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Large deviations principle for the Adaptive Multilevel

Splitting Algorithm in an idealized setting

Charles-Edouard Bréhier ∗

Abstract

The Adaptive Multilevel Splitting (AMS) algorithm is a powerful and versatile method
for the simulation of rare events. It is based on an interacting (via a mutation-selection
procedure) system of replicas, and depends on two integer parameters: n ∈ N

∗ the size
of the system and the number k ∈ {1, . . . , n− 1} of the replicas that are eliminated and
resampled at each iteration.

In an idealized setting, we analyze the performance of this algorithm in terms of a Large
Deviations Principle when n goes to infinity, for the estimation of the (small) probability
P(X > a) where a is a given threshold and X is real-valued random variable. The proof
uses the technique introduced in [BLR15]: in order to study the log-Laplace transform,
we rely on an auxiliary functional equation.

Such Large Deviations Principle results are potentially useful to study the algorithm
beyond the idealized setting, in particular to compute rare transitions probabilities for
complex high-dimensional stochastic processes.

Keywords: Monte-Carlo simulation, rare events, multilevel splitting, large deviations
MSC: 65C05; 65C35; 62G30; 60F10

1 Introduction

In many problems from engineering, biology, chemistry, physics or finance, rare events are
often critical and have a huge impact on the phenomena which are studied. From a general
mathematical perspective, we may consider the following situation: let (Xt)t∈T, where T = N

or R, be a (discrete or continuous in time) stochastic process, taking values in R
d. Assume

that A,B ⊂ R
d are two metastable regions: starting from a neighborhood of A (resp. of

B), the probability that the process reaches B (resp. A) before hitting A (resp. B) is very
small (typically, less than 10−10). As a consequence, a direct numerical Monte-Carlo with an
ensemble of size N does not provide significant results when N is reasonably large (typically,
less than 1010) in real-life applications.

Even if theoretical asymptotic expansions on quantities of interest are available - such as the
Kramers-Arrhenius law given for instance by the Freidlin-Wentzell Large Deviations Theory
or Potential Theory for the exit problem of a diffusion process in the small noise regime - in
practice their explicit computation is not possible (for instance when the dimension is large)
and numerical simulations are unavoidable.
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It is thus essential to propose efficient and general methods, and to rigorously study their
consistency and efficiency properties. Two main families of methods have been introduced in
the 1950’s and studied extensively since then, in order to improve the Monte-Carlo simulation
algorithms, in particular for rare events: importance sampling and importance splitting (see
for instance [AG07], [RT09] for general reviews of these methods and [KH51] for the historical
introduction of importance splitting). The main difference between these two methods is
the following: the first one is intrusive, meaning that the dynamics of the stochastic process
(more generally, the distribution of the random variable of interest) is modified so that the
probability that the event of interest increases and in a Monte-Carlo simulation it is realized
more often, while the second is not intrusive and can thus be used more directly for complex
problems. Instead, for importance splitting strategies, the state space is decomposed as a
nested sequence of regions which are visited sequentially and more easily by an interacting
system of replicas.

In this paper, we focus on an importance splitting strategy which is known as the Multilevel
Splitting approach and describe it in the following setting. Let h : Rd → R be a given function
and assume we want to estimate the probability p = P(X > a) that a real-valued random
variable X = h(Y ) (where Y is a R

d-valued random variable) belongs to (a,+∞) for a given
threshold a ∈ R. This situation is not restrictive for many applications; indeed, we may take
X = 1τB<τA and any a ∈ (0, 1) in the situation described above, where τA and τB are the
hitting times of A and B by the process X. A key assumption on the distribution of X is the
following: we assume that the cumulative distribution function F of X - i.e. F (x) = P(X ≤ x)
for any x ∈ R - is continuous; for convenience, we also assume that F (0) = 0 - i.e. X > 0
almost surely.

