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Abstract 

This paper describes a polynomially-solvable class of temporal planning problems. Polynomiali-

ty follows from two assumptions. Firstly, by supposing that each sub-goal fluent can be established 

by at most one action, we can quickly determine which actions are necessary in any plan. Secondly, 

the monotonicity of sub-goal fluents allows us to express planning as an instance of STP
≠
 (Simple 

Temporal Problem with difference constraints). This class includes temporally-expressive problems 

requiring the concurrent execution of actions, with potential applications in the chemical, pharma-

ceutical and construction industries.  

We also show that any (temporal) planning problem has a monotone relaxation which can lead to 

the polynomial-time detection of its unsolvability in certain cases. Indeed we show that our relaxa-

tion is orthogonal to relaxations based on the ignore-deletes approach used in classical planning 

since it preserves deletes and can also exploit temporal information. 

1. Introduction

Planning is a field of AI which is intractable in the general case (Erol, Nau & Subrahmanian, 

1995). In particular, propositional planning is PSPACE-Complete (Bylander, 1994). Identifying trac-

table classes of planning is important for at least two reasons. Firstly, real-world applications may fall 

into such classes. Secondly, relaxing an arbitrary instance I so that it falls in the tractable class can 

provide useful information concerning I in polynomial time.  

Temporal planning is an important extension of classical planning in which actions are durative 

and may overlap. An important aspect of temporal planning is that, unlike classical planning, it per-

mits us to model problems in which the execution of two or more actions in parallel is essential in or-

der to solve the problem (Cushing, Kambhampati, Mausam & Weld, 2007). Although planning has 

been studied since the beginnings of research in Artificial Intelligence, temporal planning is a relative-

ly new field of research. No tractable classes had specifically been defined in the temporal framework 

before the research described in this paper. We present a class of temporal planning problems that can 

be solved in polynomial time. In particular, we considerably extend the theoretical results given in 

conference papers (Cooper, Maris & Régnier, 2012, 2013b) by considering plans with optimal 

makespan, by relaxing the assumption that two instances of the same action do not overlap and by 

introducing the notion of unitary actions. We also give previously unpublished results of experimental 

trials on benchmark problems. But first, we review previous work in the identification of tractable 

classes of classical planning problems. 



A lot of work has been done on the computational complexity of non-optimal and optimal planning 

for classical benchmark domains. In the non-optimal case, Helmert (2003, 2006) proved that most of 

these benchmarks can be solved by simple procedures running in low-order polynomial time. In the 

optimal case, finding an optimal plan for the famous blocksworld domain is NP-hard (Gupta & Nau, 

1992) but Slaney and Thiébaux (2001) proved that this domain is tractable when searching for a non-

optimal plan.

Moreover, some planners empirically showed that the number of benchmark problems that can be 

solved without search may be even larger than the number of tractable problems that have been identi-

fied theoretically. The FF planner (Hoffmann, 2005) demonstrated that domains with constant-

bounded heuristic plateaus can theoretically be solved in polynomial time using the h+ heuristic. The 

eCPT planner (Vidal & Geffner, 2005) can solve, by use of inference, many instances of benchmark 

domains without having to backtrack. 

Since the work of Bäckström and Klein (1991a) on the SAS formulation of planning, several stud-

ies have also been performed to define tractable classes of planning problems. Many of these results 

(Bylander, 1994; Bäckström & Nebel, 1995; Erol, Nau & Subrahmanian, 1995; Jonsson & Bäck-

ström, 1998) are based on syntactic restrictions on the set of operators. For example, operators having 

a single effect, no two operators having the same effect, etc. 

Another important body of work focused on the underlying structure of planning problems which 

can be highlighted using the causal graph, a directed graph that describes variable dependencies 

(Knoblock, 1994). Jonsson and Bäckström (1995) presented a class of planning problems with an acy-

clic causal graph and unary operators. In this "3S" class, variables are either Static, Symmetrically 

reversible, or Splitting; plan existence can be determined in polynomial time while plan generation is 

provably intractable. Giménez and Jonsson (2008) designed an algorithm that solves these problems 

in polynomial time while producing a compact macro plan in place of the explicit exponential solu-

tion. They also proved that the problem of plan existence for planning problems with multi-valued 

variables and chain causal graphs is NP-hard. Plan existence for planning problems with binary state 

variables and polytree causal graphs was also proven to be NP-complete.  

Jonsson and Bäckström (1994, 1998) considered optimal and non-optimal plan generation and pre-

sented an exhaustive map of complexity results based on syntactic restrictions (using the SAS+ for-

mulation of planning) together with restrictions on the causal graph structure (interference-safe, acy-

clic, prevail-order-preserving). They present a planning algorithm which is correct and runs in poly-

nomial time under these restrictions. Williams and Nayak (1997) designed a polynomial-time algo-

rithm for solving planning problems with acyclic causal graphs and reversible actions. Domshlak and 

Dinitz (2001) investigated connections between the structure of the causal graph and the complexity 

of the corresponding problems in the case of coordination problems for dependent agents with inde-

pendent goals acting in the same environment. This general problem is shown to be intractable, but 

some significant subclasses are in NP and even polynomial.  

Brafman and Domshlak (2003, 2006) studied the complexity of planning in the propositional 

STRIPS formalism under the restrictions of unary operators and acyclic graphs. They give a polyno-

mial planning algorithm for domains whose causal graph induces a polytree of bounded indegree. 

However, they also demonstrated that for singly connected causal graphs the problem is NP-complete. 

Giménez and Jonsson (2012) gave a polynomial algorithm for the class P(k) of k-dependent planning 

problems with binary variables and polytree causal graphs for any fixed value of k. They also showed 



that if, in addition, the causal graph has bounded depth, plan generation is linear in the size of the in-

put. Haslum (2008) defines planning problems in terms of graph grammars. This method reduces the 

original problem to that of graph parsing, which can be solved in polynomial time under certain re-

strictions on the grammar. Haslum thus explores novel classes of restrictions that are distinct from 

previously known tractable classes. Katz and Domshlak (2008) showed that planning problems whose 

causal graphs are inverted forks are tractable if the root variable has a domain of fixed size. Jonsson 

(2007, 2009) introduced the class IR of inverted tree reducible planning problems and gave an algo-

rithm that uses macros to solve problems from this class. Its complexity depends on the size of the 

domain transition graph and it runs in polynomial time for several subclasses of IR. Chen and Gimé-

nez (2008) gave a unified framework to classify the complexity of planning under causal graph re-

strictions. They give a complete complexity classification of all sets of causal graphs for reversible 

planning problems. The graph property that determines tractability is the existence of a constant bound 

on the size of strongly connected components. 

However, in real application domains, the sequential nature of classical plans is often too restrictive 

and a temporal plan is required consisting of a set of instances of durative actions which may overlap. 

Whereas classical planning consists in scheduling action-instances, temporal planning can be seen as 

scheduling the events (such as the establishment or destruction of fluents) of action-instances subject 

to temporal constraints capturing the internal structure of actions. A temporal planning framework 

must therefore be used to formalize temporal relations between events within the same or different 

actions-instances. In the PDDL 2.1 temporal framework (McDermott, 1998; Fox & Long, 2003), the 

PSPACE-complete complexity of classical planning can be preserved only when different instances of 

the same action cannot overlap. If they do overlap, testing the existence of a valid plan becomes an 

EXPSPACE-complete problem (Rintanen, 2007). 

In this paper we present a polynomially-solvable sub-problem of temporal planning. To our 

knowledge no previous work has specifically addressed this issue. Polynomiality follows from the 

double assumption that each sub-goal fluent can be established by at most one action and also satis-

fies a monotonicity condition. This allows us to express temporal planning as an instance of the 

polynomial-time solvable problem STP
≠
 (Simple Temporal Problem with difference constraints). 

An STP
≠
 instance consists of a set of real-valued variables and a set of constraints of the three fol-

lowing forms  x−y < c,  x−y ≤ c  or  x−y ≠ c, where x,y are any variables and c is any constant. Our 

tractable class includes temporally-expressive problems requiring the concurrent execution of ac-

tions, and has potential industrial applications. We also show how to derive, from an arbitrary (tem-

poral) planning problem, a relaxed version belonging to this tractable class. This can lead to the 

polynomial-time detection of unsolvability in certain cases. It also provides a polynomial-time heu-

ristic for detecting actions or fluents satisfying certain properties.   

The article is organized as follows: Section 2 reviews existing temporal planners and their use of 

temporal constraints. Section 3 presents our temporal framework. Section 4 introduces the notion of 

monotonicity of fluents. Section 5 shows how the notion of monotonicity can be extended to mono-

tonicity* in order to define a larger tractable class and presents the main theorem. Section 6 demon-

strates how to build a tractable relaxation of any temporal planning problem (or classical planning 

problem) based on simple temporal problems. Section 7 shows how to determine whether fluents are 

monotone* using this relaxation and describes a tractable class of temporal planning problems. Sec-

tion 8 describes experimental trials to validate and identify the limits of this temporal relaxation. Sec-

tion 9 gives examples of temporal planning problems that can be solved in polynomial time, including 



a detailed example involving concrete mixing, delivery and use. It is worth noting that all solutions to 

the examples discussed in Section 9 require concurrent actions. Sections 10 and 11 conclude and dis-

cuss avenues of future research. 

2. Temporal Constraint Solving in Temporal Planning

After the first temporal planner DEVISER (Vere, 1983), planners such as FORBIN (Dean, Firby & 

Miller, 1988) quite rapidly used an independent module, called Time-Map Manager (Dean & 

McDermott, 1987), to handle temporal constraints. The HTN (Hierarchical Tasks Network) planners 

IxTeT (Ghallab & Alaoui, 1989; Laborie & Ghallab, 1995), TRIPTIC (Rutten & Hertzberg, 1993) and 

TEST (Reichgelt & Shadbolt, 1990) kept this idea of an Independent module to manage temporal 

data. 

Today’s temporal planners are essentially based on one of three types of algorithms: plan-space 

search, state-space search and GRAPHPLAN (Blum & Furst, 1995).  

The plan-space planners HTN and POP (Partially Ordered Planning) were the first to be extended 

to the temporal framework. In general, they use temporal intervals for the representation of actions 

and propositions, the causality relation between actions being replaced by a temporal order in partial 

plans. Conflict handling is then performed by a system inspired by Time-Map Manager. For example, 

the VHPOP planner (Younes & Simmons, 2003) uses a system of simple temporal constraints (STP: 

Simple Temporal Problem) (Dechter, Meiri & Pearl, 1991), whereas DT-POP (Schwartz & Pollack, 

2004) is based on a system of disjunctive temporal constraints (DTP: Disjunctive Temporal Problem) 

(Stergiou & Koubarakis, 2000). The advantage of  STPs is that they can be solved in polynomial time. 

DTPs cannot be solved in polynomial time, but allow the user to express temporal constraints such as 

"A appears before or after B", which lightens the work of the planner. 

State-space search planners associate a start instant with each world state. Search can be based first 

on the instants when an event can occur: each decision of the form "when to perform an action" is then 

taken before all decisions of the form "which action is to be performed". This approach is called Deci-

sion Epoch Planning. Search can also be based first on finding which actions to use before scheduling 

these actions in time: all decisions of the form "when to perform an action" are taken only after all 

decisions of the form "which action is to be performed" have been taken. This approach is called 

Temporally Lifted Progression Planning. 

GRAPHPLAN has also been extended to temporal domains through the use of solvers, in the plan-

ners LPGP (Long & Fox, 2003), TM-LPSAT (Shin & Davis, 2004) and TLP-GP (Maris & Régnier, 

2008). 

As we have seen, many temporal planners use the resolution of a system of temporal constraints. 

However, even when this system of constraints can be solved in polynomial time, as is the case for 

simple temporal constraints, the PSPACE complexity of classical planning remains. Indeed, certain 

planners even solve a system of disjunctive temporal constraints, which is known to be NP-hard. The 

tractable classes of classical planning (discussed in Section 1) have not been explicitly extended to 

temporal planning. In this paper we present what is to our knowledge the first tractable class of tem-

poral planning problems. Its solution algorithm is based on solving a system of simple temporal con-

straints. 



3. Definitions

We study temporal propositional planning in a language based on the temporal aspects of 

PDDL2.1 (Fox & Long, 2003). A fluent is a positive or negative atomic proposition. As in PDDL2.1, 

we consider that changes of the values of fluents are instantaneous but that conditions on the value of 

fluents may be imposed over an interval. An action a is a quadruple <Cond(a), Add(a), Del(a), Con-

str(a)>, where the set of conditions Cond(a) is the set of fluents which are required to be true for a to 

be executed, the set of additions Add(a) is the set of fluents which are established by a, the set of dele-

tions Del(a) is the set of fluents which are destroyed by a, and the set of constraints Constr(a) is a set 

of constraints between the relative times of events which occur during the execution of a. An event 

corresponds to one of four possibilities: the establishment or destruction of a fluent by an action a, or 

the beginning or end of an interval over which a fluent is required by an action a. In PDDL2.1, events 

can only occur at the beginning or end of actions, but we relax this assumption so that events can oc-

cur at any time provided the constraints Constr(a) are satisfied. Note that Add(a) ∩ Del(a) may be 

non-empty. Indeed, it is not unusual for a durative action to establish a fluent at the beginning of the 

action and destroy it at its end. We can also observe that the duration of an action, the time between 

the first and last events of the action, does not need to be explicitly stored. 

We represent non-instantaneous actions by a rectangle. The duration of an action is given in square 

brackets after the name of the action. Conditions are written above an action, and effects below. The 

action LOAD(m,c) shown in Figure 1 represents loading a batch of concrete c in a mixer m. We have 

Cond(LOAD(m,c)) = {Fluid(c), Empty(m), At-factory(m)}. We can see from the figure that the mixer 

must be empty at the start of the loading, whereas the concrete must be fluid and the mixer at the fac-

tory during the whole duration of the loading. We have Del(LOAD(m,c)) = {Empty(m)} and 

Add(LOAD(m,c) = {On(m,c)}. We can see from the figure that as soon as loading starts, the mixer is 

no longer empty and at the end of loading the mixer contains the concrete. 

