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Abstract 

Water distribution networks (WDNs) are critical infrastructures that are exposed to deliberate or accidental contaminations. The 
project SMaRT-OnlineWDN aims to develop an online security management and reliability toolkit for water distribution 
networks. One task focuses on the contaminant transport modeling. This paper deals with modeling transport processes at T- 
and cross-junctions. The mixing model depends on the flow conditions, the pipe condition and the crossing geometry. 
Preliminary results will be presented using computer fluid dynamic (CFD) for 2D and 3D modeling of transport processes for 
different flow conditions. These results are evaluated in comparison to existing mixing and propagation models. 
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1. Introduction 

Water distribution networks (WDNs) are critical infrastructures that are exposed to deliberate or accidental 
contaminations. In the immediate future water suppliers will install water quantity and water quality sensors 
throughout their networks that will provide a continuous and huge stream of data. This allows for the first time to 
develop a system that is able to monitor and protect WDNs in real-time. Obviously, in case of a toxic 
contamination, the WDN operators have to react very fast as humans have to be protected against toxic drinking 
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water. Hence, the operators are highly interested in getting an answer to these questions very quickly: Where is the 
contamination source? What impact will the contamination have on the water distribution network? Which actions 
are necessary (e.g. which main pipes have to be shut)? The SMaRT-OnlineWDN management toolkit (SMaRT-
OnlineWDN (2013)) aims to give a high quality decision support regarding these questions. The objective of the 
project SMaRT-OnlineWDN is the development of an online security management and reliability toolkit for water 
distribution networks. It combines modules for classification of contamination events, real-time water quantity and 
water quality, source identification, contaminant plume identification and sensor placement. 

The online security management toolkit is based on sensor measurements (hydraulic and water quality sensors) 
and online hydraulic and transport models and will allow (i) an estimation of the localization of the contamination 
source and (ii) the simulation of short-time future scenarios in order to estimate the impact of a contamination 
source. For both tasks the transport model is one of the central modules as the accuracy of predictions (or re-
simulations) for the distribution of solute substances throughout the WDN depends on the accuracy of the transport 
model. Hence, a main objective of research is to enhance the transport model for the use in online simulation. 
While the general phenomena of transport modeling are well understood (mathematically described by a partial 
differential equation which models spatio-temporal behavior of diffusion, advection, reactions and sources resp. 
sinks). However, all actually available software packages for the simulation of hydraulics and water quality in 
WDN (e.g. EPANET (2013)) are based on a one-dimensional (1D) formulation. Due to that restriction in many 
cases where the 3D geometry of the WDN has an impact to spreading of substances (e.g. at junctions and crossings 
of pipes) the 1D description may not be accurate enough. 

Hence, in recent years some research has been done in order to improve the performance of 1D transport 
models. So far axial propagation for the most part is modeled by plug flow. Though this is a good approximation 
for turbulent flow it does not hold up for laminar and transitional flow. E.g. in Romero-Gomez (2010), Romero 
Gomes et al. (2008, 2011) a more realistic model of the axial dispersion in 1D-models has been introduced. 
Furthermore, improvements of the modeling of the mixing behavior in 1D models has been achieved. Classical 
mixing models used in most simulation software tools (e.g. EPANET) are based on the assumption of complete 
mixing of the substances. Experimental investigations have shown that for certain flow conditions at cross-
junctions and double-T-junctions ideal mixing is not fulfilled (Choi et al. (2008)). Hence some more enhanced 
approaches have been investigated in order to find a more realistic model to describe an incomplete mixing of 
substances in 1D transport and flow models (e.g. estimations based on experimental results in AZRED (Choi et al. 
(2008)), bulk-mixing model implemented in EPANET 2 BAM (Ho (2009)). But in practice it is often difficult to 
apply these models as they contain one or more parameters, which have to be determined by several experiments 
for each individual junction. This is not applicable for real world networks which contain hundreds or thousands of 
junctions. Furthermore, AZRED model does not cover the laminar flow regime. 

The objective of the work presented in this paper is to develop a 1D mixing model for laminar mixing of 
transient contamination pulses in water distribution networks, based on 2D CFD simulations. Future work will 
extend the investigations to turbulent flow and 3D CFD simulations as basis for the derived 1D mixing models. 