The multilevel splitting approach (see [KH51], [GHSZ99], [CDMFG12] for instance) is
based on the following decomposition of p as a telescopic product of conditional probabilities:

p = P(X > a) =

N
∏

i=1

P(X > ai
∣

∣X > ai−1), (1)

where a0 = 0 < a1 < . . . < aN = a is a sequence of non-decreasing i.e. levels. In other words,
the realization of the event {X > a} is split into the realizations of the N events {X > ai}
conditional on {X > ai−1}; each event has a larger probability than the initial one and is
thus much easier to realize. Then each of the conditional probabilities is estimated separately,
for instance with independent Monte-Carlo simulations, or using a Sequential Monte-Carlo
technique with a splitting of successful trajectories. This approach have been studied with
different viewpoints and variants under different names in the literature - nested sampling
[Ski06], [Ski07], subset simulation [AB01], RESTART, [VAVA91], [VAVA94].

For future reference, we introduce the following (unbiased) estimator of p given by the
multilevel splitting approach with N levels and n replicas:

p̂Nn =

N
∏

i=1

1

n

n
∑

m=1

1
X

(i)
m >ai

, (2)

where the random variables (X
(i)
m )1≤m≤N,1≤i≤N are independent and the distribution of X

(i)
m

is L(X|X > ai−1). Thus p̂Nn is a product of N independent Monte-Carlo estimators of the
conditional probabilities in (1).
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The efficiency of the algorithm depends crucially on the choice of the sequence of levels
(ai)1≤i≤N : for a fixed size N , the variance of the estimator is minimized when the conditional
probabilities are equal (to p1/N ); moreover the associated variance converges (to −p2 log(p)/n)
when N goes to infinity - see for instance [CDMFG12] for more details.

To get a more flexible algorithms, a possible approach is to compute levels adaptively,
as proposed in [CG07], and studied extensively in the last years, see for instance [BLR15],
[BGT14], [CG14], [GHML11], [Sim14], [Wal14]. It is essential to check that these adaptive
versions still give reliable results, and to prove they do it efficiently.

More precisely, we consider the Algorithm 2.2 defined below, which depends on two pa-
rameters n and k, with the condition 1 ≤ k ≤ n− 1. We let evolve a system of n interacting
replicas, and at each iteration a selection-mutation procedure leads to resample the system as
follows: we compute the k-th order statistic Z - which corresponds to the so-called level at the
given iteration - of the system and eliminate the k replicas with values less than Z; they are
then resampled using the conditional distribution L(X|X > Z) of X conditional on {X > Z}.
The algorithm stops when Z ≥ a, and we define an estimator p̂n,k depending on the number
of iterations and of the terminal configuration of the system of replicas, see (5). In practice,
we require to be able to sample according to the conditional distribution L(X|X > z) for
any value of z: this is part of the idealized setting assumption; even if it is rarely satisfied
in real-life applications, the study of the algorithm in that setting is already challenging and
yields very interesting results, that can usually be generalized beyond this simplified case at
the price of a much more intricate analysis.

Let us recall a few fundamental results. In [GHML11] (see also [Sim14], [Wal14]), it was
proved that for any value of n ≥ 2 then p̂n,1 is an unbiased estimator of p - meaning that
E[p̂n,1] = p. This result was extend to general 1 ≤ k ≤ n−1 in [BLR15]. Efficiency properties
have been studied with the proof of Central Limit Theorems in two different kinds of regimes:
either k is fixed and n → +∞ (see [BGT14] as well as [GHML11] and [Sim14] when k = 1),
or both k and n go to infinity, in such a way that k/n converges to α ∈ (0, 1) - which gives a
fixed proportion of resampled replicas at each iteration, see [CG07] and the more recent work
[CG14] in a very general framework.

The efficiency is ensured by the observation that the asymptotic variance is the same for
both the adaptive and the non-adaptive versions. Moreover, it is much smaller than when
using a crude Monte-Carlo estimator, i.e. the empirical average

pn =
1

n

n
∑

m=1

1Xm>a, (3)

where the random variables (Xm)1≤m≤n are independent and identically distributed, with
distribution L(X).