Figure 1: An example of the representation of a durative action 

We use the notation a → f to denote the event that action a establishes fluent f, a → ¬f to denote 

the event that a destroys f, and f |→ a  and  f →| a, respectively, to denote the beginning and end of the 

interval over which a requires the condition f. If f is already true (respectively, false) when the event 

a → f (a → ¬f ) occurs, we still consider that a establishes (destroys) f. A temporal plan may contain 

several instances of the same action, but since most of the temporal plans studied in this paper contain 

at most one instance of each action, for notational simplicity, we only make the distinction between 

actions and action-instances if this is absolutely necessary. We use the notation τ(e) to represent the 

time in a plan at which an event e occurs.  

Fluid(c) 

 LOAD(m,c)[5] 

At-factory(m) 

On(m,c) ¬Empty(m) 

Empty(m) 
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For a given action (or action-instance) a, let Events(a) represent the different events which consti-

tute its definition, namely (a → f ) for all f in Add(a), (a → ¬f ) for all f in Del(a), ( f |→ a) and 

( f →| a) for all f in Cond(a). The definition of an action a includes constraints Constr(a) on the rela-

tive times of events in Events(a). For example, the internal structure of the fixed-length action 

LOAD(m,c) shown in Figure 1 is defined by constraints such as 

τ(Fluid(c) →| LOAD(m,c)) − τ(Fluid(c) |→ LOAD(m,c)) = 5 

τ(LOAD(m,c) → On(m,c)) − τ(Fluid(c) →| LOAD(m,c)) = 0 

As in PDDL2.1, we consider that the length of time between events in Events(a) is not necessarily 

fixed and that Constr(a) is a set of interval constraints on pairs of events, such as 

τ( f →| a) − τ( f |→ a) ∈ [α, β] for some constants α,β. We use [αa(e1, e2), βa(e1, e2)] to denote the inter-

val of possible values for the relative distance between events e1, e2 in action a. A fixed length of time 

between events e1, e2 ∈ Events(a) can, of course, be modelled by setting αa(e1, e2) = βa(e1, e2). Similar-

ly, the absence of any constraint can be modelled by the interval [−∞, +∞]. We now introduce two 

basic constraints that all temporal plans must satisfy. 

inherent constraints on the set of action-instances A: for all a∈A, a satisfies Constr(a), i.e. for all 

pairs of events e1,  e2 ∈ Events(a), τ(e1) − τ(e2) ∈ [αa(e1, e2), βa(e1, e2)]. 

contradictory-effects constraints on the set of action-instances A: for all ai, aj ∈A, for all positive 

fluents f ∈ Del(ai) ∩ Add(aj),  τ(ai → ¬f ) ≠ τ(aj → f ). 

The inherent constraints define the internal structure of each action-instance, whereas the contradicto-

ry-effects constraints ensure that the truth-value of each fluent never becomes undefined during the 

execution of a temporal plan. For example, if a plan contains an instance a of the action LOAD(m,c) 

shown in Figure 1 and an instance b of another action CLEAN(m) with Empty(m) ∈ 

Add(CLEAN(m)), then the temporal plan must satisfy the contradictory-effects constraint 

τ(a → ¬EMPTY(m))  ≠  τ(b → EMPTY(m)). 

Definition 3.1. A temporal planning problem <I,A,G> consists of a set of actions A, an initial state I 

and a goal G, where I and G are sets of fluents. 

Notation: If A is a set of action-instances, then Events(A) is the union of the sets Events(a) (for all 

action-instances a ∈ A). 

Definition 3.2. P = <A,τ>, where A is a finite set of action-instances {a1,..., an} and τ is a real-valued 

function on Events(A), is a temporal plan for the problem <I, A′, G> if  

(1) A ⊆ A′, and 

(2) P satisfies the inherent and contradictory-effect constraints on A; 

and when P is executed (i.e. fluents are established or destroyed at the times given by τ) starting from 

the initial state I: 

(3) for all ai ∈ A, each f ∈ Cond(ai) is true when it is required, and 

(4) all goal fluents g ∈ G are true at the end of the execution of P. 

(5) P is robust under infinitesimal shifts in the starting times of actions. 



Events are instantaneous, whereas actions are not only durative but may also be of variable length. 

Thus a temporal plan P does not schedule its action-instances directly but schedules all the events in 

its action-instances.   

Condition (5) in Definition 3.2 means that we disallow plans which require perfect synchronisation 

between different actions. Fox, Long and Halsey (2004) show how this condition can be imposed 

within PDDL2.1. We require that in all plans fluents are established strictly before the beginning of 

the interval over which they are required. The only exception to this rule is when a fluent f is estab-

lished and required by the same action a. We allow the possibility of perfect synchronization within an 

action, which means that we can have τ(a → f ) = τ( f |→ a). Similarly, fluents can only be destroyed 

strictly after the end of the interval over which they are required. The only exception to this rule is 

when a fluent f is required and destroyed by an action a, in which case we can have τ( f →| a) = 

τ(a → ¬f ). For example, the fluent Empty(m) is simultaneously required and destroyed by the action 

LOAD(m,c) shown in Figure 1. 

Since a set of actions can be viewed as a set of action-instances in which each action occurs exactly 

once, we can apply constraints, such as the inherent and contradictory-effects constraints, to a set of 

actions rather then a set of action-instances. We now look in more detail at the type of constraints that 

we impose on the relative times of events within an action-instance. 

Definition 3.3. An interval constraint C(x,y) on real-valued variables x,y is a binary constraint of the 

form x−y ∈ [a,b] where a,b are real constants. 

Definition 3.4. (Jeavons & Cooper, 1995) A binary constraint C(x,y) is min-closed if for all pairs of 

values (x1,y1), (x2,y2) which satisfy C, (min(x1,x2),min(y1,y2)) also satisfies C. A binary constraint 

C(x,y) is max-closed if for all pairs of values (x1,y1), (x2,y2) which satisfy C, (max(x1,x2),max(y1,y2)) 

also satisfies C. 

Lemma 3.5. Let A = {a1,..., an} be a set of actions and A′ a set of action-instances in which each action 

ai (i =1,..., n) occurs ti≥1 times. Let τ be a real-valued function on the set of events in A′. For each 

e ∈ Events(ai), let e[ j] ( j =1,...,ti) represent the occurrence of event e within instance number j of ai. 

For i ∈ {1,...,n}, define the real-valued functions τmin, τmax on the set of events in the set of actions A by 

τmin(e) = min{τ(e[ j]) | j =1,..., ti} and τmax(e) = max{τ(e[ j]) | j =1,..., ti}. If τ satisfies the inherent con-

straints on A′, then both τmin and τmax satisfy the inherent constraints on A. 

Proof: All interval constraints are both min-closed and max-closed (Jeavons & Cooper, 1995). By 

applying the definition of min-closedness (respectively, max-closedness) ti −1 times, for each action ai, 

we can deduce that if τ satisfies an interval constraint on each of the ti instances of ai, then τmin (τmax) 

satisfies this constraint on the action ai. In other words, for all pairs of events e1, e2 in Events(ai), if 

τ(e1[ j]) − τ(e2[ j]) ∈ [αa(e1, e2), βa(e1, e2)] for j=1,...,ti, then τmin(e1) − τmin(e2) ∈ [αa(e1, e2), βa(e1, e2)] and 

τmax(e1) − τmax(e2) ∈ [αa(e1, e2), βa(e1, e2)]. Hence if τ satisfies the inherent constraints on A′, then τmin 

and τmax satisfy the inherent constraints on A.                       □ 

Definition 3.6. A temporal planning problem <I,A,G> is positive if there are no negative fluents in the 

conditions of actions nor in the goal G. 



In this paper, we will only consider positive temporal planning problems <I,A,G>. It is well known 

that any planning problem can be transformed into an equivalent positive problem in linear time by 

the introduction, for each positive fluent f, of a new fluent notf to replace occurrences of ¬f in condi-

tions of actions (Ghallab, Nau & Traverso, 2004). It is important to note, however, that this transfor-

mation may not conserve other properties of the instance. By the assumption that all problems are pos-

itive, G and Cond(a) (for any action a) are composed of positive fluents. By convention, Add(a) and 

Del(a) are also composed exclusively of positive fluents. The initial state I, however, may contain 

negative fluents.  

For simplicity of presentation, we assume throughout this paper that the set of actions A has under-

gone the filtering operation consisting of eliminating those actions a from A which cannot possibly be 

executed since Cond(a) is not a subset of I ∪ Add(A). 

We will need the following notion of establisher-uniqueness in order to define our tractable class 

of temporal planning problems. This is equivalent to post-uniqueness in SAS
+
 planning (Jonsson & 

Bäckström, 1998) restricted to Boolean variables but specialised so that it applies to a specific subset 

of the positive fluents. In the next section, we apply it to the subset of positive fluents which may be 

required for the realisation of the goal. 

Definition 3.7. A set of actions A = {a1,...,an} is establisher-unique (EU) relative to a set of positive 

fluents S if for all i ≠ j, Add(ai) ∩ Add(aj) ∩ S = ∅, i.e. no fluent of S can be established by two dis-

tinct actions of A. 

If a set of actions is establisher-unique relative to the set of sub-goals of a problem, then we can de-

termine in polynomial time the set of actions which are necessarily present in a temporal plan. There 

remains the problem of determining how many times each action must occur and then scheduling the-

se action-instances in order to produce a valid temporal plan. Establisher-uniqueness alone cannot 

prevent minimal plans from being of exponential size (Bäckström & Klein, 1991b). 

4. Monotone Planning

In this section, we introduce the notion of monotonicity of fluents. Together with establisher-

uniqueness, the monotonicity of fluents is a sufficient condition for the existence of a polynomial-time 

algorithm for temporal planning. 

Definition 4.1. A fluent f is –monotone (relative to a positive temporal planning problem <I,A,G>) if, 

after being destroyed f is never re-established in any temporal plan for <I,A,G>. A fluent f is 

+monotone (relative to <I,A,G>) if, after having been established f is never destroyed in any temporal 

plan for <I,A,G>. A fluent is monotone (relative to <I,A,G>) if it is either + or −monotone (relative to 

<I,A,G>). 

Example 4.2: Consider the two actions shown in Figure 2: LIGHT-MATCH and LIGHT-CANDLE. 

The action LIGHT-MATCH requires that the match be live, in order to light it. The match remains lit 

until it is blown out at the end of the action. A constraint in Constr(LIGHT-MATCH) imposes that the 

duration of the action, i.e. τ(LIGHT-MATCH → ¬Match-lit) − τ(LIGHT-MATCH → Match-lit), is 

between 1 and 10 time units. The second action LIGHT-CANDLE requires that the match be lit dur-



ing two time units for the candle to be lit. For an initial state I = {live, ¬Match-lit} and a set of goals 

G = {Candle-lit}, it is clear that all temporal plans for this problem involve executing the two actions 

in parallel with the start (respectively, end) of LIGHT-MATCH being strictly before (after) the start 

(end) of LIGHT-CANDLE. There is only one match available, which means that LIGHT-MATCH 

can be executed at most once. This means that the fluent Match-lit is −monotone since it cannot be 

established after being destroyed. This same fluent Match-lit is not +monotone since it is destroyed 

after being established. 

Figure 2: An example of a set of actions which allows us to light a candle using a single match. 

Notation: If A is a set of actions, we use the notation Del(A) to represent the union of the sets Del(a) 

(for all actions a ∈ A). Add(A), Cond(A), Constr(A) are defined similarly. 

The following lemma follows trivially from Definition 4.1. 

Lemma 4.3. If f ∉ Add(A) ∩ Del(A), then f is both −monotone and +monotone relative to the positive 

temporal planning problem <I,A,G>.  

Certain physical actions or chemical reactions are irreversible. Examples include bursting a bal-

loon, killing a fly, adding milk to a cup of coffee or burning fuel. Since there can be no action to de-

stroy the corresponding fluents Burst, Fly-dead, Milk-added, Fuel-burnt, these fluents are necessarily 

both −monotone and +monotone by Lemma 4.3. A similar remark holds for fluents that may be true in 

the initial state but for which there is no action which establishes them, such as Fly-alive, for example. 

In  Example 4.2, the fluent Live is both −monotone and +monotone since there is no action to estab-

lish it, and the fluent Candle-lit is −monotone and +monotone since there is no action to destroy it. 

We now introduce three other sets of constraints, the −authorisation constraints being applied to 

–monotone fluents f and the +authorisation constraints to +monotone fluents. The causality constraints

on fluent f are only valid if there is a unique action-instance which establishes f. 

−authorisation constraints on the positive fluent f and the set of action-instances A: for all 

ai ≠ aj ∈A, if f ∈ Del(aj) ∩ Cond(ai), then  τ( f →| ai)  <  τ(aj → ¬f ); for all ai ∈ A, if f ∈ Del(ai) ∩ 

Cond(ai), then  τ( f →| ai)  ≤  τ(ai → ¬f ). 

+authorisation constraints on the positive fluent f and the set of action-instances A: for all ai,aj ∈ A, 

if f ∈ Del(aj) ∩ Add(ai) ∩ (Cond(A) ∪ G), then  τ(aj → ¬f ) < τ(ai → f ). 

causality constraints on the positive fluent f and the set of action-instances A: for all ai
 ≠ 

aj ∈ A, if 

f∈(Cond(aj) ∩ Add(ai))\I, then  τ(ai → f ) < τ( f |→ aj); for all ai ∈ A, if f ∈ (Cond(ai) ∩ Add(ai))\ I then  

τ(ai → f ) ≤ τ( f |→ ai). 