The paper is structured as follows. In section 1 some of the most popular mixing models are presented, namely 
the Complete Mixing Model, the Bulk Advective Mixing Model (BAM) and AZRED. Furthermore, an exemplary 
statistics on the junctions of the water distribution network (WDN) in Strasbourg is presented. Section 2 introduces 
the CFD-based method for the derivation of enhanced 1D mixing Models. Simulation Results of Mixing at T- and 
N-Junctions are presented in section 3. A conclusion and an overview of future work is provided in section 4. 

1.1. Mixing Models 

In the sequel the most popular mixing models are presented, namely the Complete Mixing Model, the Bulk 
Advective Mixing Model (BAM) and AZRED. 

The Complete Mixing Model assumes that mixing in pipe junctions is instant and complete. This means that the 
concentration of fluid leaving the junction is identical at each outlet pipe. This simple model can be formulated in a 
single equation for the mass balance of the solute species in the junction as follows: 
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The concentration of solute leaving each outlet pipe  is given by . is the 
concentration of the flow entering the junction with the flow rate  at inlet pipe . Since the fluid 
is assumed to be incompressible the sum of flows entering the junction equals the sum of flows leaving it. Due to 
its easy implementation the Complete Mixing Model is often used to determine the spreading of contaminations in 
water distribution networks, as for example the implementation in EPANET. 

Modeling solute mixing in this way however, does not represent the physical process of solute mixing in pipe 
junctions adequately. That has been established in experiments as well as CFD simulations presented in Ho (2009). 
It has been shown that for X-junctions in a state of flow as shown in Fig. 1, with adjacent inlet and outlet pipes the 
results differ significantly from the Complete Mixing Model. These findings lead to the development of the Bulk 
Advective Mixing (BAM) model which is intended to extend the Complete Mixing Model in cases where it lacks 
precision.The BAM model describes the mixing in X-junctions with adjacent inlet and outlet pipe and equal 
diameters and is presented in Ho (2009). It is based on the observation that for unequal momentum of the flow in 
the adjacent pipes a part of the bulk flow crosses over the junction. In respect to this fact the BAM Model assumes 
that mixing is solely effected by the bulk flow in the junction. Influences like diffusion or turbulent mixing at the 
flow interfaces are neglected. In effect, where the Complete Mixing Model can be seen as maximum bound for 
mixing at X-junctions, the BAM Model represents a minimal bound. The state of flow for the BAM Model is 
defined by the ratio of the inflow rates  and the ratio of the outflow rates . 

 

 

Fig. 1: Definition of state of flow, pipe nomenclature and flow variables for BAM Model. 

To calculate the concentration of the fluid at the outlet pipes (  and ) we need the known flow rates  at the 
inlet pipes  and outlet pipes  as well as the concentrations at the inlet  and . In the first step 
the flow rate that crosses over the junction has to be determined. To do this the sum of the flow rates of the 
opposing pipes is defined. The direction with the higher sum is the one that crosses over. For equal pipe diameters 
the crossing bulk flow can be determined by the difference of the flow in the adjacent inlet and outlet pipes 
pairs or . With these values the concentration of the outlet pipe that is not concerned with the 
crossing bulk flow is that of the adjacent inlet pipe ( ), cf. the flow state depicted in Fig. 1. 

The concentration in the outlet pipe with bulk mixing is calculated as the mean value of the adjacent inlet and 
the crossing bulk flow. In the case of Fig. 1 this results in 
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As stated before the Complete Mixing Model and the BAM model can be seen as an upper and lower bound. In 
Ho (2009) it is suggested that a combination of both models could be used to approximate the real mixing process 
through a weighting factor . This leads to a final outlet concentration at the mixed outlet pipe of 

   

The weighted approach implies that the influence of diffusion and turbulent instabilities is constant for all inlet 
and outlet flow ratios. 

The third model called AZRED has been developed at the University of Arizona (Choi et al. (2008)). In contrast 
to the theoretical approach of the BAM Model, this model is based on experimental results and is not bound to 
cross-junctions. The state of flow is defined by the Reynolds number for the inlet and outlet pipes. 
Here is the average velocity in pipe ,  is the diameter of the pipe and is the dynamic viscosity. To be able to 
describe all flow scenarios at the junction the ratios of Reynolds numbers for the inlets and outlets are introduced.  

