Is it possible to find a function that
behaves well on all (or most) collections, and thus dispenses from re-training the
function each time a new collection is considered? To answer those questions, we
introduce an automatic discovery approach based on the systematic exploration
of a search space of simple closed-form mathematical functions. This approach
is inspired from the work of [14] on multi-armed bandit problems and is here
coupled with the use of heuristic IR constraints [10] to prune the search space and
so, limiting the computational requirements. Such a possibility was mentioned
in [6] but has not been tried to the best of our knowledge.

The remainder of the paper is organized as follows: Section 2 introduces the
function generation process we have followed, whereas Sections 3 and 4 present
the experiments and results obtained. Finally, Section 5 concludes the paper.



2 Function Generation

In this section we present the proposed exploration strategy for function gen-
eration and their validation that we deploy to find a set of candidate scoring
functions. These functions assign positive scores to a document d and a query
term w and are involved in the retrieval status value of a query-document pair
(d,q). Two variables are at the basis of classical IR scoring functions: term fre-
quency (tdw) and document frequency (Nw), to score a document d with respect
to a query term w. However it is well known that normalized versions of these
variables yield better results. For example language models use relative term
counts [17] and the BM25 model uses the Okapi normalization [18]. Any such
normalization scheme can be used with our approach. For this work, we selected
a common scheme, which is the one used in DFR and in information based
models [2]. Thus, we consider the following variables (for notations see Table 1):

- Normalized term frequency xdw = tdw log
(

1 + c
lavg

ld

)
. Here c ∈ R is a mul-

tiplying factor. This variable incorporates both tdw and ld. For simplicity,
unless otherwise stated it is written as x from now on;

- Normalized document frequency yw = Nw

N . For simplicity, unless otherwise
stated it is written as y from now on;

- A constant real valued parameter k ∈ R.

Notation Description

tdw # of occurrences of term w in document d, term frequency
tqw # of occurrences of term w in query q

xd
w normalized version of term frequency
Nw # of documents in the collection containing w, document frequency
yw normalized version of document frequency
N # of documents in a given collection
ld Length of document d in # of terms
lavg Average length of documents in a given collection

Table 1. Notations

We hence define a function as the combination of the basic quantities x,
y and k, and unary (logarithm, exponentiation with respect to e, square root,
unary negation) and binary (addition, subtraction, multiplication, division and
exponentiation with respect to any real number) operations. The grammar we
use to generate syntactically correct functions is given in Figure 1. The −(.)
signifies the unary negation operation (e.g. −y). Thus, a function g may be a
binary expression B(g, g), or a unary expression U(g), or a symbol S.

g ::= B(g, g) | U(g) | S
B ::= + | − | × | ÷ | pow
U ::= log | exp | sqrt | − (.)
S ::= x | y | k

Fig. 1. Grammar G to generate scoring functions

After a first combination of these quantities and operations we look at the
validity of the generated functions. This validity verification is mainly three fold.



- Domain of definition, where we verify that all the operations used in a func-
tion are well defined. Bad operations include logarithm or square root of a
negative number and division by zero.

- Positiveness, where we check that a generated function is positive valued.
In fact, under all normal circumstances raw term and document frequency
values are strictly positive. Hence x ∈ R and x > 0. Moreover, Nw ≤ N ,
which gives y ∈ R and 0 ≤ y ≤ 1

- IR constraints, where we look if the generated function satisfies or not the
heuristic IR constraints proposed by the community [10, 2]. That is for the
generated function g, if we have:

∂g(x, y)

∂tdw
> 0,

∂2g(x, y)

(∂tdw)2
< 0,

∂g(x, y)

∂Nw
< 0,

∂g(x, y)

∂ld
< 0

From the definitions of x and y, it can be shown ∂x
∂tdw

> 0, ∂x
∂ld

> 0 and
∂y

∂Nw
> 0. Hence it is sufficient that g satisfies the following constraints:

∂g(x, y)

∂x
> 0,

∂2g(x, y)

∂x2
< 0,

∂g(x, y)

∂y
< 0

We now define the length of a function as the number of symbols or operators
present in that function. As for example the function sqrt(x/y) has a length 4,
where sqrt() and the division are two operators and x, y are two symbols present.
Similarly sqrt(x) ∗ exp(−y) has a length 6.