LIGHT-MATCH LIGHT-CANDLE[2] 

¬Live ¬Match-lit 

Match-lit 

Candle-lit 

Match-lit Live 



Within the same action-instance ai, perfect synchronisation is possible between the events  f →| ai  

and  ai → ¬f. Indeed, one way of ensuring that an action a is executed at most once in any temporal 

plan is to create a fluent fa ∈ Cond(a) ∩ Del(a) ∩ I which is simultaneously required and deleted at 

the start of a and which is established by no action. For example, when a is the action LIGHT-

MATCH in Example 4.2, fa is the fluent live. On the other hand, by condition (5) of Definition 3.2 of a 

temporal plan, we cannot have perfect synchronisation between events in distinct action-instances. 

This explains why the −authorisation constraints impose the strict inequality  τ( f →| ai) < τ(aj → ¬f ) 

when ai ≠ aj but only the non-strict inequality  τ( f →| ai) ≤ τ(aj → ¬f )  when ai = aj. A similar remark 

holds for the perfect synchronisation of the events  ai → f  and  f |→ aj  which is only permitted by the 

causality constraints when ai = aj. 

Definition 4.4. A temporal plan <A,τ> for a positive temporal planning problem <I,A′,G> is monotone 

if each pair of action-instances (in A) satisfies the +authorisation constraints for all +monotone fluents 

and satisfies the –authorisation constraints for all –monotone fluents. 

Definition 4.5. Given a temporal planning problem <I,A,G>, the set of sub-goals is the minimum sub-

set SG of Cond(A) ∪ G satisfying 

1. G  ⊆ SG

2. for all a ∈ A, if Add(a) ∩ (SG \ I) ≠ ∅, then Cond(a) ⊆ SG.

The reduced set of actions is  A
r
 = {a ∈ A | Add(a) ∩ (SG \ I) ≠ ∅}. 

We can determine SG and then A
r
 in polynomial time and the result is unique. To see this consider 

the simple algorithm which initialises SG to G and then repeatedly adds to SG the set of fluents F 

which is the union of (Cond(a) \ SG) over all actions a ∈ A such that Add(a) ∩ (SG \ I) ≠ ∅, until 

F=∅.  This simple algorithm has worst-case time complexity O(n
3
), where n is the total number of 

events in the actions of A, and produces a unique result which is clearly the minimum set of fluents 

satisfying the two conditions of Definition 4.5. Note that this algorithm is similar to the standard 

method of relevance detection used in GRAPHPLAN (Blum & Furst, 1995). 

In order to state our theorem, we require a more relaxed definition of the set of sub-goals and the 

reduced set of actions to take into account the case in which fluents in the initial state are destroyed 

and re-established. Let  SG 
p
 (the set of possible sub-goals) denote the minimal set of fluents satisfying 

1. G ⊆ SG 
p

2. for all actions a ∈ A, if  Add(a) ∩ SG 
p
 ≠ ∅  then  Cond(a) ⊆ SG 

p
.

Let A
p
 be the set of actions { a ∈ A | Add(a) ∩ SG 

p
 ≠ ∅ }. The difference between A

r
 and A

p
 is that 

A
p
 is the set of actions which could occur in a minimal temporal plan in which fluents in the initial 

state can be destroyed and re-established. As with SG and A
r
, SG 

p
 and A

p
 are unique and can be de-

termined in O(n
3
) time.  

If each fluent in Cond(A
r
) ∪ G is monotone, we say that a plan P for the temporal planning prob-

lem <I,A,G> satisfies the authorisation constraints if each −monotone fluent satisfies the −authorisa-

tion constraints and each +monotone fluent satisfies the +authorisation constraints (it is assumed that 

we know, for each fluent f ∈ Cond(A
r
) ∪ G, whether f  is + or –monotone).  



The following theorem contains minor improvements and corrections compared to the conference 

version of the present paper (Cooper, Maris & Régnier, 2012). Since it is a corollary of Theorem 5.6 

(proved in the following section), we omit its proof. 

Theorem 4.6.  Given a positive temporal planning problem <I,A,G>, let SG and A
r
 be, respectively, 

the set of sub-goals and the reduced set of actions, with A
p
 defined as above. Suppose that Constr(A

r
) 

are interval constraints, the set of actions A
r
 is establisher-unique relative to SG \ I, each fluent in 

Cond(A
r
) ∪ G is monotone relative to <I,A

r
,G> and each fluent in I ∩ (Cond(A

r
) ∪ G) is –monotone 

relative to <I,A
p
,G>. Then <I,A,G> has a temporal plan P if and only if 

(1) G ⊆ (I \ Del(A
r
)) ∪ Add(A

r
) 

(2) Cond(A
r
) ⊆ I ∪ Add(A

r
) 

(3) all fluents g ∈ G ∩ Del(A
r
) ∩ Add(A

r
) are +monotone relative to <I,A

r
,G> 

(4) the set of authorisation, inherent, contradictory-effects and causality constraints has a solution 

over the set of actions A
r
. 

5. Extending Monotonicity of Fluents

In this section we introduce the notion of monotonicity*, thus allowing us to define a larger tracta-

ble class of temporal planning problems. 

Definition 5.1. A plan is minimal if removing any non-empty subset of action-instances produces an 

invalid plan. A fluent f is –monotone* (relative to a positive temporal planning problem <I,A,G>) if, 

after being destroyed f is never re-established in any minimal temporal plan for <I,A,G>. A fluent f is 

+monotone* (relative to <I,A,G>) if, after having been established f is never destroyed in any minimal 

temporal plan for <I,A,G>. A fluent is monotone* (relative to <I,A,G>) if it is either + or −monotone* 

(relative to <I,A,G>). 

Example 5.2. To give an example of a monotone* fluent which is not monotone, consider the follow-

ing planning problem in which all actions are instantaneous:  

Start_vehicle: k → o 

Drive: o → d, ¬o 

Unload: d → p 

with I = {k}, G = {p}. The fluents represent that I have they ignition key (k), the engine is on (o), the 

destination has been reached (d) and that the package has been delivered (p). There is only one mini-

mal plan, namely Start_vehicle, Drive, Unload, but there is also the non-minimal plan Start_vehicle, 

Drive, Start_vehicle, Unload in which the fluent o is established, destroyed and then re-established. 

Hence o is −monotone* but not −monotone. 

A +monotone (−monotone) fluent is clearly +monotone* (−monotone*) since in any plan, includ-

ing minimal plans, after having been established (destroyed) it is never destroyed (re-established). In 

order to prove the equivalent of Theorem 4.6 for monotone* fluents, we first require another definition 

and two minor technical results. 



Definition 5.3. A minimal temporal plan <A,τ> for a positive temporal planning problem <I,A′,G> is 

monotone* if each pair of action-instances in A satisfies the +authorisation constraints for all 

+monotone* fluents and satisfies the –authorisation constraints for all –monotone* fluents. 

The following lemma follows directly from Definition 5.1 of the monotonicity* of a fluent along 

with the fact that a fluent cannot be simultaneously established and destroyed in a temporal plan. 

Lemma 5.4. Suppose that the positive fluent f is monotone* relative to a positive temporal planning 

problem <I,A′,G>. Let <A,τ> be a minimal temporal plan for <I,A′,G> with actions ai, aj ∈ A such that 

f ∈ Add(ai) ∩ Del(aj). If  f  is +monotone* relative to this problem, then τ(aj → ¬f ) < τ(ai → f ). If f is 

–monotone* relative to this problem, then τ(ai → f ) < τ(aj → ¬f ).

Proposition 5.5. If each fluent in Cond(A) is monotone* relative to a positive temporal planning prob-

lem <I,A,G>, then all minimal temporal plans for <I,A,G> are monotone*.  

Proof: Let P be a minimal temporal plan. Consider firstly a positive –monotone* fluent f. We have to 

show that the −authorisation constraints are satisfied for f in P, i.e. that f is not destroyed before (or at 

the same time as) it is required in P. But this must be the case since P is a plan and f cannot be re-

established once it is destroyed. Consider secondly a positive +monotone* fluent f. By Lemma 5.4, the 

+authorisation constraint is satisfied for f in P.                       □ 

We can now give our main theorem which generalizes Theorem 4.6 to monotone* fluents. 

Theorem 5.6. Given a positive temporal planning problem <I,A,G>, let SG and A
r
 be, respectively, 

the set of sub-goals and the reduced set of actions. Suppose that all constraints in Constr(A
r
) are inter-

val constraints, the set of actions A
r
 is establisher-unique relative to SG \ I, each fluent in Cond(A

r
) ∪ G 

is monotone* relative to <I,A
r
,G> and each fluent in I ∩ (Cond(A

r
) ∪ G) is –monotone* relative to 

<I,A
p
,G>. Then <I,A,G> has a temporal plan P if and only if 

(1) G ⊆ (I \ Del(A
r
)) ∪ Add(A

r
) 

(2) Cond(A
r
) ⊆ I ∪ Add(A

r
) 

(3) all fluents g ∈ G ∩ Del(A
r
) ∩ Add(A

r
) are +monotone* relative to <I,A

r
,G> 

(4) the set of authorisation, inherent, contradictory-effects and causality constraints (given in Sec-

tions 3 and 4) has a solution τ over the set of actions A
r
 (where the +authorisation constraints apply to 

each +monotone* fluent and the −authorisation constraints apply to each −monotone* fluent). 

Proof: (⇒)  If <I,A,G> has a temporal plan, then it clearly has a minimal plan P. A
r
 is the set of those 

actions which establish sub-goals f ∈ SG \ I. By definition, SG = Cond(A
r
) ∪ G. Since A

r
 is establisher-

unique relative to SG \ I, each sub-goal f ∈ SG \ I has a unique action which establishes it. Hence each 

action in A
r
 must occur in the plan P. Furthermore, (Add(A) \ Add(A

r
)) ∩ (Cond(A

r
) \ I) = ∅ by Defini-

tion 4.5. It follows that (2) is a necessary condition for a temporal plan P to exist. 

    Let P 
p
 be a version of P in which we only keep actions in A

p
. P 

p
 is a valid temporal plan since, 

by definition of A
p
, no fluent in (Cond(A

p
) ∪ G) can be established by actions in A \ A

p
. Indeed, since P 

was assumed to be minimal, we must have P 
p
 =P. Now let P′ be a version of P in which we only keep 

actions in A
r
. By Definition 4.5, no conditions of actions in P′ and no goals in G are established by any 



of the actions eliminated from P, except possibly if they are also in I. Thus to show that P′ is also a 

valid temporal plan we only need to show that any establishment of a fluent f ∈ I ∩ (Cond(A
r
) ∪ G) in 

P by an action a ∈ A
p
 \ A

r
 is unnecessary. By hypothesis, f is −monotone* relative to <I,A

p
,G> and 

hence f cannot be established in P after having been destroyed. Since f ∈ I, this means that the estab-

lishment of f in P was unnecessary. Hence P′ is a valid temporal plan. Indeed, since P was assumed to 

be minimal, we must have P′=P. 

  We have seen that P contains exactly the actions in A
r
. Hence, all fluents g∈G (which are neces-

sarily positive by our hypothesis of a positive planning problem) that are either not present in the ini-

tial state I or are deleted by an action in A
r
 must be established by an action in A

r
. It follows that (1) is 

a necessary condition for P to be a valid temporal plan. Consider g ∈ G ∩ Del(A
r
) ∩ Add(A

r
). From 

Lemma 5.4, we can deduce that g cannot be −monotone*, since g is true at the end of the execution of 

P. Thus (3) holds. Let Pmin=<A
r
,τmin> be the version of the temporal plan P=<A

r
,τ>  in which we only 

keep one instance of each action ai ∈ A
r
 (and no instances of the actions in A \ A

r
) and τmin is defined 

from τ by taking the first instance of each event in Events(ai), for each action ai ∈ A
r
, as described in 

the statement of Lemma 3.5. We will show that Pmin satisfies the authorisation, inherent, contradicto-

ry-effects and causality constraints.  

   We know that P is a temporal plan for the problem <I,A,G>. Hence it is also a temporal plan for 

the problem <I,A
r
,G>, since it uses only actions from A

r
. By hypothesis, all fluents in Cond(A

r
) are 

monotone relative to <I,A
r
,G>. Therefore, by Proposition 5.5, the temporal plan P is monotone*. Since 

P is monotone* and by the definition of a temporal plan, the authorisation constraints are all satisfied. 

P must also, by definition of a temporal plan, satisfy the inherent and contradictory-effects constraints. 

It follows from Lemma 3.5 that Pmin also satisfies the inherent constraints. Since the events in Pmin are 

simply a subset of the events in P, Pmin necessarily satisfies both the authorisation constraints and the 

contradictory-effects constraints. 

    Consider a positive fluent f ∈ (Cond(aj) ∩ Add(ai)) \ I, where ai, aj ∈ A
r
. Since aj ∈ A

r
, we know 

that Add(aj) ∩ (SG \ I) ≠ ∅ and hence that Cond(aj) ⊆ SG, by the definition of the set of sub-goals SG. 

Since f ∈ Cond(aj) we can deduce that f ∈ SG. In fact, f ∈ SG \ I  since we assume that f ∉ I. It follows 

that if f ∈ Add(a) for some a ∈ A, then a ∈ A
r
. But we know that A

r
 is establisher-unique (relative to 

SG). Hence, since f ∈ Cond(aj) ⊆ Cond(A
r
) and f ∈ Add(ai), f can be established by the single action 

a=ai in A. Since f ∉ I, the first establishment of f by an instance of ai must occur in P before f is first 

required by any instance of aj. It follows that the causality constraint must be satisfied by f in Pmin. 

