On Flat versus Hierarchical Classification in Large-Scale Taxonomies - Archive ouverte HAL
Communication Dans Un Congrès Année : 2013

On Flat versus Hierarchical Classification in Large-Scale Taxonomies

Résumé

We study in this paper flat and hierarchical classification strategies in the context of large-scale taxonomies. To this end, we first propose a multiclass, hierarchi-cal data dependent bound on the generalization error of classifiers deployed in large-scale taxonomies. This bound provides an explanation to several empirical results reported in the literature, related to the performance of flat and hierarchical classifiers. We then introduce another type of bound targeting the approximation error of a family of classifiers, and derive from it features used in a meta-classifier to decide which nodes to prune (or flatten) in a large-scale taxonomy. We finally illustrate the theoretical developments through several experiments conducted on two widely used taxonomies.
Fichier principal
Vignette du fichier
FlatvsHierarClassif-NIPS2013.pdf (440.4 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-01118815 , version 1 (24-02-2015)

Identifiants

  • HAL Id : hal-01118815 , version 1

Citer

Rohit Babbar, Ioannis Partalas, Eric Gaussier, Massih-Reza Amini. On Flat versus Hierarchical Classification in Large-Scale Taxonomies. 27th Annual Conference on Neural Information Processing Systems (NIPS 26), Dec 2013, Lake Tao, United States. pp.1824--1832. ⟨hal-01118815⟩
229 Consultations
327 Téléchargements

Partager

More