A function generated by grammar G is said to be a candidate function if it
survives all the validity verification steps described earlier. Algorithm 1 specifies
the iterative length-limited strategy used here to generate the set of all candidate
scoring functions till length lengthmax (denoted by CV ) and it works as follows.
Suppose SG is the space of all possible functions generated by grammar G and
in a particular iteration S ⊂ SG is the set of already generated functions with a
length less than or equal to lengthcurr where lengthcurr < lengthmax and S =
{g1, g2, . . . , g|S|}. Next iteration expands the set S by creating new functions. A
new function g|S|+1 is created by appending another operation or symbol to any
function gi ∈ S. As for example, starting from an initial empty set S = {}, the
function sqrt(x/y) is generated by the following steps:

(g1 = x)→ (g2 = y)→ (g3 = g1/g2)→ (g4 = sqrt(g3))

Once a new function g|S|+1 is generated its validity is checked. If it passes all
three steps, it is included in the set of generated candidate scoring functions CV ,
otherwise it is rejected. For the purpose of our experimental study, the algorithm
also stores the functions until length lengthmax which do not satisfy heuristic
IR constraints but otherwise are valid (denoted by CN ).

3 Experimental Setup

We conducted a number of experiments aimed at validating those functions
which respect the IR constraints and also comparing these functions with respect
to classical IR models.



Algorithm 1: Generating candidate scoring functions

Input : maximum length lengthmax, the grammar G
Output :
− set of candidate functions CV till lengthmax

− set of functions which do not satisfy heuristic IR constraints but pass
other two validity tests, CN

Initialization: CV ← { }, CN ← { }, S ← { }
for lengthcurr ∈ {1, 2, . . . , lengthmax} do

repeat
A new function g|S|+1 is created by any of the following rules:
− Append a symbol (variable or constant): g|S|+1 = x, y or k
− Append a new unary operation: g|S|+1 = U(gi), i ∈ [1, |S|]
− Append a new binary operation: g|S|+1 = B(gi, gj), i, j ∈ [1, |S|]

S ← S ∪ {g|S|+1}
if g|S|+1(x, y) satisfies domain of definition test AND g|S|+1(x, y)
satisfies positiveness test then

if g|S|+1(x, y) satisfies heuristic IR constraints then

CV ← CV ∪ {g|S|+1}
else

CN ← CN ∪ {g|S|+1}
end

end

until all the functions till lengthcurr in SG are generated ;

end

Algorithm 1 has been implemented using python(www.python.org). The
symbolic mathematics library of python, SymPy(sympy.org) is used to sym-
bolically verify domain of definition, positiveness and heuristic IR constraints.
Here the maximum considered length is 8. Table 2 shows the number of candi-
date functions available at each length till length 8 and also the corresponding
generation time. The point to be noted is that functions with length less than 4
do not pass the three steps of validity testing.

length total number of generated number of candidate generation
functions by G functions |CV | time

4 42 2 ≈1 sec
5 328 10 ≈1 min
6 2378 100 ≈5 min
7 16447 638 ≈30 min
8 49989 4657 ≈1 day

Table 2. Number of candidate functions and generation times for different lengths.

The candidate functions are tested using CLEF (www.clef-campaign.org)
and a large number of TREC (trec.nist.gov) collections. Basic statistics of the
collections used are provided in Table 3. We appended TREC-9 and TREC-10

Web tracks to experiment with WT10G, and TREC-2004 and TREC-2005 Terabyte
tracks for experimenting with GOV2.



Collection N lavg Index size #queries

GOV2 25,177,217 646 19.6 GB 100

WT10G 1,692,096 398 1.3 GB 100

TREC-3 741,856 261 427.7 MB 50

TREC-4 567,529 323 379.0 MB 50

TREC-5 524,929 339 378.0 MB 50

TREC-6,7,8 528,155 296 373.0 MB 50

CLEF-3 169,477 301 126.2 MB 60
Table 3. Statistics of various collections used in our experiments, sorted by size.