(⇐) Suppose that conditions (1)-(4) are satisfied by A
r
. Let P be a solution to the set of authorisation, 

inherent, contradictory-effects and causality constraints over A
r
. A solution to these constraints uses 

each action in A
r
 (in fact, it uses each action exactly once since it assigns one start time to each action 

in A
r
). Consider any g ∈ G. By (1), g ∈ (I \ Del(A

r
)) ∪ Add(A

r
). If g ∉ Del(A

r
), then g is necessarily 

true at the end of the execution of P. On the other hand, if g ∈ Del(aj) for some action aj ∈ A
r
, then by 

(1) there is necessarily some action ai ∈ A
r
 which establishes g. Then, by (3) g is +monotone*. Since P 

satisfies the +authorisation constraint for g, ai establishes g after all deletions of g. It follows that g is 

true at the end of the execution of P.  

    Consider some –monotone* f ∈ Cond(aj) where aj ∈ A
r
. Since the –authorisation constraint is 

satisfied for f in P, f can only be deleted in P after it is required by aj. Therefore, it only remains to 



show that f was either true in the initial state I or it was established some time before it is required by 

aj. By (2), f ∈ I ∪ Add(A
r
), so we only need to consider the case in which f ∉ I but f ∈ Add(ai) for 

some action ai ∈ A
r
. Since P satisfies the causality constraint, τ(ai → f ) < τ( f |→ aj) and hence, during 

the execution of P, f is true when it is required by action aj. 

    Consider some f ∈ Cond(aj),  where  aj ∈ A
r
,  such that f  is  not –monotone*. By the assump-

tions of the theorem, f is necessarily +monotone* and f ∉ I. First, consider the case f ∉ Del(A
r
) ∩ 

Add(A
r
). By Lemma 4.3, f is −monotone (and hence −monotone*) which contradicts our assumption. 

Therefore f ∈ Del(ak) ∩ Add(ai), for some ai, ak ∈ A
r
, and recall that f ∉ I. Since the +authorisation 

constraint is satisfied for f in P, any destruction of f occurs before f is established by ai. It then follows 

from the causality constraint that the condition f will be true when required by aj during the execution 

of P.                                        □ 

The makespan of a temporal plan P = <A,τ> is the time interval between the first and last events of 

P, i.e.  max{τ(e) | e∈Events(A)}  −  min{τ(e) | e∈Events(A)}. The problem of finding a plan with min-

imum makespan is polytime approximable if there is a polynomial-time algorithm which, given a 

temporal planning problem <I,A,G> and any ε > 0, finds a temporal plan whose makespan is no more 

than Mopt + ε, where Mopt is the minimum makespan of all temporal plans for <I,A,G>.  

If the constraints in Constr(a) impose that the time interval between each pair of events in 

Events(a) is fixed, then we say that action a is rigid.  

We express complexities in terms of the total number n of events in the actions in A. Without loss 

of generality, we assume that all actions in A contain at least one event and all fluents occur in at least 

one event. Hence the number of actions and fluents are both bounded above by n. 

Theorem 5.7: Let ΠEUM*
 be the class of positive temporal planning problems <I,A,G> in which A is 

establisher-unique relative to Cond(A) ∪ G, all fluents in Cond(A) ∪ G are monotone* relative to 

<I,A,G> and all fluents in I ∩ (Cond(A) ∪ G) are −monotone* relative to <I,A,G>. Then ΠEUM*
 can be 

solved in time O(n
3
) and space O(n

2
), where n is the total number of events in the actions in A. Indeed, 

we can even find a temporal plan with the minimum number of action-instances or of minimal cost, if 

each action has an associated non-negative cost, in the same complexity. Furthermore, if all actions in 

A are rigid then the problem of finding a plan with minimum makespan is polytime approximable. 

Proof: The fact that ΠEUM*
 can be solved in time O(n

3
) and space O(n

2
) follows almost directly from 

Theorem 5.6 and the fact that the set of authorisation, inherent, contradictory-effects and causality 

constraints form an STP
≠
, a simple temporal problem with difference constraints (Koubarakis, 1992). 

An instance of STP
≠
 can be solved in O(n

3
+k) time and O(n

2
+k) space (Gerevini & Cristani, 1997), 

where n is the number of variables and k the number of difference constraints (i.e. constraints of the 

form xj – xi ≠ d). Here, the only difference constraints are the contradictory-effects constraints of 

which there are at most n
2
, so k=O(n

2
). Furthermore, as pointed out in Section 4, the calculation of SG 

and A
r
 is O(n

3
).   

    Establisher-uniqueness tells us exactly which actions must belong to minimal temporal plans. Then, 

as we have seen in the proof of Theorem 5.6, the monotonicity* assumptions imply that we only need 

one instance of each of these actions. It then trivially follows that we solve the optimal version of the 

temporal planning problem, in which the aim is to find a temporal plan with the minimum number of 



action-instances or of minimal cost, if each action has an associated cost, by solving the set of authori-

sation, inherent, contradictory-effects and causality constraints.   

Now suppose that all actions in A are rigid.  We will express the problem of minimising makespan 

while ignoring the contradictory-effects constraints as a linear program. We will then show that it is 

always possible to satisfy the contradictory-effects constraints (without violating the other constraints) 

by making arbitrarily small perturbations to the start times of actions. We assume that the events in a 

single action-instance satisfy the contradictory-effects and authorisation constraints; since actions are 

rigid this can be checked independently for each action in A in polynomial time.  Let P be a temporal 

plan for <I,A,G> which has minimum makespan. We showed in the proof of Theorem 5.6 that Pmin, 

obtained from P by keeping only one instance  of each action in P, is also a valid temporal plan. Since 

makespan cannot be increased by eliminating action-instances from a temporal plan, Pmin also mini-

mises makespan. Let C be the set of inherent, authorisation and causality constraints that Pmin must 

satisfy. C contains equality constraints of the form  xj – xi = d, where d is a constant and xj, xi are times 

of events in the same action, and constraints of the form  xj – xi < d, where d is a constant and xj, xi are 

times of events in different actions. We introduce two other variables τbegin, τend and we denote by Copt 

the set of constraints C together with the constraints τbegin ≤ τ(e) and τ(e) ≤ τend for all  e∈Events(A
r
). 

The linear program which minimises τend – τbegin subject to the constraints Copt minimises makespan 

but does not take into account the contradictory-effects constraints C≠ that must be satisfied by a valid 

temporal plan. Let PLP be a solution to this linear program. Its makespan is clearly no greater than 

Mopt, the minimum makespan of all temporal plans (since valid temporal plans must satisfy the con-

straints C ∪ C≠
 ). Let δ be the minimum difference d – (xj – xi) in PLP over all constraints of the form 

xj – xi < d in C. Let ∆ be the minimum non-zero difference | d – (xj – xi) | in PLP over all contradictory-

effects constraints  xj – xi ≠ d in C≠. Suppose that A
r 
= {a1,...,am}. Let P be identical to PLP except that 

we add µi = min{ε,δ,∆}(i–1)/m  to τ(e) for all e∈Events(ai). By construction, all contradictory-effects 

constraints which were violated in PLP are satisfied in P, all contradictory-effects constraints which 

were satisfied in PLP are still satisfied in P, and all strict inequalities which were satisfied in PLP are 

still satisfied in P. The inequalities τbegin ≤ τ(e) are still satisfied in P. Finally, in order to guarantee 

satisfying the inequalities τ(e) ≤ τend, it suffices to add ε to τend. The resulting solution P corresponds to 

a valid temporal plan whose makespan is no more than Mopt + ε. The result then follows from the fact 

that linear programming is solvable in O(n
3.5

L) time by Karmarkar’s interior-point algorithm, where n 

is the number of variables and L the number of bits required to encode the problem (Karmarkar, 

1984). □ 

Figure 3: (a) all instances of action a1 occur strictly before all instances of action a2, (b) all instances of 

a2 are contained in all instances of a1 (c) all instances of a1 overlap all instances of a2. 
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In the class ΠEUM*
, all sub-goal fluents f ∈ SG are true over a single interval Int(f, P) during the exe-

cution of a temporal plan P. If f is +monotone*, then Int(f, P) is necessarily of the form [t1,∞) where t1 

is the moment when f is first established. If f is −monotone*, then Int(f, P) is necessarily of the form 

[t1, t2] where t1 is again the moment when f is first established (or 0 if f ∈ I) and t2 is the first moment 

after t1 when f is destroyed (or [t1,∞) if f is never destroyed). The class ΠEUM*
 is solvable in polynomial 

time due to the fact that establisher-uniqueness ensures that there is no choice concerning which ac-

tions to include in the plan and monotonicity* ensures that the only choice concerning the time of 

events is within an interval. Given these two restrictions it is quite surprising that a large range of in-

dustrial planning problems fall in this class (Cooper, Maris & Régnier, 2012, 2013b). EU monotone 

planning is a sufficiently powerful modelling language to allow us to impose constraints such as an 

action occurs at most once in a plan or that all instances of event e1 occur before all instances of event 

e2. To illustrate this, Figure 3 shows how we can impose precedence, containment or overlapping con-

straints between actions a1 and a2 by the introduction of, respectively, one, two or three fluents 

f, g, h ∈ I which occur only in the events shown in Figure 3. By Lemma 4.3, these fluents f, g, h are all 

necessarily both −monotone and +monotone in all temporal plans. 

6. Temporal Relaxation

Relaxation is ubiquitous in Artificial Intelligence. A valid relaxation of an instance I has a solution 

if I has a solution. Hence when the relaxation has no solution, this implies the unsolvability of the 

original instance I. A tractable relaxation can be built and solved in polynomial time. 

The traditional relaxation of propositional non-temporal planning problems consisting of ignoring 

deletes has two drawbacks. Firstly, it is traditionally used with a forward search, which is not valid in 

temporal planning unless some specific transformation has been applied beforehand to the set of ac-

tions (Cooper, Maris & Régnier, 2013a). Secondly, it does not use information which may be essential 

for the detection of unsolvability of the original instance, namely the destruction of fluents and tem-

poral information such as the relative duration of actions. In this section we present a valid tractable 

relaxation inspired by EU monotone temporal planning. In the following section we show how to use 

our temporal relaxation to detect monotonicity* of fluents. There are other possible applications, such 

as the detection of action landmarks (actions which occur in each solution plan) (Karpas & Domshlak, 

2009), which immediately leads to a lower bound on the cost of a plan when each action has an asso-

ciated cost (Cooper, de Roquemaurel & Régnier, 2011). 

The traditional relaxation of classical non-temporal planning problems consists of ignoring deletes 

of actions. By finding the cost of an optimal relaxed plan, this relaxation can be used to calculate the 

admissible h+ heuristic. As shown by Betz and Helmert (2009), h+ is very informative but unfortu-

nately NP-hard to compute (Bylander, 1994) and also hard to approximate (Betz & Helmert, 2009). 

As this relaxation does not use information which may be essential for the detection of un-solvability 

of the original instance (namely the destruction of fluents), a lot of research has been carried out to 

take some deletes into account (Fox & Long, 2001; Gerevini, Saetti & Serina, 2003; Helmert, 2004; 

Helmert & Geffner, 2008; Keyder & Geffner, 2008; Cai, Hoffmann & Helmert, 2009). Another recent 

approach (Haslum, Slaney & Thiébaux, 2012; Keyder, Hoffmann & Haslum, 2012) consists in enrich-

ing the classical relaxation with a set of fact conjunctions. Finally the red-black relaxation (Katz, 

Hoffmann & Domshlak, 2013a, 2013b) generalizes delete-relaxed planning by relaxing only a subset 

of the state variables.  



Unfortunately, these relaxations do not directly generalize to temporal planning, since techniques 

based on a combination of ignoring deletes and forward search are not valid in temporal planning un-

less some specific transformation has been applied beforehand to the set of actions. An important as-

pect of temporal planning, which is absent from non-temporal planning, is that certain temporal plan-

ning problems, known as temporally-expressive problems, require concurrency of actions in order to 

be solved (Cushing, Kambhampati, Mausam & Weld, 2007). A typical example of a temporally-

expressive problem is cooking: several ingredients must be cooked simultaneously in order to be 

ready at the same moment. In a previous paper (Cooper, Maris & Régnier, 2010), we identified a sub-

class of temporally expressive problems, known as temporally-cyclic, which require cyclically-

dependent sets of actions in order to be solved. 

Figure 4: An example of a temporally cyclic temporal planning problem. 

A simple temporally-cyclic problem is shown in Figure 4, where I = ∅ and G = {Job-finished}. A 

condition for a workman to start work is that he is paid (at the end of the job) whereas his employer 

will only pay him after he has started work. In a valid temporal plan for this problem the actions PAY 

and WORK must be executed in parallel with the execution of action PAY contained within the inter-

val over which action WORK is executed. After applying the traditional ignore-deletes relaxation, 

forward chaining from the initial state would not be able to start either of the two actions since both of 

them have a missing condition. Thus, certain proposed techniques, although very useful in guiding 

heuristic search (Eyerich, Mattmüller & Röger, 2009; Do & Kambhampati, 2003), are not valid for 

temporally cyclic problems. Different solutions exist to get round the problem of temporal cycles. For 

example, we gave a polynomial-time algorithm to transform a temporally-cyclic problem into an 

equivalent acyclic one (Cooper, Maris & Régnier, 2013a). Other transformations have been proposed 

in the literature (Long & Fox, 2003; Coles, Fox, Long & Smith, 2008) which also eliminate the possi-

bility of temporal cycles, although this was not an explicitly-stated aim in the descriptions of these 

transformations: temporal cycles are avoided by decomposing durative actions into instantaneous ac-

tions denoting the start and end of the action. Intermediate conditions can also be managed by splitting 

actions into component actions enclosed within an “envelope” action (Smith, 2003). In each case, ig-

noring deletes in the transformed problem followed by forward search provides a valid relaxation. If 

the original problem is not temporarily cyclic, then ignoring deletes followed by forward search is a 

valid relaxation. 