   

Due to the fact that the AZRED model concentrates on junctions with equal pipe diameters this presentation 
concurs with the relative inlet and outlet flow rates given in Ho (2009). The experiments presented in Choi et al. 
(2008) show, that in the turbulent flow regime the ratios of the Reynolds numbers and the type of junction are the 
predominant variables influencing the mixing process. Since the model is based on experimental results the 
extreme values of the flow rates cannot be determined. This means that in these cases the model is extrapolated. 

The objective of our work is to develop a model based on CFD simulations that can give a better description of 
the mixing process especially for the extreme ratios of the flow rates with a special focus on the laminar mixing 
process.  

1.2. Exemplary Statistics on Junctions of a Water Distribution Network 

To get an idea of the relevant junction types exemplary statistics on the junctions of the WDN of Strasbourg have 
been done. These statistics are based on a 24 hour simulation of the hydraulic model of Strasbourg and its 
surroundings implemented in PORTEAU (Porteau (2013)). The hydraulic model is represented by a reduced 
network with 12,730 pipes, 10,460 junctions and a complete length of 964 km is used. A more detailed model with 
over 52,000 pipes is in preparation to give a more complete picture. The values of interest for the CFD model are 
the dominant junction types and the relevant flow conditions. 

 

Fig. 2: (a) classes of T-junctions by diameters of branches in Strasbourg network model; (b) number of distance between two junctions in 
diameter proportion. 
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Fig. 3: Reynolds algebraic values around T 100-100-100 mm for one-day simulation. 

Fig. 2 (a) shows the frequency of pipe diameters for all T-junctions in the network. We can see that the diameter 
of  is dominant.  of the T-junctions have equal pipe diameters of , further 
junctions with identical pipe diameters account for  of all T-junctions. Fig. 2 (b) shows a statistic on the 
relevant distance between two T-junctions. From literature we know that a contamination can be considered 
completely mixed after a pipe length of around . In the diagram we see that the most common distance 
between two T-junctions is about  In Fig. 3 the frequency Reynolds numbers at all T-junctions is depicted 
over a simulated period of 24 hours. It is evident that the laminar flow regime is relevant in wide areas of the 
network. The statistics support the approach to simulate the laminar mixing process in different configurations of 
T-junctions.  

2. CFD-based Method for the derivation of enhanced 1D mixing Models 

The objective of our work is to set up a one-dimensional transport model for water distribution networks based 
on CFD simulations. In the following section we describe the basic models, model parameters and the method for 
evaluation of the CFD simulation. 

2.1. CFD Model for T- and N-Junctions with Contamination Source 

The governing equations for the flow in the two and three-dimensional domain are described by the Navier-
Stokes equations. In the case of solute mixing in pipe junctions we can apply certain simplifications to their 
general formulation. The fluid observed in the studies is incompressible and body forces are neglected (same 
elevation at the junction scale). Due to the fact that we simulate time dependent mixing in a steady state flow, time 
derivatives can be disregarded. Under these conditions the Navier-Stokes equations can be stated by the 
conservation equation and the momentum equation as follows: 

  

 

 

 

The constant density is given by , the pressure by  and the velocity field by .  
The transport equation for modeling the distribution of a conservative contaminant (i.e. no biological 

degradation, no chemical reactions) is given by the convection and diffusion equation for single-phase transport. 
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Here  gives the concentration of the contamination. The diffusivity of the contaminant is given by the diffusion 
coefficient . The velocity field for the convective transport is determined by the Navier-Stokes equations. Since 
we do not consider any sources inside the domain the right hand side is equal to zero. The inlet of a contamination 
source is considered by a time dependent boundary condition, which is described in the sequel.  

The geometric domain for the T-junction is depicted in Fig. 4 (a). For further proceedings a nomenclature for 
naming the pipes is defined here. For the 3-way junction the main inlet pipe is referred to by 1, the main outlet 
pipe is referred to by 3 and the secondary pipe is referred to by 2. Fig. 4 (b) shows the domain for the N-junction. 
The following nomenclature can also be applied for the U-junction with equilateral secondary pipes. In a 4-way 
junction the main inlet 1 and the main outlet 3 are defined the same way as at the T-junction. Additionally, the 
secondary inlet pipe is referred to by 2 and the secondary outlet pipe is referred to by 4. Based on the 
investigations of CUS the pipe diameter is defined as . 