Experiments are performed on Terrier IR platform v3.5 (terrier.org) as
all standard modules are integrated. We implemented our models inside this
framework and used other necessary standard modules by Terrier, mainly the
indexing and the evaluation components. The preprocessing steps in creating an
index include stemming using Porter stemmer and removing stop-words using
the stop-word list provided by Terrier. For comparison purpose three standard IR
models are used, namely Okapi BM25 (denoted by BM), Dirichlet language model
(denoted by LM) and log-logistic model of information model family (denoted by
LG). These models are used with default parameter values, as well as optimized
values. For the former, values of the parameters are the values provided as default
in Terrier. That is b = 0.75, k1 = 1.2, k3 = 8.0 for BM, µ = 2500 for LM and
c = 1.0 for LG. For optimized version, the parameters are optimized from a set
of values using 5 fold cross validation meaning that the query set is sequentially
partitioned into 5 subsets. Of the 5 subsets, a single subset is retained for testing
the model, and the remaining four subsets are used as training the parameters
of each model (b and k1 for BM, µ for LM and c for LG). The cross-validation
process is then repeated 5 times, with each of the 5 subsets used exactly once for
testing. Each time a query-wise average precision and precision at 10th document
is calculated for each set. After 5 folds, average precision of all the queries are
obtained and Mean Average Precision (MAP) is calculated. Similarly average of
precision at 10th document for each query is obtained and average of the quantity
(P@10) is reported.

4 Results

From Algorithm 1, two sets of functions are produced, namely the set of all valid
candidate functions (CV ) and the set of functions which do not satisfy heuristic
IR constraints, but are valid otherwise (CN ). We first begin our investigation
over the comparison of functions within CV and CN , and then compare functions
in CV with respect to the classical IR functions.

4.1 Constraint validation

From each of the sets CV and CN , 10 subsets are created, each subset containing
100 randomly selected sample functions chosen from each initial set (CV or CN )
without replacement. These samples are tested on CLEF-3 and TREC-3,5,6,7,8.
For each function MAP and P@10 are noted and they are averaged over all 100



Datasets
MAP P@10
CN CV CN CV

CLEF-3 0.1615 0.3067 0.1308 0.2376
TREC-3 0.0449 0.1506 0.0929 0.3027
TREC-5 0.0189 0.0762 0.0364 0.1407
TREC-6 0.1038 0.1625 0.1437 0.2715
TREC-7 0.0627 0.1234 0.1393 0.2688
TREC-8 0.0826 0.1638 0.1517 0.2951

Table 4. Average MAP and P@10 of the set of valid of CV and non-valid CN functions.

functions within a single sample set. Finally, average performance over 10 sample
sets are reported. Table 4 shows the average MAP and P@10 of 10 sample sets
drawn from both CV and CN over these collections. As it can be seen the average
MAP measure of functions in CV are 6% to 14% higher than the MAP measures of
functions in CN , and the difference is even more striking with the P@10 measures.
These results empirically validate the IR constraints, and are in line with other
empirical studies which aimed to test the validity of these constraints [8, 7].

4.2 Function Validation

As shown in Table 2 there are a total of 5407 valid functions from length 4 to
length 8. Testing all these functions and getting the best performing functions
on all the collections is time consuming. Hence we chose a simple strategy which
consists in selecting the 500 best performing functions, among 5407, on CLEF-3