In this section, we present an alternative form of relaxation, which we call TR (for Temporal Re-

laxation), inspired by EU monotone planning, comprising an STP
≠
 instance which has a solution only 

if the original temporal planning instance has a solution. It is incomparable with the relaxation based 

on ignoring deletes, as we will show through temporal and non-temporal examples, in the sense that 

there are instances that can be detected as unsolvable using EU monotone relaxation but not by ignor-

ing deletes (and vice versa). 

WORK(10) 

Job-started Job-finished Wages-paid 

 Job-started Wages-paid 

PAY(1) 



By applying the following simple rule until convergence we can transform (in polynomial time) 

any temporal planning problem P  into a relaxed version P′  which is EU relative to the set of sub-goals 

SG: if a sub-goal fluent f is established by two distinct actions, then delete f from the goal G and from 

Cond(a) for all actions a. As a consequence, f is no longer a sub-goal and SG has to be recalculated. 

Clearly, P′  is a valid relaxation of P. From now on we assume the temporal planning problem is EU 

relative to SG.  

We denote by A
LM

 the set of action landmarks that have been detected (Karpas & Domshlak, 

2009). Action landmarks are also known as indispensable actions (Cooper, de Roquemaurel & Ré-

gnier, 2011). Establisher-uniqueness implies that we can easily identify many such actions, in particu-

lar the set of actions A
r
 which establish sub-goals not present in the initial state I. 

We cannot assume in the STP
≠
 that a single instance of each action will be sufficient. For each ac-

tion landmark a
 
and for each event e ∈ Events(a), we introduce two variables τfirst(e), τlast(e) represent-

ing the times of the first and last occurrences of event e in the plan. The constraints of our temporal 

relaxation TR include versions of the internal, contradictory-effects, authorization and causality con-

straints (which we give below) together with the following obvious constraint:  

intrinsic TR-constraints: ∀a∈A
LM

, for all events e ∈ Events(a), τfirst(e) ≤ τlast(e). 

In the conference version of this paper in which we described a preliminary version of TR (Cooper, 

Maris & Régnier 2013b), we made the assumption that no two instances of the same action can over-

lap. Under this assumption, for e1, e2 ∈ Events(a), the first occurrences of e1, e2 in a plan correspond to 

the same instance of action a. A similar remark holds for the last occurrences of e1, e2. It turns out that 

we do not need to make this assumption in order to apply in TR each inherent constraint in Constr(a) 

independently to the values of τfirst(e) and τlast(e) (for each e ∈ Events(a)). Indeed, according to Lem-

ma 3.5, assuming that Constr(A
r
) are interval constraints, if each instance of action a satisfies its inher-

ent constraints, then both τfirst and τlast satisfy the inherent constraints on events in action a: 

 inherent TR-constraints: ∀a∈A
LM

, ∀ e1,e2 ∈ Events(a), τfirst(e1) − τfirst(e2) ∈ [αa(e1,e2), βa(e1,e2)] 

and τlast(e1) − τlast(e2) ∈ [αa(e1,e2), βa(e1,e2)].   

The contradictory-effects constraints in TR are as follows: 

contradictory-effects TR-constraints: ∀ai, aj ∈ A
LM

, for all positive fluents f ∈ Del(ai) ∩ Add(aj), 

∀L1,L2 ∈ {first,last}, τL1(ai → ¬f ) ≠ τL2(aj → f ). 

For each positive fluent f which is known to be −monotone*, we apply in TR the following modi-

fied version of the −authorisation constraints on f:  

−authorisation TR-constraints:  ∀ ai ≠ aj ∈ A
LM

, if f ∈ Del(aj) ∩ Cond(ai), then τlast( f →| ai) < 

τfirst(aj → ¬f ); for all ai ∈ A
LM

, if f ∈ Del(ai) ∩ Cond(ai), then  τlast( f →| ai) ≤  τfirst(ai → ¬f ). 

For each positive fluent f which is known to be +monotone*, we apply in TR the following modified 

version of the +authorisation constraints on f:  

+authorisation TR-constraints:  ∀ai, aj ∈ A
LM

,  if f ∈ Del(aj) ∩ Add(ai),  then τlast(aj → ¬f ) < 

τfirst(ai → f). 

We check that every condition and every goal can be established, i.e. Cond(A
LM

) ⊆ I ∪ Add(A) and 

G ⊆ (I \ Del(A
LM

)) ∪ Add(A). If not, we consider that the relaxation TR has no solution. 



We also apply in TR the following causality constraints for each positive fluent f: 

causality TR-constraints: ∀ ai ≠ aj ∈ A
LM

, if f ∈ (Cond(aj) ∩ Add(ai)) \ I then τfirst(ai → f ) < 

τfirst(f |→ aj); for all ai ∈ A
LM

, if f ∈ (Cond(ai) ∩ Add(ai)) \ I then  τfirst(ai → f ) ≤ τfirst( f |→ ai). 

We also apply the following goal constraints for each g ∈ G: 

goal TR-constraints: ∀ai, aj ∈ A
LM

, if g ∈ Del(aj) ∩ Add(ai), then τlast(aj → ¬g) < τlast(ai → g). 

Of course, these causality and goal constraints are necessary conditions for the existence of a plan on-

ly if A
LM

 is EU relative to (Cond(A
LM

) \ I)  ∪ (G ∩ Del(A)). 

Definition 6.1:  An action a∈A is unitary for a temporal planning problem <I,A,G> if each minimal 

temporal plan for the <I,A,G> contains at most one instance of a. 

If an action a∈A
LM

 is known to be unitary, then in TR, for each event e ∈ Events(a), we replace the 

two variables τfirst(e), τlast(e) in the above constraints by a unique variable τ(e).  

Thus TR consists in first eliminating from G and Cond(a) (for all a ∈ A) all fluents established by 

two distinct actions, then, after checking that Cond(A
LM

) ⊆ I ∪ Add(A) and G ⊆ (I \ Del(A
LM

)) ∪ 

Add(A), solving the STP
≠
 consisting of the intrinsic, inherent, contradictory-effects, −authorisation, 

+authorisation, causality and goal TR-constraints, given above.  

TR is a valid relaxation since the constraints of TR must clearly be satisfied by any temporal plan. 

Furthermore, if a plan exists then a minimal plan necessarily exists and in minimal plans there is at 

most one instance of each unitary action. Under assumptions of establisher-uniqueness and mono-

tonicity*, TR is in fact a solution procedure for the tractable class described in Theorem 5.7. 

The temporal relaxation TR can be significantly strengthened by the prior identification of unitary 

actions. We therefore present some lemmas which cover several simple but common cases in which 

actions can be identified as unitary. We first give a lemma which allows us to simplify certain actions. 

Lemma 6.2: Suppose that f ∈ I and that f is −monotone* in the positive temporal planning problem 

<I,A,G>. Let A′ be identical to the set of actions A except that f has been deleted from Add(a) for each 

action a. Then all minimal temporal plans for <I,A,G> are minimal temporal plans for <I,A′,G> and 

vice versa. 

Proof: If P is a minimal temporal plan for <I,A,G>, then, since f is −monotone*, it cannot be estab-

lished after having been destroyed in P. It follows that all establishments of f in P are unnecessary 

since they can only occur when f ∈ I was already true. Hence, P is also a plan for <I,A′,G>. It is also 

minimal for <I,A′,G> since all conditions and goals are identical in both problems. A minimal tem-

poral plan for <I,A′,G> is necessarily a temporal plan for <I,A,G>, since all conditions and goals are 

positive, and is again necessarily minimal since all conditions and goals are identical in both prob-

lems.                                          □ 

We assume in the rest of the paper that in TR the set of actions A has been simplified as indicated in 

Lemma 6.2. 



Lemma 6.3: If f is −monotone*, f ∈ Cond(a), f ∈ Del(a) and a simultaneously requires and destroys f 

(i.e. Constr(a) contains the constraints τ( f |→ a) = τ( f →| a) = τ(a → ¬f )), then a is unitary. 

Proof: Let P be a minimal temporal plan containing a and consider the instance of a in P which 

first destroys f. By condition (5) of Definition 3.2 of a temporal plan, no two instances of a can be 

synchronised so that they destroy f simultaneously, so this instance is unique. By −monotonicity*, 

f cannot later be established in P. Hence no other instance of a can require (and destroy) f after 

this instant. It follows that the minimal temporal plan P can contain at most one instance of a. 

Hence a is unitary.                                 □ 

Lemma 6.4: Let <I,A,G> be a positive temporal planning problem and a∈A an action such that a 

is rigid or no two instances of a can overlap in a temporal plan for <I,A,G>. In each of the three 

following cases a is unitary in <I,A,G>: (1) all fluents in Add(a) are monotone*, (2) Add(a) ⊆ 

G\Cond(A), or (3) Add(a) = {h} for some fluent h∉G, where there is a unique action b such that h 

∈ Cond(b), and furthermore b is unitary. 

Proof: Let P be a minimal temporal plan for <I,A,G> containing action a. First, consider case (1) 

in which all fluents in Add(a) are monotone*. Monotone* fluents never need to be established 

more than once in a minimal plan. This is because in minimal plans, once a +monotone* fluent 

has been established, it cannot be destroyed and, once a −monotone* fluent has been established, 

it can be destroyed but not established again. It follows that all but the first establishment of each 

fluent in Add(a) by a is unnecessary in P. Whether a is rigid or no two instances of a can overlap 

in P, all the first establishments of each of the fluents in Add(a) correspond to the same instance 

of a. All other instances of a can thus be deleted from P without destroying its validity. Hence a 

is unitary.  

Now consider case (2), i.e. Add(a) ⊆ G\Cond(A). All but the last establishment of each fluent 

in Add(a) by a is unnecessary in P, since no fluents in Add(a) are conditions of actions in A. 

Whether a is rigid or no two instances of a can overlap in P, all the last establishments of each of 

the fluents in Add(a) correspond to the same instance of a. All other instances of a can thus be 

deleted from P without destroying its validity. Hence a is unitary.  

Now consider case (3). Since b is unitary, the minimal plan P contains at most one instance of 

b. Only the instance of a which last establishes h before it is required by the unique instance of b

can actually be necessary. All other instances of a can be deleted from P without destroying its 

validity. Hence a is unitary.                              □ 

 It is often the case that no two instances of an action a can be executed in parallel, for example due 

to limited resources. It is therefore quite common when modelling a temporal planning problem to 

forbid that two instances of the same action a overlap. This can be achieved by introducing a fluent 

f ∉ Cond(A\{a}) ∪ Add(A\{a}) ∪ Del(A\{a}) ∪ G, adding  f  to I and placing the events  f |→ a, 

f →| a  and a → ¬f  at the beginning of a and the event  a → f  at the end of a. Alternatively, we can 

place the event  a → f  at the beginning of a and the events f |→ a,  f →| a and  a → ¬f  at the end of a, 

in which case we do not need to have f∈I. In either case, we say that f is a non-overlap fluent for a. 

We can now state a more general version of Lemma 6.4. 



Lemma 6.5: Let <I,A,G> be a positive temporal planning problem and a∈A an action such that f 

is a non-overlap fluent for a. In each of the three following cases a is unitary in <I,A,G>: (1) all 

fluents in Add(a)\{f} are monotone*, (2) Add(a)\{f} ⊆ G\Cond(A), or (3) Add(a)\{f} = {h} for 

some fluent h∉G, where there is a unique action b such that h ∈ Cond(b), and furthermore b is 

unitary. 

Proof: Let P be a minimal temporal plan for <I,A,G> containing action a. No two instances of a can 

overlap in P. As in the proof of Lemma 6.4, we only need to keep a single instance of a: in case (1) 

this is the first instance of a, in case (2) the last instance of a, and in case (3) the last instance of a be-

fore h is required by b. Hence a is unitary.                         □ 

The temporal relaxation TR uses two types of information not used by the ignore-deletes relaxation: 

the destruction of fluents and temporal information. We give two very simple examples to illustrate 

this. 

Example 6.6: The simplest possible example showing that TR can detect the unsolvability of a plan-

ning problem that cannot be detected by the ignore-deletes relaxation consists of an initial state 

I = {f}, a goal G = {f, g} and a single action which simultaneously establishes g and destroys f. Un-

solvability is detected by TR since the condition G ⊆ I \ Del(A
LM

) ∪ Add(A) is not satisfied. 

Example 6.7: Consider again the problem of lighting a candle using a single match described in Ex-

ample 4.2. Suppose now that the match is very short and will only burn for at most two time units. 

The problem is clearly establisher-unique. Furthermore, both actions belong to A
r
 and are hence land-

marks. We can deduce that LIGHT-MATCH is unitary by Lemma 6.3 and that LIGHT-CANDLE is 

unitary by Lemma 6.4 (case (2)). Thus, in TR there is a single variable τ(e) for each event 

e∈Events(A). As we have already seen, Match-lit is −monotone, so TR contains the −authorisation 

constraint  τ(match-lit →| LIGHT-CANDLE) < τ(LIGHT-MATCH → ¬match-lit). It also contains 

the causality constraint  τ(LIGHT-MATCH → match-lit) < τ(match-lit |→ LIGHT-CANDLE). The 

two inherent constraints  τ(LIGHT-MATCH → ¬match-lit) − τ(LIGHT-MATCH → match-lit) ≤ 2 

and  τ(match-lit →| LIGHT-CANDLE) − τ(match-lit |→ LIGHT-CANDLE)  = 2  then provide a con-

tradiction. No form of relaxation which does not take into account the duration of actions can detect 

the unsolvability of this problem, since the identical problem with different durations given in Exam-

ple 4.2 has a solution. 

Example 6.8: We now give a generic example involving the choice between two alternatives in 

which the temporal relaxation TR can detect unsolvable problems that cannot be detected by ignoring 

all deletes. We can illustrate our generic example by a simple non-temporal planning problem P with 

initial state I = {f}, goal G = {g,h} and the following two actions: 

B:   f →  ¬f, g 

C:   f →   ¬f, h 

The fluents have many possible interpretations, including: f = I have a packet, g = I have sent the 

packet to Destination1, h = I have sent the packet to Destination2. Clearly this problem has no solu-

tion, but this is not discovered by the ignore-deletes relaxation (which cannot take into account the fact 

that I no longer have the packet once I have sent it somewhere). 