The boundary conditions for the fluid flow in the T-junction are given by the flow rate at the inlet pipe 1 and 
the main outlet pipe 3. At the secondary outlet pipe 2 a free pressure outlet boundary condition is set. Since this 
model is set in laminar flow conditions an entrance length of . For the concentration only for the 
main inlet pipe a contamination impulse is set. To simulate a contamination injected into the concentration has a 
Gaussian distribution focused at the pipe center. For the temporal distribution of the pulse a Gaussian distribution 
is chosen as well. The boundary conditions for the 4-way junction are chosen similarly. The only difference is that 
the flow rate secondary inlet pipe is defined. 

2.2. Model Parameters 

The parameters for the physical models and the parameter studies are presented in this section. For the physical 
model the material properties of water are defined by the density and the dynamic 
viscosity , for room temperature of . The contamination is defined by sodium chloride. The 
density is defined as constant and equal to that of water, the diffusivity is set to  

 

Fig. 4: (a) Nomenclature for pipes, definition variables and state of flow for T-junction.; (b) Nomenclature for pipes, definition variables and 
state of flow for N-junction 

In the mixing models described in the introduction two ways are defined to describing the state of flow in a 4-
way junction. In the BAM model it is defined by the ratio of inlet flow rates  and the ratio of the outlet flow 
rates . In AZRED the flow state is defined by the ratios of the Reynolds numbers. Since both models are 
intended for junctions with equal pipe diameters these ratios are basically the ratios of flow velocities at the inlet 
and the outlet. In respect to the fact that the approach to modeling mixing in junctions presented in this paper may 
be extended for junctions with unequal pipe sizes we define the relative inlet and outlet flow rate ratios 
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with  

   

For the T-junction only the relative outlet flow rate is defined. The ratios are each defined at one of the inlets 
and one of the outlets and divided by the total flow rate. This way a linear scale can be introduced to describe the 
flow state in a junction. Further it is possible to describe the extreme ratios of the flow rates where one pipe has no 
bulk flow either as or . 

For N-junctions a third factor of interest is introduced. It is defined by the dimensionless distance  between 
two T-junctions, . Here stands for the distance between the two T-junctions. It is set in relation to the pipe 
diameter . The statistics from CUS presented before give a good measure for the range of interest of the 
dimensionless distance of . 

2.3. Method for the Evaluation of the transient mixing Behavior 

Our model simulates the time dependent mixing in stationary flow conditions. This is due to the fact that we 
simulate contamination pulses, which seems close to reality. The time dependent concentration at the inlet pipe is 
defined as Gaussian pulse as shown in Fig. 5 (solid line). The resulting time dependent concentrations at the outlet 
pipes for a T-junction are also shown in Fig. 5 (for ). Due to this time dependent scenario, which is 
much closer to reality than stationary conditions, the mixing process is evaluated by means of the 
inflowing/outflowing mass cumulated over time. 

A useful description for the time dependent mixing can be given by the mass fractions. This method evaluates 
the mass of the contaminant leaving each outlet pipe in relation to the total mass of the contaminant entering the 
junction. This approach makes it possible to evaluate the results from the existing mixing models, since the mass 
fraction is calculated through the integral over time of the concentration distribution. 

 

Fig. 5: Time dependent concentrations at a T-junction for inlet (solid line) and outlets . 

For the given values of the concentrations of the contaminant and the flow rates at each pipe, the mass 
fraction for the stationary models can be calculated by 
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  (10) 

 (11) 

with . Here  stands for the total rate of contaminant entering the junction. Since the 
concentrations and flow rates are constant over time the mass fraction can be calculated by the bulk flow. For the 
CFD model the bulk flow is given through a time dependent distribution similar to that in. The mass fraction can 
there for be calculated by 

(12) 

3. Simulation Results of Mixing at T- and N-Junctions 

Fig. 6 shows the results of the simulations for a T-junction. It shows the mass fraction for the main and 
secondary outlet pipe in percent over the relative flow rate for the outlet . The diagram contains the results 
for the two dimensional CFD simulation and the results for ideal mixing obtained by the Complete Mixing Model.  

In the Complete Mixing Model the mass fractions directly follow the flow rates at the outlet pipes. As a result 
we can see that the mass fractions at the outlets are linked proportional to the relative outlet flow rates. For the 
CFD model the results match those of the Complete Mixing Model in the extreme values of the relative outflow 
rate and the central point of . Due to the shape of the concentration pulse modeled in our simulation 
we have higher mass fraction for the outlet with the higher flow rate. The difference in the mass fraction between 
the CFD model and the ideal mixing is shown in the second diagram of Fig. 6. This difference reaches a maximum 
of about 10% at the relative flow rates of  and .  