with respect to the MAP measure and testing these functions on the remaining
datasets. We first limit our analyzes over the TREC-3,5,6,7,8 collections. Each
function is ranked based on MAP (and P@10) within a collection. An average
rank of each function is estimated by taking the average of all the ranks of that
function on the testing collections. Note that functions with lower average ranks
are better performing. Average ranks of standard models, BM, LM and LG with
respect to these 500 functions over the test collections are also considered. For
this phase of experiment, we take the default values k = 1.0, c = 1.0 for the
generated functions4 and the default hyperparameter values for BM, LM and LG,
as mentioned in the previous section. Table 5 shows the top 7 functions along
with standard IR models with respect to the average rank over 5 test collections,
TREC-3,5,6,7,8. Here we replaced k with 1 and presented the simplified func-
tions. We denote these functions by using an exponent P or M for whether they
are the best performing functions with respect to MAP or P@10, and d to indicate
that they are used with their default values. We note that the 7 best ranked
functions over the 5 TREC collections are better ranked than all the classical IR

models. And that the first ranked function (x, y) 7→ e

√
log( x+y

y ) is 2 to 6 times
better ranked (with respect to P@10 and MAP) than the best standard IR model.
In each case we statistically compare the performance of standard models with
first ranked function in terms of MAP using a paired two sided t-test at 0.05 level.
A ↑ indicates that the corresponding model is statistically significantly worse
than the first ranked function. Whereas a ↓ indicates the opposite.

4 Note that the parameter c is used in the definition of x.



on MAP on P@10
functions denoted by rankavg functions denoted by rankavg

e

√
log
(

x+y
y

)
fM−d
1 4.8 e

√
log
(

x+y
y

)
fP−d
1 19.8√

log(1+x)√
y

fM−d
2 14.8 log

(
−x + x+y

y

)
fP−d
2 24.6

√√
xy

y
fM−d
3 15.6

√
x +

√
x
y

fP−d
3 25.2√

y +
√

x
y

fM−d
4 17.8

√√
x +

√
x
y

fP−d
4 27.6√√

x
y
.e−y fM−d

5 18.8
√

log(1+x)√
y

fP−d
5 27.8√√

x +
√

x
y

fM−d
6 19.0 log

(
x+y
y

)
fP−d
6 30.0

log
(
−x + x+y

y

)
fM−d
7 20.0 log

(
x
y

+
√
e
)

fP−d
7 34.2

LGD LGd 26.0 LGD LGd 36.8
BM25 BMd 108.8 BM25 BMd 43.6
LMDir LMd 129.6 LMDir LMd 208.4
Table 5. Best functions with respect to their average ranks on TREC-3,5,6,7,8.

TREC-3 TREC-5 TREC-6 TREC-7 TREC-8

BMd (1; .252) fM−d
1 (1; .140) fM−d

1 (1; .249) fM−d
4 (5; .194) fM−d

1 (1; .256)

fM−d
5 (2; .252) fM−d

2 (3; .139) fM−d
6 (2; .248) fM−d

3 (6; .194) fM−d
7 (6; .255)

fM−d
3 (3; .250) fM−d

5 (4; .138) fM−d
4 (4; .247) fM−d

5 (8; .194) LGd (11; .255)

fM−d
2 (4; .249) BMd (5; .138) fM−d

3 (5; .247) fM−d
6 (9; 194) fM−d

6 (30; .252)

fM−d
1 (5; .249) LMd (10; .137) fM−d

2 (7; .246) fM−d
2 (13; .193) fM

d4 (46; .250)

fM−d
4 (7; .249) fM−d

3 (13; .137) LGd (16; .245) fM−d
1 (16; .192) fM−d

2 (47; .249)

LMd (8; .249) fM−d
7 (14; .137) fM−d

5 (19; .244) fM−d
7 (41; .189) fM−d

3 (51; .249)

fM−d
7 (9; .248) fM−d

4 (27; .136) fM−d
7 (30; .244) LGd (49; .188) fM−d

5 (61; .248)

fM−d
6 (12; .246) LGd (40; .135) BMd (252; .232)↑ LMd (64; .186) BMd (181; .241)↑
LGd (14; .245) fM

d6 (42; .134) LMd (381; .222)↑ BMd (105; .183) LMd (185; 0.240)↑
Table 6. MAP based ranks of functions with default parameter values (first value in the
parenthesis) and their corresponding MAP (second value in the parenthesis).