In this paper, we prove a similar result with a different criterion, which seems to be
original compared with existing literature: we prove a Large Deviations Principle principle
for the distribution of the estimator p̂n,k given by the adaptive algorithm when k is fixed and
n→ +∞. Our main result is Theorem 3.1, which in particular yields for any given ǫ > 0

1

n
log

(

P
(

|p̂n,k − p| ≥ ǫ
)

)

→
n→+∞

−min
(

I(p+ ǫ), I(p − ǫ)
)

< 0.

The rate function I - see (7) - obtained in Theorem 3.1 does not depend on k. We then
compare this rate function with I - see (23) - the rate function obtained for a crude Monte-
Carlo estimator pn given by (3) (thanks to Cramer Theorem, see [DZ10]) and show that for
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any y ∈ (0, 1) \ p we have I(y) > I(y) - we have I(p) = I(p) = 0, and I(y) = I(y) = +∞ if
y /∈ (0, 1) - and thus

P(p̂n,k − p > ǫ)

P(pn − p > ǫ)
→

n→+∞
0.

In other words, for large n, the probability that p̂n,k deviates from p from above (and similarly
from below) with threshold ǫ > 0 decreases exponentially fast, at a faster rate than for pn.

Moreover, we prove that the non-adaptive, fixed-levels estimator p̂Nn satisfies a Large Devi-
ations Principle when n→ +∞ with rate function IN for a fixed number of levels N and when
the levels are chosen in an optimal way, namely such that P(X > ai|X > ai−1) = p1/N does
not depend on i. We then show that limN→+∞ IN (y) ≤ I(y) for any y ∈ R: this inequality
is sufficient to prove that asymptotically the adaptive algorithm performs (at least) as well as
the non-adaptive version in this setting, in terms of Large Deviations.

The proof of Theorem 3.1 relies on the technique introduced in [BLR15]. First, we restrict
the study of the properties of the algorithm to the case when X is exponentially distributed
with parameter 1 (this key remark was introduced first in [GHML11] and used also in [Sim14],
[Wal14]). Instead of working on p̂n,k directly, we focus on its logarithm log(p̂n,k), and prove
that when considering the algorithm as depending on an initial condition x, the Laplace
transform of the latter is solution of a functional (integral) equation (with respect to the x
variable) - thanks to a decomposition of the realizations of the algorithm according to the value
of the first level. To study the equation in the asymptotic regime considered in this paper,
we then derive a linear ordinary differential equation of order k and perform an asymptotic
expansion. Note that we do not give all details for the derivation of the differential equations
and the basic properties of its coefficients; for some points we refer the reader to [BLR15]
where all the arguments are proved with details and here we mainly focus on the proof of the
new asymptotic results as well as on the interpretation of the Large Deviations Principle for
our purpose.

It seems that studying the performance of multilevel splitting algorithms via Large De-
viations Principle is an original approach, which can complement the more classical studies
which are all based on Central Limit Theorems. In this paper, we proved a result in a specific
regime (k is fixed, n → +∞) in the idealized setting. To go further, it would be interesting
to look at other regimes (k, n → +∞ with k/n → α ∈ (0, 1)) and to go beyond the idealized
setting. This will be the subject of future investigation.

The paper is organized as follows. In Section 2, we introduce our main assumptions
(Section 2.1), describe the Adaptive Multilevel Splitting algorithm (Section 2.2) and recall
several of its fundamental properties used in the sequel of the article (Section 2.3). The main
result of this paper is given in Section 3: it is the Large Deviations Principle for the estimator
of the probability given by the AMS estimator, see Theorem 3.1. An important auxiliary result
is stated in Section 4, and proofs are carried over in Section 5 - some technical estimates being
proved in Section 7. We compare the performance in terms of the Large Deviations Principle
of the AMS algorithm with two other methods in Section 6: a crude Monte-Carlo method and
a fixed-level splitting method. Finally, we give some concluding remarks and perspectives in
Section 8.
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2 Description of the Adaptive Multilevel Splitting algorithm

2.1 Assumptions

Let X be some real random variable. For simplicity, we assume that X > 0 almost surely.
We want to estimate the probability p = P(X > a), where a > 0 is some threshold. When

a goes to +∞, p goes to 0 and we have to estimate the probability of a rare event.
We make a fundamental assumption on the distribution of X.