To show that TR has no solution we give a proof for the general case in which A
LM

 is EU, actions 

B,C ∈ A
LM

 are instantaneous, f ∈ (Cond(B) ∩ Del(B) ∩ Cond(C) ∩ Del(C) ∩ I)\Add(A),   g ∈ Add(B) 

∩ (G\I)  and  h ∈ Add(C) ∩ (G\I). The fluent f is −monotone by Lemma 4.3 since there is no action to 

establish it. TR has no solution since we obtain the following contradiction by a sequence of −authori-

sation, inherent, intrinsic, −authorisation, inherent and intrinsic (respectively) constraints: τlast(f →| B) 

< τfirst(C → ¬f) = τfirst(f →| C) ≤ τlast(f →| C) < τfirst(B → ¬f) = τfirst(f →| B) ≤ τlast(f →| B).    

We should point out that improved versions of the ignore-deletes relaxation which retain some in-

formation concerning deletes would also be able to detect the unsolvability of this simple problem. 

For example, the transformation of Keyder, Hoffmann and Haslum (2012) can detect unsolvability by 

introducing a special fluent representing the conjunction of g and h . 

Example 6.9: We now show that the temporal relaxation TR can detect unsolvable problems which 

are not necessarily establisher-unique. In this example, all actions are instantaneous and hence we pre-

sent it in the form of a non-temporal planning problem P with initial state I = {j,m,d}, goal G = {g} 

and the following three actions: 

Buy:   j, m → h, ¬d, ¬m 

Sell:    h → m, ¬h 

Mort2:   d, h → m, ¬d, g 

We can interpret the fluents as follows: j = I have a job, m = I have money, d = I am debt-free, h = I 

own a house, g = I have taken out a second mortgage. For example, the action Buy is possible only if I 

have a job and money to put down a deposit on a house; the result is that I own a house but I am in 

debt and no longer have money. The goal is to take out a second mortgage via the action Mort2. 

This problem has no solution, but this fact is not detected by the standard relaxation consisting of 

ignoring destructions of fluents. To set up TR, we first determine the action landmarks A
LM 

= {Buy, 

Mort2} easily identified as landmarks by the rules given by Cooper, de Roquemaurel and Régnier 

(2011) since they establish the sub-goals h and g, respectively, not present in the initial state. Observe 

that A
LM

 is EU relative to the set of sub-goals {g,h} and retains some destructions of fluents. By apply-

ing Lemma 6.3 to the fluent d (which is the –monotone by Lemma 4.3), we can deduce that Mort2 is 

unitary. Then we can deduce from Lemma 6.4 (case (3)) that Buy is unitary, since Add(Buy) = {h} 

and Mort2 is the only action requiring h. Thus, in TR there is a single variable τ(e) for each event 

e∈Events(A
LM

). TR contains the following constraints: τ(d →| Mort2) = τ(h |→ Mort2) by an internal 

TR-constraint in Mort2; τ(Buy → h) = τ(Buy → ¬d) by an internal TR-constraint in Buy; τ(Buy → h) 

< τ(h |→ Mort2) by the causality TR-constraint on h; τ(d →| Mort2) < τ(Buy → ¬d) by the –

authorisation TR-constraint, since d is –monotone. This set of four constraints has no solution, from 

which we can deduce that P has no solution. This example shows that temporal relaxation can be use-

ful even in non-temporal planning problems which are not establisher-unique. 

The above examples show that EU monotone relaxation TR can be stronger than the relaxation 

based on ignoring deletes for two reasons: TR uses temporal information, for example concerning the 

duration of actions, and retains destructions of fluents. To see that ignoring deletes can be stronger 

than EU monotone relaxation, consider a problem in which the unique goal g is produced by a unique 

action a such that Cond(a) = {f} where the fluent f is produced by two distinct actions b and c. In the 

EU monotone relaxation, the fluent f is deleted from Cond(a), since it is established by two distinct 

actions, and the relaxed version of the problem is immediately solvable by a plan containing the single 



action a. Ignoring deletes, on the other hand, can detect the unsolvability of the original problem in 

certain cases, for example, if actions b and c are instantaneous, b is the only action that establishes 

some fluent  p ∈ Cond(c) \ I and c is the only action that establishes some fluent  q ∈ Cond(b) \ I.  

An obvious application of temporal relaxation is the detection of action landmarks by the following 

classic technique which applies to any valid relaxation (Hoffmann, Porteous & Sebastia, 2004; 

Cooper, de Roquemaurel & Régnier, 2011). Let P [-a] represent the planning problem P without a 

particular action a. If the temporal relaxation of P [-a] has no solution, then we can conclude that a is 

an action landmark for P. 

In the following sections we investigate other applications of temporal relaxation concerning the 

detection of different forms of monotonicity. The basic idea is that if H is a hypothesis to be tested and 

H can be expressed as the conjunction of STP
≠
 constraints, then we can add H to the constraints of the 

temporal relaxation TR. We thus obtain an STP
≠
 instance which we denote by TR[H]: if TR[H] has no 

solution then H cannot be true in any solution to the planning problem. In each case, the complexity of 

solving TR[H] is O(n
3
) time and O(n

2
) space, where n is the total number of events in the actions in A 

(as we have already seen in the proof of Theorem 5.7). 

7. Detecting Monotonicity* Using Temporal Relaxation

A subclass Π of instances of an NP-hard problem is generally considered tractable if it satisfies two 

conditions: (1) there is a polynomial-time algorithm to solve Π, and (2) there is a polynomial-time 

algorithm to recognize Π. It is clearly polynomial-time to detect whether all actions are establisher-

unique. On the other hand, our very general definition of monotonicity of fluents implies that this is 

not the case for determining whether fluents are monotone. In this section we show how our temporal 

relaxation can be used to detect monotonicity* of certain fluents. Unfortunately, the following theo-

rem shows that, in general, detection of monotonicity* is as difficult as temporal planning. 

Theorem 7.1. Determining whether a fluent of a temporal planning problem <I,A,G> is monotone (or 

monotone*) is PSPACE-hard if overlapping instances of the same action are not allowed in plans and 

EXPSPACE-complete if overlapping instances of the same action are allowed. 

Proof: Notice that if <I,A,G> has no solution, then all fluents are trivially monotone (and hence mono-

tone*) by Definition 4.1, since they are neither established nor destroyed in any plan. It is sufficient to 

add two new goal fluents f1, f2 and two new instantaneous actions to A, a1 which simply adds f1 and a2 

which has f1 as a condition, adds f2 and deletes f1 (a1 and a2 being independent of all other fluents) to 

any problem <I,A,G>: f1 is monotone (monotone*) if and only if the resulting problem has no tem-

poral plan. The theorem then follows from the fact that testing the existence of a temporal plan for a 

temporal planning problem <I,A,G> is PSPACE-hard if overlapping instances of the same action are 

not allowed in plans and EXPSPACE-complete if overlapping instances of the same action are al-

lowed (Rintanen, 2007).                               □ 

We can nevertheless detect the monotonicity* of certain fluents in polynomial time. In this section 

we give rules which can be applied in polynomial time. Given Theorem 7.1, we clearly do not claim 

to be able to detect all monotone* fluents with these rules. The set of temporal planning problems 

whose fluents can be proved +monotone* or −monotone* by the rules given in this section, as re-



quired by the conditions of Theorem 5.7, represents a tractable class, since it can be both recognized 

and solved in polynomial time. 

To detect the +monotonicity (+monotonicity*) of a fluent f it suffices to give a proof that f cannot 

be destroyed in a (minimal) plan after being established. In the conference version of this paper we 

gave rules to provide such a proof, based on knowledge of the monotonicity of other fluents (Cooper, 

Maris & Régnier, 2012). It turns out that there is a simpler and more general proof rule (although 

computationally more expensive) which involves solving an STP
≠
 for each pair of actions a, b such 

that f ∈ Add(a) ∩ Del(b). If the set of actions is establisher-unique, then there is at most one such ac-

tion a. To try to prove that b cannot destroy f after a establishes f, we set up a relaxation TR[Before(a, 

f, b)] consisting of the temporal relaxation TR of the planning problem together with a single hypothe-

sis constraint: Before(a, f, b)  =  {τ first(a → f ) < τ last(b → ¬f )}. We can consider the case in which such 

a pair of actions a,b does not exist (see Lemma 4.3) as simply a special case of this rule. Note, howev-

er, that the fact that TR[Before(a, f, b)] has a solution is a necessary but not a sufficient condition for 

the existence of a valid temporal plan in which b destroys f after a establishes f. Indeed, Theorem 7.1 

tells us that it is highly unlikely that a polynomial-time algorithm exists for determining whether a 

fluent is monotone*. 

To detect the −monotonicity* of a fluent f we need to prove that f cannot be established in a mini-

mal plan after being destroyed. In the corresponding STP
≠
 TR[After(a, f, b)], the hypothesis is: Af-

ter(a, f, b)  =  {τfirst(b → ¬f ) < τlast(a → f )}. We assume that when setting up the temporal relaxation 

TR[Before(a, f, b)] or TR[After(a, f, b)] we apply the rules given in the previous section for the identi-

fication of unitary actions. This implies that implicitly we are only considering minimal plans and 

hence that we detect monotonicity* rather than monotonicity. 

Lemma 7.2. Suppose that the set of actions A is EU. If TR[Before(a, f, b)] has no solution for any pair 

of actions a,b ∈ A such that f ∈ Add(a) ∩ Del(b), then f is +monotone* relative to <I,A,G>. If 

TR[After(a, f, b)] has no solution for any pair of actions a, b ∈ A such that f ∈ Add(a) ∩ Del(b), then f 

is −monotone* relative to <I,A,G>. 

In order to apply Theorem 5.6, we also have to prove that all fluents in I ∩ (Cond(A
r
) ∪ G) are 

−monotone* relative to <I,A
p
,G>. A plan for the problem <I,A

p
,G> necessarily includes all actions 

from A
LM

, but may or may not include actions from A
p 

\ A
LM

. As a consequence of this, we can only 

impose constraints on actions in A
LM

. Indeed, under the extra hypothesis that the set of actions A
p
 is 

establisher-unique, the corresponding STP
≠
 is identical to TR[After(a, f, b)].  

Lemma 7.3. If the set of actions A
p
 is establisher-unique and the temporal relaxation TR[After(a, f, b)] 

has no solution for any pair of actions a, b ∈ A
p
 such that f ∈ Add(a) ∩ Del(b), then f is −monotone* 

relative to <I,A
p
,G>. 

We now give a simple lemma to detect certain +monotone* fluents based on the notion of unitary 

action. We assume that Lemmas 6.3, 6.4 and 6.5 are used to detect unitary actions. 

Lemma 7.4. If A is establisher-unique and action a∈A is unitary, then all fluents f ∈ Add(a) ∩ 

(G \(I \Del(A
LM

))) are +monotone* relative to the temporal planning problem <I,A,G>. 



Proof: Let f ∈ Add(a) ∩ (G \ (I \ Del(A
LM

))) and let P be a minimal plan for <I,A,G>. All fluents in 

G\(I \ Del(A
LM

)) must be established in P. Thus P must contain an instance of action a, since A is es-

tablisher-unique. Indeed, since a is unitary, P contains exactly one instance of a. Therefore, f is estab-

lished exactly once in P, and furthermore cannot later be destroyed in P since f is a goal fluent. It fol-

lows that f is +monotone*.                               □ 

Example 7.5. Consider the following simple example of a planning problem with instantaneous ac-

tions:  

Wash_hair:  →  ¬d, c 

Dry_clean_hair:  c → d 

where d means dry hair and c means clean hair, I = ∅ and G = {d,c}. Note that we impose the condi-

tion that hair must be clean before it can be dried. The fluent d is not monotone since there is a solu-

tion plan Wash_hair, Dry_clean_hair, Wash_hair, Dry_clean_hair (in which the last two actions are 

clearly redundant) which destroys, establishes, destroys and re-establishes d, but this plan is clearly 

not minimal. We can deduce from Lemma 6.4 (case(2)) that Dry_clean_hair is unitary. Lemma 7.4 

then tells us that d is +monotone* since Add(Dry_clean_hair) ∩ (G \(I \ Del(A
LM

))) = {d}. 

The following theorem now follows from Theorem 5.7 together with the fact that each STP
≠
 can be 

solved in polynomial time. Recall that a class is tractable if it can be recognised and solved in poly-

nomial time. 

Theorem 7.6. Let Π1 be the class of positive temporal planning problems <I,A,G> in which Con-

str(A
r
) are interval constraints, A

r
 is establisher-unique relative to SG, all fluents in Cond(A

r
) ∪ G are 

monotone* relative to <I,A
r
,G> and all fluents in I ∩ (Cond(A

r
) ∪ G) are −monotone* relative to 

<I,A
p
,G>, where monotonicity* of all fluents can be detected by applying Lemmas 7.3 and 7.4. Then 

Π1 is tractable. 

We have already seen in the proof of Theorem 5.7 that each temporal relaxation can be solved in 

O(n
3
) time and O(n

2
) space, where n is the total number of events in the actions in A. The number of 

temporal relaxations to solve, in order to prove that a temporal planning problem belongs to Π1, is 

proportional to the number of triples (a, f, b) such that a, b ∈ A
p
 and f ∈ Add(a) ∩ Del(b). The number 

of pairs ( f, b) such that b ∈ A
p
 and f ∈ Del(b) is bounded above by n. If A

p
 is establisher-unique, then 

there is at most one action that a ∈ A
p
 such that f ∈ Add(a). Therefore, the complexity of recognizing 

Π1 is O(n
4
) time and O(n

2
) space. In the conference version of this paper (Cooper, Maris & Régnier, 

2012) we gave simple rules that can be used to recognize a subclass of Π1 in O(n
2
) time and O(n) 

space. 