In tables 6 and 7 we show the rank and respectively the MAP and the P@10

measures of each function on TREC-3,5,6,7,8 collection. Here we see that the
ranks of the 7 best functions over different collections stay approximately on
the same range, while the ranks of IR models may vary a lot. For example,
considering the MAP, BM with its default values is ranked first on TREC-3 while it
is ranked 252nd on TREC-6 (Table 6). We find the same result by looking at the
ranks of different models with respect to their P@10 measure on different TREC

collections (Table 7). As the language model which is ranked first on TREC-3 and
TREC-5 ; it has the lowest rank over the three other TREC collections.

We now consider the top 25 functions among the best performing functions
based on average ranks they have, and optimize their hyper-parameter c using
5 fold cross validation and again considering k = 1. In order to maintain our
comparisons, we also consider the optimized versions of the standard models, BM,
LM and LG using again 5 fold cross validation sets. Table 8 shows the top optimized



TREC-3 TREC-5 TREC-6 TREC-7 TREC-8

LMd (1; .532) LMd (1; .276) fP−d
5 (1; .418) fP−d

1 (6; .432) fP−d
6 (4; .474)

fP−d
3 (6; .516) fP−d

3 (6; .248) BMd (2; .414) fP−d
5 (11; .430) fP−d

2 (5; .474)

BMd (9; .514) fP−d
1 (47; .236) fP−d

4 (7; .402) fP−d
6 (16; .428) LGd (7; .474)

fP−d
4 (12; .506) fP−d

4 (49; .234) fP−d
1 (12; .400) fP−d

7 (17; .428) fP−d
7 (8; .472)

fP−d
2 (13; .504) fP−d

2 (53; .234) fP−d
3 (15; .398) fP−d

2 (18; .428) BMd (14; .472)

fP−d
1 (15; .504) BMd (63; .232) fP−d

6 (29; .396) LGd (26; .428) fP−d
1 (19; .468)

fP−d
5 (25; .496) fP−d

5 (73; .228) fP−d
7 (33; .396) fP−d

4 (27; .426) fP−d
5 (29; .460)

fP−d
6 (27; .496) fP−d

6 (74; .228) fP−d
2 (34; .396) fP−d

3 (58; .422) fP−d
3 (41; .458)

fP−d
7 (28; .496) LGd (75; .228) LGd (47; .396) BMd (130; .418) fP−d

4 (43; .458)

LGd (29; .496) fP−d
7 (85; .226) LMd (483; .346) LMd (285; .392) LMd (272; .432)

Table 7. P@10 based ranks of functions with default parameter values (first value in
the parenthesis) and their corresponding P@10 (second value in the parenthesis).

functions along with optimized standard IR models with respect to the average
rank over TREC-3,5,6,7,8. Here the exponent or the index o indicates that the
function or the standard IR model are used with their optimized values.

on MAP on P@10
functions denoted by rankavg functions denoted by rankavg√

log(1+x)√
y

fM−o
1 3.0 BM25 BMo 9.0

e

√
log
(

x+y
y

)
fM−o
2 8.4 log

(
−x + x+y

y

)
fP−o
1 9.2√

y +
√

x
y

fM−o
3 8.8 log

(
x
y

+
√
e
)

fP−o
2 10.0√√

xy

y
fM−o
4 9.0 log

(
x+y
y

)
fP−o
3 10.4√√

x
y
.e−y fM−o

5 10.0

√√
x +

√
x
y

fP−o
4 11.0√

1 +
√

x
y

fM−o
6 10.4 LMDir LMo 12.2√√

x +
√

x
y

fM−o
7 11.0

√
x +

√
x
y

fP−o
6 12.8

LMDir LMo 16.4 LGD LGo 13.0

BM25 BMo 16.6 log
(

x+2y
y

)
fP−o
6 13.4

LGD LGo 17.6

√
1 +

√
x
y

fP−o
7 13.6

Table 8. Best optimized functions based on average rank on TREC-3,5,6,7,8.