The results of our CFD simulations for the X-junction and a N-junction with a dimensionless distance between 
the T-junctions of are presented in Fig. 7 (a) and (b). For the state of flow across the junction, defined by the 
relative inflow and outflow , the mass fraction leaving the junction through the primary outlet pipe 

is depicted. In the same way the results attained by the BAM Model and AZRED are shown in Fig. 8 (a) and 
(b). The diagram for the BAM Model was created from the model described in the introduction. The diagram for 
AZRED is based on data from the implementation in EPANET. 

 
Fig. 6: Simulated and Ideal mass fractions at a T-junction for  
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For the extreme values of and  all models show similar behavior. For the relative inflow 
rate  the mass fraction is  since no contaminant is injected into the junction. In the case of the 
relative inflow rate  we can see that the behavior of the T-junction is reproduced. This means the T-
junction could be interpreted as a special case of a 4-way junction. For the relative outflow rate  the 
mass fraction is  here this can be explained by the fact that we have no flow rate at the main outlet pipe. 
Contrary to that the mass fraction is  for the relative outflow rate  due to the fact that the flow 
exits the junction at a single pipe. For the point at the value cannot be defined properly. In 
our model we set the mass fraction to zero. 

If we compare Fig. 7 (a) and (b) we can identify the influence of the distance between the two T-junctions. 
While the X-junction has a relative sharp separation between mixing and no mixing, this area is smoothed for the 
N-junction. This can be explained by the mixing that occurs in the pipe between the two junctions. Simulations 
show that longer distance between the junctions result in better mixing. For longer distances  the model 
approaches the Complete Mixing Model. 

When we compare the two diagrams for the X-junction Fig. 7(a), Fig. 8 (a) and Fig. 8 (b) we can confirm what 
we have expected. The three models generally show good accordance. In the area around  
we can see better mixing for the CFD model than in the BAM Model since BAM neglects some mixing effects. In 
the comparison between the CFD model and AZRED we can see even stronger mixing for AZRED. This can be 
explained by the fact that AZRED is a model for turbulent mixing. 

 

Fig. 7: mass fraction  at main outlet pipe for  and  (a) CFD (L=0); (b) CFD (L=5)  

 

Fig. 8: mass fraction  at main outlet pipe for  and  (a) BAM (L=0); (b) AZRED (L=0) 
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During our investigations we have seen that the mass fractions do not give a comprehensive description of the 
solute transport. Fig. 6 shows the course of the concentration at each pipe of the junction. Through the laminar 
transport along the pipe the profile degraded from the perfect Gaussian shape defined in the boundary conditions. 
This effect is also known as axial dispersion and can be modeled as an axial dispersion reactor Hart et al. (2013), 
Sun et al. (2009). The influence of axial dispersion is not modeled in our approach yet.  

4. Conclusion and future work 

In this work we have investigated the mixing behavior of several types of junctions (T, X and N junctions) 
based on a 2D CFD model in the laminar flow regime. A close to reality transient contamination scenario has been 
assumed (pulse-like inflow of contamination). We have seen that for the X-junction the CFD based approach is 
comparable to the BAM Model and AZRED. With the CFD based approach slight improvements compared to 
BAM models are achieved due to consideration of diffusion. Regarding N-junctions (which are not covered by 
BAM), the CFD based approach in the laminar regime is more accurate than AZRED, as in AZRED these values 
are extrapolated from turbulent regime. Regarding T-junctions, for certain flow conditions the CFD based 
approach has a deviation of more than 10 % compared to the simple ideal mixing mode. The T-junctions are not 
considered in AZRED model, hence a comparison with AZRED is not possible. 

A general advantage of our approach is that even extreme values of the relative inflow and outflow are 
considered. This is a weakness of AZRED which extrapolates results for such extreme inflow / outflow conditions. 

The work on the mixing model will be continued in various directions. First, the investigations will be extended 
to transitional and turbulent flow regime. Second, a 3D CFD model will be used as basis for the derivation of the 
1D mixing model. Furthermore, more complex junctions will be investigated (e.g. junctions with different pipe 
diameters). Non-constant boundary conditions, a slow varying flow rate, will also be tested. During the ongoing 
SMaRT-OnlineWDN project the resulting 1D model will be implemented in a hydraulic solver and will be validated 
in experiments at a medium sized test network. 
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