We now discuss further rules for the detection of monotone* fluents. We will show that more mon-

otone* fluents can be detected in polynomial time but at the cost of greater computational complexity.  

We say that an action-instance a usefully produces a fluent h during the execution of a plan if h was 

false just before being established by a. We say that a usefully produces the required fluent h if a use-

fully produces h and either h ∈ G or the fluent h is the condition of some action c in the plan such that 

τ(a → h) < τ(h |→ c). We can now state the following general proposition. 



Proposition 7.7. Suppose that the set of actions A is EU relative to the set of sub-goals and let a ∈ A 

be the unique action that establishes sub-goal f. (a) If ∀b ∈ A such that f ∈ Del(b), there is no minimal 

plan in which some instance of b destroys f after some instance of a establishes f, and such that the 

instance of a which first establishes f and the last instance of b which last destroys f both usefully pro-

duce required fluents, then f is +monotone*. (b) If ∀b ∈ A such that f ∈ Del(b), there is no minimal 

plan in which some instance of a establishes f after some instance of b destroys f, and such that the 

instance of a which last establishes f and the instance of b which first destroys f both usefully produce 

required fluents, then f is −monotone*. 

Proof: (a) Let P be a minimal plan in which some instance of b destroys f after some instance of a 

establishes f. Then, by the hypothesis of the proposition, either the instance of a which first establishes 

f in P or the last instance of b which last destroys f in P does not usefully produce a required fluent. 

Hence P cannot be minimal, since we could delete either this instance of b or this instance of a from P 

to leave another valid plan. This contradiction shows that f is +monotone*. The proof of case (b) is 

similar.                                      □ 

We now give a lemma which allows us to deduce one of the hypotheses of Proposition 7.7 and 

hence to deduce that a fluent f is +monotone* or that it is −monotone*. To simplify the expression of 

the lemma, we suppose that there is a goal-achieving action aG that must be executed at the end of all 

plans and such that Cond(aG) = G. This simply means that goal fluents h do not need to be treated as 

special cases. 

Lemma 7.8. Suppose that A is EU relative to the set of sub-goals SG and let a ∈ A be the unique ac-

tion that establishes fluent f ∈ SG. Let b ∈ A be such that f ∈ Del(b).  

(a) Let h ∈ SG ∩ Add(a) and h′ ∈ SG ∩ Add(b). If any of the following conditions hold, then there is 

no minimal plan P in which the last destruction of f by an instance of b occurs after the first establish-

ment of f by an instance of a, and in which this instance of b usefully produces the required fluent h′ 

and this instance of a usefully produces the required fluent h: 

(1) for all actions c,c′ such that h ∈ Cond(c), h′ ∈ Cond(c′), TR[Before(a,f,b) ∪ For(a,first,h,c) ∪ 

For(b,last,h′,c′)] has no solution, where For(x,L,h,c) = {τL(x→ h) < τlast(h |→ c)}. 

(2) Constr(b) imposes a fixed interval between the destruction of f and the establishment of h′ by b, 

h′ is monotone* and for all actions c,c′ such that h ∈ Cond(c) and h′ ∈ Cond(c′), TR[Before(a,f,b) 

∪ Once(b) ∪ For(a,first,h,c) ∪ For(b,last,h′,c′)] has no solution, where Once(x) = {τfirst(E) = τlast(E) 

| E ∈ Events(x)}. 

(b) Let h ∈ SG ∩ Add(a) and h′ ∈ SG ∩ Add(b). If any of the following conditions hold, then there is 

no minimal plan P in which the last establishment of f by an instance of a occurs after the first destruc-

tion of f by an instance of b, and in which this instance of a usefully produces the required fluent h and 

this instance of b usefully produces the required fluent h′:   

(1) for all actions c,c′ such that h ∈ Cond(c), h′ ∈ Cond(c′), TR[After(a,f,b) ∪ For(a,last,h,c) ∪ 

For(b,first,h′,c′)] has no solution. 

(2) Constr(b) imposes a fixed interval between the destruction of f and the establishment of h′ by b, 

h is monotone* and for all actions c,c′ such that h ∈ Cond(c) and h′  ∈ Cond(c′), TR[After(a,f,b) ∪ 

Once(a) ∪ For(a,last,h,c) ∪ For(b,first,h′,c′)] has no solution. 



Proof: (a) We suppose that A is EU relative to SG, f ∈ SG ∩ Add(a) ∩ Del(b), h ∈ SG ∩ Add(a) and 

h′ ∈ SG ∩ Add(b).  

(1) If TR[Before(a,f,b) ∪ For(a,first,h,c) ∪ For(b,last,h′,c′)] has no solution for all actions c,c′ such 

that h ∈ Cond(c), h′ ∈ Cond(c′), then it cannot be the case that in a minimal plan P the first estab-

lishment of f by a occurs before the last destruction of f by an instance of b, and the instance of a 

which first establishes f usefully produces the required fluent h in P, and the instance of b which 

last destroys f usefully produces the required fluent h′ in P. 

(2) If h′ is monotone*, then only the instance of b which first establishes h′ can usefully produce h′ 

in P. Since there is a fixed interval between the destruction of f and the establishment of h′ by b, it 

is necessarily the same instance of b which first destroys f. Since it is the instance of b which last 

destroys f which is assumed to usefully produce h′, we can deduce that all instances of b are syn-

chronised to destroy f at exactly the same moment. But then this contradicts Condition (5) of the 

Definition 3.2 of a temporal plan, unless there is only one instance of b in P. The result follows 

from the same argument as in case (2) with the extra constraint Once(b) that there is only one in-

stance of b in P. □ 

The proof of part (b) of the lemma is similar. □ 

Example 7.9. Consider the following EU temporal planning problem in which all actions are instan-

taneous:  

Check:   p → g, o 

Drive:   p, o → a, ¬g 

Take:   g → p 

and I = {g} and G = {a}. One interpretation of these actions and fluents is: Have_Engine_checked 

(Check), Drive_to_destination (Drive), Take_Petrol (Take), Have_petrol (p), At_garage (g), En-

gine_OK (o), Arrived (a). The fluent g is not monotone since there is a plan Take, Check, Drive, 

Check (in which the last action is clearly redundant) which establishes, destroys, and establishes g. 

However, g is −monotone* since in a minimal plan action Check cannot usefully produce a fluent 

h ∈ Add(Check) = {g, o} after action Drive has destroyed g. In the case h=g, this is by Lemma 

7.8(b)(1): Take is the only action such that g ∈ Cond(Take), and TR[After(Check,g,Drive) ∪ 

For(Check,last,g, Take)] has no solution. In the case h = o, this is by Lemma 7.8(b)(2) since o is 

monotone* (by Lemma 4.3) and TR[After(Check,g,Drive) ∪ Once(Check)] has no solution. Note that 

since a, p are monotone by Lemma 4.3, we can deduce from Lemma 6.4 (case (1)) that actions Drive 

and Take are unitary. It then follows from Lemma 6.4 (case (3)) that action Check is also unitary. We 

therefore impose in TR that the actions Check, Drive and Take occur only once; it follows that we 

could have deduced that g is −monotone* directly from Lemma 7.2 without having to use Lemma 7.8. 

Combining Proposition 7.7 and Lemma 7.8 allows us to define a tractable class of temporal plan-

ning problems which is larger  than the class described in Theorem 7.6. 

Theorem 7.10. Let Π2 be the class of positive temporal planning problems <I,A,G> in which Con-

str(A
r
) are interval constraints, A

r
 is establisher-unique relative to SG, all fluents in Cond(A

r
) ∪ G are 

monotone* relative to <I,A
r
,G> and all fluents in I ∩ (Cond(A

r
) ∪ G) are −monotone* relative to 



<I,A
p
,G>, where monotonicity* of all fluents can be deduced from Proposition 7.7, Lemmas 7.4 and 

7.8. Then Π2 is tractable. 

The number of temporal relaxations to solve, in order to prove that a temporal planning problem 

belongs to Π2, is proportional to the number of septuples (a,f,b,c,h,c′,h′) such that a,b,c,c′ ∈ A
p
, 

f ∈ Add(a) ∩ Del(b), h ∈ Add(a) ∩ Cond(c) and h′ ∈ Add(b) ∩ Cond(c′). We have seen in Section 5 

that, assuming A  is establisher-unique, the number of triples (a,f,b) satisfying a,b ∈ A
p
 and 

f ∈ Add(a) ∩ Del(b) is bounded above by n, the total number of events in the actions in A. The num-

ber of pairs (c,h) such that c ∈ A
p
 and h ∈ Cond(c) is again bounded above by n. Therefore, the num-

ber of relaxations to be solved is O(n
3
). We have seen in the proof of Lemma 4.3 that each temporal 

relaxation can be solved in O(n
3
) time and O(n

2
) space. It follows that the complexity of recognizing 

Π2 is O(n
6
) time and O(n

2
) space. 

8. Experiments on IPC-2011 Benchmarks

We conducted experiments on the benchmark problems from the temporal deterministic track of 

the 7
th
 international planning competition IPC-2011, in order to test the applicability of our proposed 

temporal relaxation TR as well as the relative utility of our various lemmas for the detection of mono-

tonicity*. The main drawback of our temporal relaxation is that it only concerns EU fluents (i.e. flu-

ents f for which there is a single action a with f ∈ Add(a)). Indeed, the first step in setting up TR is to 

remove all fluents which are not EU from the goal. All goal fluents are removed for all problems in 

the following domains: floortile, matchcellar, parking, pegsol, openstacks, sokoban, storage, 

turnandopen. We therefore concentrated our experiments on the three domains crewplanning, 

parcprinter, tms. For each problem in each domain, let SG
p
 denote the set of possible sub-goals in 

the original unrelaxed problem. For each of the 20 problems in each of these domains, we determined 

the set EUSG
p
 of possible sub-goals SG

p
 which are EU. Not all of these EU possible sub-goals of the 

unrelaxed problem remain possible sub-goals in TR, since in TR we remove all fluents which are not 

EU from conditions of all actions. We calculated the set of possible sub-goals in the relaxed problem, 

which we call SG
p
(rel) to distinguish this set from the set of possible sub-goals SG

p
 in the unrelaxed 

problem. Moreover, we calculated the set of actions which produce possible sub-goals in the relaxed 

problem, which we call A
p
(rel) to distinguish this set from A

p
 in the unrelaxed problem. The first three 

columns of Table 8.1 show the minimum, mean and maximum percentages of possible sub-goals 

which remain possible sub-goals in TR (i.e. the ratio |
  
SG

p
(rel) | / |

 
SG

p
 | ) over the 20 problems. We 

then used the fluents in EUSG
p
 and, in particular, the ones from SG

p
(rel) to test the relative frequency 

of monotonicity*. The results for SG
p
(rel) are shown in the next three columns of Table 8.1. In the 

parcprinter domain, all EUSG
p
 fluents were detected to be monotone*. For each problem in the 

crewplanning domain, almost all fluents in EUSG
p
 were detected to be monotone*. In each problem 

in the tms domain, 37% of the fluents in EUSG
p
 were detected to be monotone*, and 50% of SG

p
(rel). 

These results indicate that in certain temporal planning problems EU monotone* fluents are quite 

common, but that in others TR can provide no useful information since no goals are EU. 



IPC 2011 

Domain 

SG
p
(rel) Monotone* SG

p
(rel) Unitary A

p
(rel) 

MIN MEAN MAX MIN MEAN MAX MIN MEAN MAX 

Crewplanning 21% 36% 94% 87% 95% 98% 39% 56% 71% 

Parcprinter 4% 8% 15% 100% 100% 100% 56% 72% 94% 

Tms 60% 60% 60% 50% 50% 50% 54% 54% 54% 

Table 8.1. Results of experiments on three domains from IPC 2011. 

The last three columns of Table 8.1 give the number of actions in A
p
(rel) which we detected as uni-

tary in TR. The identification of unitary actions by Lemmas 6.3, 6.4 and 6.5 can be achieved in linear 

time and provides useful information which is used by TR in the detection of monotonicity*. On aver-

age, over half the actions in A
p
(rel) were found to be unitary. 

We detected monotonicity* by applying our lemmas in increasing order of computational com-

plexity: Lemma 4.3, Lemma 7.4, Lemma 7.2, and then Lemma 7.8. In all domains, the majority of 

fluents which are recognised as monotone* are recognised as such by applying Lemma 4.3, some flu-

ents are recognised as monotone* by applying Lemma 7.4 and all other monotone* fluents are recog-

nised by Lemma 7.2 (which uses the temporal relaxation TR). We found no monotone* fluents which 

required Lemma 7.8 to be detected. The significantly greater complexity of applying Lemma 7.8 

compared with Lemma 7.2 means that it is not worth applying systematically to all problems. On the 

other hand, our experiments have confirmed that Lemmas 4.3, 7.4 and 7.2 are all effective for the de-

tection of monotonicity*. Table 8.2 shows for each of the three domains, the minimum, mean and 

maximum percentage of fluents in SG
p
 which are detected by each of these three lemmas. 

IPC 2011 

Domain 

Monotone* SG
p
(rel) 

Lemma 4.3 Lemma 7.4 Lemma 7.2 ALL 

Crewplanning 

MIN 80% 0% 0% 87% 

MEAN 87% 0% 7% 95% 

MAX 95% 0% 13% 98% 

Parcprinter 

MIN 88% 0% 0% 100% 

MEAN 95% 0% 5% 100% 

MAX 100% 0% 12% 100% 

Tms 

MIN 29% 21% 0% 50% 

MEAN 29% 21% 0% 50% 

MAX 29% 21% 0% 50% 

Table 8.2. Percentages of fluents detected as monotone* by three different lemmas. 