In tables 9 and 10 we show detailed ranks of the optimized versions of
different functions with respect to their MAP and P@10 measures on different
TREC-3,5,6,7,8 collections. Although, the difference between the average ranks
of the optimized IR models and the top 7 generated functions have decreased,
but still, the simple generated functions are better ranked than the standard IR
models. We also performed experiments on WT10G and GOV2 datasets using the
same 25 selected functions found previously with the default and optimized val-
ues of their parameters. On GOV2, function 2 behaves well with a difference of 5%



in MAP with the second best model when optimizing the parameters. However on
WT10G the language model seems to be the best model when using optimizing or
using its default parameter values. Though it seems that the simple strategy of
selecting the first 500 functions over CLEF-3 has its limits on larger collections,
but the selected functions are still competitive on MAP and P@10 with respect to
standard models over these large datasets.

TREC-3 TREC-5 TREC-6 TREC-7 TREC-8

BMo (1; .273)↓ fM−o
1 (1; .141) fM−o

1 (1; .255) fM−o
5 (4; .195) fM−o

1 (1; .262)

LMo (2; .269)↓ LMo (2; .141) fM−o
7 (2; .250) fM−o

1 (6; .194) fM−o
2 (2; .261)

fM−o
5 (3; .260) fM−o

4 (3; .139) fM−o
6 (4; .249) fM−o

6 (7; .193) BMo (10; .259)

fM−o
4 (4; .258) fM−o

5 (4; .138) fM−o
3 (7; .248) fM−o

3 (9; .193) LGo (15; .258)

fM−o
3 (5; .257) fM−o

3 (5; .138) fM−o
4 (9; .248) fM−o

4 (10; .193) fM−o
3 (18; .257)

fM−o
1 (6; .256) fM−o

2 (6; .138) fM−o
2 (12; .248) fM−o

2 (12; .192) fM−o
4 (19; .257)

fM−o
7 (7; .253) fM−o

6 (8; .137) fM−o
5 (15; .247) fM−o

7 (15; .191) fM−o
7 (22; .256)

fM−o
6 (8; .252) fM−o

7 (9; .135) LGo (20; .245) BMo (16; .191) fM−o
5 (24; .256)

fM−o
2 (10; .251) LGo (20; .133) LMo (27; .243)↑ LGo (20; .190) fM

o6 (25; .255)
LGo (13; .246)↑ BMo (28; .126)↑ BMo (28; .232)↑ LMo (25; .189) LMo (26; .254)

Table 9. MAP based ranks of functions with optimized parameter values (first value in
the parenthesis) and their corresponding MAP (second value in the parenthesis).

TREC-3 TREC-5 TREC-6 TREC-7 TREC-8

BMo (1; .562) LMo (1; .274) fP−o
4 (1; .410) fP−o

1 (1; .444) BMo (1; .464)

fP−o
5 (2; .560) fP−o

5 (2; .258) fP−o
1 (2; .406) fP−o

3 (3; .442) fP−o
2 (3; .458)

LMo (3; .558) BMo (4; .250) fP−o
3 (6; .404) LGo (4; .442) fP−o

7 (4; .458)

fP−o
4 (7; .538) fP−o

4 (9; .240) fP−o
2 (8; .404) fP−o

2 (5; .440) fP−o
3 (5; .456)

fP−o
1 (17; .490) fP−o

2 (13; .238) fP−o
6 (9; .404) fP−o

7 (6; .440) fP−o
6 (7; .456)

fP−o
3 (19; .490) fP−o

7 (14; .238) LGo (11; .404) fP−o
6 (7; .438) LGo (9; .456)

LGo (20; .484)) fP−o
1 (15; .238) fP−o

5 (15; .400) BMo (13; .430) fP−o
1 (11; .452)

fP−o
2 (21; .482) fP−o

3 (19; .236) fP−o
7 (18; .400) LMo (17; .424) LMo (13; .452)

fP−o
6 (22; .476) LGo (21; .236) BMo (26; .394) fP−o

5 (18; .416) fP−o
4 (19; .444)

fP−o
7 (25; .472) fP−o

6 (22; .234) LMo (27; .390) fP−o
4 (19; .412) fP−o

5 (27; .438)

Table 10. P@10 based ranks of functions with optimized parameter values (first value
in the parenthesis) and their corresponding P@10 (second value in the parenthesis).