Assumption 2.1. Let F denote the cumulative distribution function of X: we assume that
F is continuous.

More generally, for both theoretical and practical purpose, we introduce for 0 ≤ x ≤ a the
conditional probability

P (x) = P(X > a|X > x); (4)

we also denote by L
(

X|X > x) the associated conditional distribution, and F (·;x) its cumu-

lative distribution function: for any y > x we have F (y;x) = F (y)−F (x)
1−F (x) whenever F (x) < 1.

We notice two important equalities: P (a) = 1, and the estimated probability is p = P (0);
in fact, the distribution of X is equal to L

(

X|X > 0).
The idealized setting refers to the following assumptions:

• Assumption 2.1 is satisfied (theoretical condition);

• it is possible to sample according to the conditional distribution L
(

X|X > x) for any
x ∈ [0, a) (practical condition).

In view of a practical implementation of the algorithm, the second condition is probably
the most restrictive. One may rely on some approximation of the conditional distribution
L
(

X|X > x) thanks to a Metropolis-Hastings algorithm: in that case (see [CG14] for instance),
the analysis we develop here does not apply, but gives an interesting insight for the behavior
in the case of a large number of steps in the Metropolis-Hastings auxiliary scheme (rigorously,
we treat the case of an infinite number of steps).

2.2 The algorithm

We now present the Adaptive Multilevel Splitting algorithm, under the assumptions of Section
2.1 above.

The algorithm depends on two parameters:

• the number of replicas n;

• the number k ∈ {1, . . . , n− 1} of replicas that are resampled at each iteration.

The other necessary parameters are the initial condition x and the stopping threshold a:
the aim is to estimate the conditional probability P (x) introduced in (4). For future reference,
we denote by AMS(n, k; a, x) the algorithm.

The dependence with respect to x allows us below to state fundamental functional equa-
tions on useful observables of the estimator computed at the end of the iterations of the
algorithm, as a function of x. In practice, we are interested in the case x = 0; in this situa-
tion, the algorithm is denoted by AMS(n, k; a).
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Before we detail the algorithm, we introduce important notation. First, when we consider
a random variable Xj

i , the subscript i denotes the index in {1, . . . , n} of a replica, while the
superscript j denotes the iteration of the algorithm.

Moreover, we use the following notation for order statistics. Let Y = (Y1, . . . , Yn) be in-
dependent and identically distributed (i.i.d.) real valued random variables with continuous
cumulative distribution function; then there exists almost surely a unique (random) permuta-
tion σ of {1, . . . , n} such that Yσ(1) < . . . < Yσ(n). For any k ∈ {1, . . . , n}, we then denote by
Y(k) = Yσ(k) the so-called k-th order statistic of the sample Y . Sometimes we need to specify
the size of the sample of which we consider the order statistics: we then use the notation
Y(k,n).

We are now in position to write the AMS(n, k; a, x) algorithm.

Algorithm 2.2 (Adaptive Multilevel Splitting, AMS(n, k; a, x)).

Initialization: Set the initial level Z0 = x.

Sample n i.i.d. realizations X0
1 , . . . ,X

0
n, with distribution L(X|X > x).

Define Z1 = X0
(k), the k-th order statistics of the sample X0 = (X0

1 , . . . ,X
0
n), and σ1 the

(a.s.) unique associated permutation: X0
σ1(1) < . . . < X0

σ1(n).

Set j = 1.