To illustrate the degree of variation between different problems within the same domain, in Figures 

8.3, 8.4 and 8.5 we show the details of each of the 20 problems in the three different domains. For 

each problem we show the number of monotone* fluents in SG
p
(rel) detected by different lemmas.  



Figure 8.3. The number of fluents in SG
p
(rel) detected as monotone* by different lemmas in the 

crewplanning domain. 

Figure 8.4. The number of fluents in SG
p
(rel) detected as monotone* by different lemmas in the 

parcprinter domain. 



Figure 8.5. The number of fluents in SG
p
(rel) detected as monotone* by different lemmas in the 

tms domain. 

As a general conclusion of our experimental trials, we have seen that in many problems TR pro-

vides no useful information since all goal fluents are removed. Nevertheless, we have identified vari-

ous benchmark domains in which it can be applied. The fact that a large percentage of fluents were 

found to be monotone* and a large percentage of actions were found to be unitary demonstrates the 

potential importance of these notions beyond their use in the temporal relaxation TR. These experi-

mental trials together with our investigation of specific examples (such as Example 7.9 or the Tem-

poral Cement Factory domain described in the following section) seem to indicate that integrating the 

detection of unitary actions into TR provides as much information as the more computationally ex-

pensive approach of Lemma 7.8. 

9. Examples of Applications of EU Monotone Planning

We have previously shown that EU monotone planning has potential applications in various indus-

trial settings, such as the construction or the chemical and pharmaceutical industries (Cooper, Maris & 

Régnier, 2012, 2013b). For example, the Temporal Chemical Process domain, described in detail by 

Cooper, Maris and Régnier (2013b), involves different kinds of operations on chemicals that are per-

formed in the industrial production of compounds. For each raw material, there is an operator that can 

activate its source. Then, this raw material can be catalysed in different ways to synthesize different 

products. These products can be mixed and reacted using the raw material once again to produce the 

desired compound. For example, acetylene is a raw material derived from calcium carbide using wa-

ter. Then, a vinyl chloride monomer is produced from acetylene and hydrogen chloride using mercuric 

chloride as a catalyst. PVC is then produced by polymerization. Other examples occur in the pharma-

ceutical industry in the production of drugs (such as paracetamol or ibuprofen) and, in general, in 

many processes requiring the production and combination of several molecules, given that there is a 

unique way to obtain them (which is often the case due to industrial constraints). 



We now give in detail an example from the construction industry to show how the detection of uni-

tary actions can greatly speed up the recognition of such problems. The Temporal Cement Factory 

planning domain (Cooper, Maris & Régnier, 2013b) allows us to plan concrete mixing, delivery and 

use. An action of duration 30 time units makes and times a batch of concrete which is fluid from time 

unit 3 to 30 (after which it sets). At the same time, a concrete-mixer must be cleaned, in order for the 

concrete to be loaded, then driven to a building site, where it is unloaded. The concrete must then be 

used while it is still fluid. This process is illustrated by the temporal plan given in Figure 5. This set of 

actions A (illustrated in the temporal plan shown in Figure 5) are all landmarks. The initial state I and 

the goal G are given by  

I = {At-factory(m), Available(c)} 

G = {Delivered(m,c,s), Used(c)}

Given the temporal planning problem <I,A,G>, where A is the set of all actions from the Temporal 

Cement Factory domain, the set of sub-goals SG and the reduced set of actions A
r
 are:

SG = {Delivered(m,c,s), Used(c), Fluid(c), At(m,s), Available(c),

On(m,c), At-factory(m), Empty(m)}

A
r 
= {USE(c), UNLOAD(m,c,s), DRIVE(m,s), LOAD(m,c), CLEAN(m), MAKE-

AND-TIME-CONCRETE(c)} 

For all ai ≠ aj ∈ A, we have Add(ai) ∩ Add(aj) ∩ SG = ∅. Hence, by Definition 3.3, the set of ac-

tions A is EU relative to SG. We can immediately remark that no actions delete the fluents Used(c), 

Delivered(m,c,s) and At(m,s), and no actions add the fluents Available(c) and At-

factory(m). Thus, by Lemma 4.3, each of these fluents are both −monotone and +monotone rela-

tive to <I,A,G>. By Lemma 7.2, we can  deduce that On(m,c) is –monotone since the temporal relax-

ation TR[After(LOAD(m,c),On(m,c),UNLOAD(m,c,s))] has no solution. By a similar argument, 

Fluid(c) is also –monotone by Lemma 7.2. 

 

Figure 5: Ready-mix Concrete Delivery Temporal Plan 

We can then detect unitary actions. From Lemma 6.4 (case (1)), we can deduce that 

UNLOAD(m,c,s) is unitary. Then, applying Lemma 6.4 (case (3)), with h = On(m,c) and b = 

¬At-factory(m) 
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UNLOAD(m,c,s), tells us that LOAD(m,c) is unitary. Finally, applying Lemma 6.4 (case (3)), with h 

= Empty(m) and b = LOAD(m,c), tells us that CLEAN(m) is unitary. Since CLEAN(m) is unitary, we 

effectively add the constraint Once(CLEAN(m)) to TR and with this constraint Lemma 7.2 is now suf-

ficient to detect that  Empty(m) is monotone*. Thus, using the new notion of unitary action and the 

linear-time rules to detect such actions given in Section 6, we can prove monotonicity* of all fluents 

without needing to use the computationally expensive Lemma 7.8 as we previously proposed (Cooper, 

Maris & Régnier, 2013b). 

It is now possible to apply Theorem 5.6, since A is EU, all fluents are monotone* and all fluents in 

I are –monotone*. It follows that TR is a solution procedure for this problem. The problem <I,A,G> 

has a solution-plan, found by TR, shown in Figure 5. We represent non-instantaneous actions by a 

rectangle. Conditions are written above an action, and effects below; causality constraints are repre-

sented by bold arrows, and –authorisation constraints by dotted arrows.  

This example can be extended to the generic case in which there are several sites, several batches 

of concrete and several mixers. It is monotone and remains EU provided that the goals (via the fluents 

Delivered(m,c,s)) specify which mixer m is to deliver which batch c to which building site s. All 

such instances can be solved in polynomial time by Theorem 7.10. 

10. Discussion

The results in this paper can also be applied to non-temporal planning since, for example, a classi-

cal STRIPS planning problem can be modelled as a temporal planning problem in which all actions 

are instantaneous. It is worth pointing out that the tractable class of classical planning problems in 

which all actions are establisher-unique and all fluents are detectable as (both + and −) monotone by 

applying only Lemma 4.3, is covered by the PA tractable class of Jonsson and Bäckström (1998). 

An obvious question is whether both establisher-uniqueness and monotonicity are necessary to ob-

tain tractability. An affirmative answer to this question follows from intractability results in non-

temporal planning: Bäckström and Klein (1991b) showed that establisher-uniqueness alone cannot 

prevent minimal plans being of exponential size, and Jonsson and Bäckström (1998) showed that un-

der conditions implying monotonicity of all fluents (the class BA+ in their terminology), planning is 

NP-hard. 

For simplicity of presentation and for conformity with PDDL2.1, we have considered that inherent 

constraints between the times of the events within the same action-instance are all interval constraints. 

We can, however, remark that Theorem 5.6 still holds if the inherent constraints are arbitrary min-

closed constraints, since this was the only property required of the constraints in the proof of Theorem 

5.6. An example of such a constraint C(x,y) is a binary interval constraint with variable bounds: 

y−x ∈ [f(x,y),g(x,y)], which is min-closed provided that f(x,y) is a monotone increasing function of x 

and g(x,y) is a monotone decreasing function of y. The shift-monotonic constraints used by Pralet and 

Verfaillie (2012) in the scheduling of agile satellites are a subclass of such constraints since in shift-

monotonic constraints both f(x,y) and g(x,y) are monotone increasing functions of x and monotone 

decreasing functions of y. The consistency of a set of shift-monotonic constraints can be tested in time 

O(n
3
). 



An important aspect of temporal planning, which is absent from non-temporal planning, is that cer-

tain temporal planning problems, known as temporally-expressive problems, require concurrency of 

actions in order to be solved (Cushing, Kambhampati, Mausam & Weld, 2007). The cement factory 

planning problem given in Section 9 is an example of a temporally-expressive problem, since concur-

rency of actions is required in any solution. Indeed, in industrial environments, concurrency of actions 

is often used to keep storage space and turn-around times within given limits. In a previous paper 

(Cooper, Maris & Régnier, 2013a), we identified a subclass of temporally expressive problems, 

known as temporally-cyclic, which require cyclically-dependent sets of actions in order to be solved. 

A simple but commonly occurring example was given in Figure 4, concerning  an agreement between 

an employer and employee. The tractable class of temporal planning problems described in Theorem 

7.6 contains both temporally-expressive and temporally-cyclic problems. For example, the temporal-

ly-cyclic problem given in Figure 4 is establisher-unique and all fluents are both + and −monotone 

(this follows from Lemma 4.3 since no fluents are destroyed by either action).  

Most temporal planning problems will not fall into the tractable class of EU monotone problems. 

Even so, it may be that certain sub-problems do fall into this class. Given a temporal planning problem 

<I,A,G>, we can test in polynomial time, for each fluent f, whether the sub-problem <I,A,{f}> satisfies 

the conditions of Theorem 7.6 (i.e. EU monotone, with monotonicity detectable using the temporal 

relaxation TR). If this is the case, then we can find in polynomial time a plan Pf which establishes the 

fluent f. This plan Pf can then be considered as an action which could be added to the set of actions A 

in order to facilitate the solution of the original problem <I,A,G>. 

Our work is related to the literature regarding landmarks. Porteous, Sebastia and Hoffmann (2001) 

and Keyder, Richter and Helmert (2010) define a landmark as a fact that must be true at some point in 

every valid solution-plan. Landmarks have been used in planning in two main ways. The first one is 

the conception of heuristic functions to guide search algorithms (Richter, Helmert & Westphal, 2008; 

Richter & Westphal, 2010; Helmert & Domshlak, 2009). Another use of landmarks is to partition the 

problem into easier subproblems whose goals are disjunctions of landmarks (Hoffmann, Porteous & 

Sebastia, 2004; Sebastia, Onaindia & Marzal, 2006). More recently, Vernhes, Infantes and Vidal 

(2013) define a landmark-based meta best-first search algorithm.  

Landmarks have also been used for the detection of unsolvable temporal planning problems (Mar-

zal, Sebastia & Onaindia, 2008). A graph is built by adding causal relationships between the extracted 

landmarks. Then temporal intervals are associated with each landmark and these intervals, together 

with the causal relationships, define a set of constraints. Finally, a CSP solver checks the consistency 

of this set and indicates that the problem has no solution when an inconsistency is found. Unlike the 

set of constraints in our temporal relaxation TR, this set of constraints does not fall into a tractable 

class. Further research is required to determine whether certain of these constraints could be usefully 

combined with the STP
≠
 constraints of our temporal relaxation TR to obtain an even stronger tractable 

relaxation.  

In the general case, verifying that a fact is a landmark is PSPACE-complete (Hoffmann, Porteous 

& Sebastia, 2004). However, some landmarks can be found more efficiently by using various tech-

niques: Porteous and Cresswell (2002) and Hoffmann, Porteous and Sebastia (2004) present methods 

for detecting landmarks and relations between landmarks based on backchaining from the goals in the 

relaxed planning graph, whereas Zhu and Givan (2003) use forward propagation in the same graph 

and Richter, Helmert and Westphal (2008) use the domain transition graph, a graph whose nodes 



represent the possible values of the variable and edges represent the possible transitions between val-

ues induced by actions. 

The notion of monotonicity* introduced in this paper depends on the relative order of the estab-

lishment and the destruction of the same fluent within a minimal plan. Our experiments have demon-

strated that many fluents in benchmark problems are indeed monotone*. An interesting avenue of fu-

ture research would be to investigate, both theoretically and empirically, the relative order of the es-

tablishment and the destruction of different fluents within a minimal temporal plan. This is again 

closely related to research on landmarks. Different orderings between landmarks have been studied in 

non-temporal planning. Some of these orderings are guaranteed to hold in every solution-plan and do 

not prune the solution space (they are sound): "Natural" (Koehler & Hoffmann, 2000), "Necessary" 

and "Greedy-necessary" (Hoffmann, Porteous & Sebastia, 2004). The natural ordering is the most 

general and then greedy-necessary ordering and necessary ordering. Others orderings such as "Rea-

sonable", "Obedient-Reasonable" (Koehler & Hoffmann, 2000) are not sound (it is possible that no 

solution-plan respects these orderings) but they may prune the solution space. All these orderings be-

tween landmarks are defined assuming instantaneous actions and would need to be redefined in the 

temporal framework. Further research is required to determine whether landmark orderings could use-

fully be extended to incorporate orderings between all types of events in temporal plans (the estab-

lishment or destruction of a fluent by an action landmark, or the beginning or end of an interval over 

which a fluent is required by an action landmark). 

11. Conclusion

We have presented a class of temporal planning problems which can be solved in polynomial time 

and which has a number of possible applications, notably in the chemical, pharmaceutical and con-

struction industries. The notion of monotonicity in temporal planning is an essential part of the defini-

tion of this class. We extended our basic notion of monotonicity to monotonicity* by considering only 

minimal plans. 

We have also shown that all planning problems have a relaxation based on EU monotone planning 

which is an interesting alternative to the standard relaxation produced by ignoring deletes. It also pro-

vides a means of detecting action landmarks and monotone* fluents.  

Further research is required to discover other possible application areas and, on a practical level, to 

develop tools to help users find a model of a problem involving only monotone* fluents when such a 

model exists. On a theoretical level, an interesting avenue of future research is the extension of the 

tractable classes presented in this paper by relaxing the condition of establisher-uniqueness so that a 

fluent can be established by more than one action provided that there is only one action that can estab-

lish it at any given moment.  
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