WT10G GOV2

MAP P@10 MAP P@10

LMd (.204) fP−d
5 (.300) fM−d

1 (.291) LMd (.555)

fM−d
7 (.196) fP−d

1 (.299) fM−d
7 (.289) fP−d

7 (.544)

LGd (.194) LMd (.293) LGd (.288) fP−d
1 (.543)

fM−d
1 (.194) fP−d

4 (.292) LMd (.280) fP−d
2 (.542)

fM−d
4 (.187) BMd (.291) fM−d

2 (.274) fP−d
6 (.541)

fM−d
3 (.187) fP−d

6 (.287) BMd (.274) LGd (.541)

fM−d
5 (.187) LGd (.287) fM−d

6 (.265) BMd (.538)

fM−d
6 (.186) fP−d

2 (.284) fM−d
3 (.262) fP−d

5 (.535)

fM−d
2 (.186) fP−d

7 (.284) fM−d
4 (.261) fP−d

4 (.525)

BMd (.184) fP−d
3 (.256) fM−d

5 (.260) fP−d
3 (.471)

Table 11. MAP and P@10 measures of different functions and IR models with their
default values on WT10G and GOV2 datasets.



WT10G GOV2

MAP P@10 MAP P@10

LMo (.473)↓ LMo (.372) fM−o
2 (.302) fP−o

2 (.557)

fM−o
6 (.466) fP−o

2 (.368) fM−o
1 (.295) fP−o

6 (.553)

fM−o
3 (.463) BMo (.362) LMo (.294) fP−o

1 (.551)

fM−o
4 (.462) fP−o

4 (.359) LGo (.288) LMo (.551)

fM−o
5 (.454) fP−o

3 (.354) BMo (.284) fP−o
3 (.550)

fM−o
7 (.453) fP−o

6 (.352) fM−o
7 (.274) LGo (.541)

fM−o
2 (.449) fP−o

7 (.350) fM−o
3 (.271) fP−o

7 (.539)

fM−o
1 (.438) LGo (.349) fM−o

6 (.271) BMo (.531)

BMo (.421) fP−o
1 (.347) fM−o

4 (.270) fP−o
4 (.505)

LGo (.414) fP−o
5 (.337) fM−o

5 (.269) fP−o
5 (.469)

Table 12. MAP and P@10 measures of different functions and IR models with their
optimized values on WT10G and GOV2 datasets.

5 Conclusion

In this paper we have addressed the problem of exploring the space of simple
IR functions with the goal to discover some promising IR scoring functions. To
do so, we proposed a systematic iterative approach to explore the search space
till some given length and to identify the set of candidate scoring functions
which are mathematically valid and satisfy heuristic IR constraints. We tested
the functions obtained on a variety of standard IR test collections.

Our results show that, if one wants to make use of an efficient IR scoring
function without tuning parameters on a collection, then one should use:

ES-LG(x, y) = e

√
log( x+y

y )

where the name ES-LG derives from the fact that this function consists in the
exponential of the square root of the log-logistic function. ES-LG is consistently
above (for the MAP) all other ones; furthermore, the difference with standard
IR functions is significant in several cases. This result is all the more interesting
that the “complexity” of this function (measured by its length) is smaller than
the one of BMd and LMd, which can, in theory, be generated by our method us-
ing a different term frequency normalization but nevertheless require additional
computing resources as they involve more operators. In the situation where it
is possible to optimize the value of some parameters (i.e. when relevance judg-
ments are readily available), our results are more contrasted: the difference in
ranks between the best functions and the standard ones is not as important as
before and if in several cases the difference is significant in favor of the discovered
functions, it is, in other cases, in favor of standard functions. All in all, there
is no real difference in this case. As ES-LG is ranked second in this setting, we
recommend its use in all cases if one is interested in the MAP. It can of course be
used as an additional feature in learning to rank approaches.
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