Iterations (on j ≥ 1): While Zj < a:

• Conditional on Zj, sample k new independent random variables (Y j
1 , . . . , Y

j
k ), according

to the law L(X|X > Zj).

• Set

Xj
i =

{

Y j
(σj)−1(i)

if (σj)−1(i) ≤ k

Xj−1
i if (σj)−1(i) > k.

In other words, we resample exactly k out of the n replicas, namely those with index
i such that Xj−1

i ≤ Zj, i.e. such that i ∈
{

σj(1), . . . , σj(k)
}

(which is equivalent to
(σj)−1(i) ≤ k). They are resampled according the the conditional distribution L(X|X >
Zj). The other replicas are not modified.

• Define Zj+1 = Xj
(k), the k-th order statistics of the sample Xj = (Xj

1 , . . . ,X
j
n), and

σj+1 the (a.s.) unique associated permutation: Xj
σj+1(1)

< . . . < Xj
σj+1(n)

.

• Finally increment j ← j + 1.

End of the algorithm: Define Jn,k(x) = j−1 as the (random) number of iterations. Notice

that Jn,k(x) is such that ZJn,k(x) < a and ZJn,k(x)+1 ≥ a.

Notice for instance that Jn,k(x) = 0 if and only if Z1 > a: we mean that in this case the
algorithm has required 0 iteration, since the stopping condition at the beginning of the loop
(on j) is satisfied without entering into the loop.

The estimator of the probability P (x) is defined by

p̂n,k(x) = Cn,k(x)

(

1− k

n

)Jn,k(x)

, (5)
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with

Cn,k(x) =
1

n
Card

{

i; X
Jn,k(x)
i ≥ a

}

. (6)

The interpretation of the factor Cn,k(x) is the following: it is the proportion of the replicas

X
Jn,k(x)
i which satisfy Xj

i ≥ a: since X
Jn,k(x)
(k) = ZJn,k(x)+1 ≥ a, we have Cn,k(x) ≥ n−k+1

n .

Notice that Cn,1(x) = 1.

When x = 0, to simplify notations we set p̂n,k = p̂n,k(0).

2.3 Properties of the AMS Algorithm 2.2

Well-posedness

We first recall some important results on the well-posedness of the algorithm. For more
detailed statements and complete proofs, see Section 3.2 in [BLR15], in particular Proposition
3.2 there.

First, at each iteration j of the algorithm, conditional on the level Zj, the resampling
produces a family of n random variables

(

Xj
i

)

1≤i≤n
which are independent and identically

distributed, with distribution L(X|X > Zj). By Assumption 2.1, conditional on Zj the latter
conditional distribution also admits a continuous cumulative distribution function F (·;Zj);
as a consequence, almost surely the permutation σj+1 is unique, and the level Zj+1 is well-
defined.

Moreover, if we assume that P (x) > 0, almost surely the algorithm stops after a finite
number of steps, for any values of k and n such that 1 ≤ k ≤ n − 1: the random variable
Jn,k(x) almost surely takes values in N, and the estimator p̂n,k(x) is well-defined and takes
values in (0, 1].

Reduction to the exponential case

We now state properties that are essential for our theoretical study of the algorithm below.

One of the main tools in [BLR15] and [BGT14], which was also used in [GHML11] in
the case k = 1, is the restriction to the case where the random variables are exponentially
distributed. More precisely, assume that P (x) > 0, and denote by E(1) the exponential
distribution with mean 1. Then in distribution the algorithm AMS(n, k; a) is equal to the
algorithm AMSexpo(n, k;− log(p)) in which we assume that the distribution is E(1); a similar
result holds for AMS(n, k; a, x) when x ∈ [0, a). In particular, the associated estimators are
equally distributed. The main argument is the well-known equality of distribution F (X) = U
where U is uniformly distributed on (0, 1).

In the sequel, we state in Section 3 our results in the general setting - i.e. for AMS(n, k; a),
with the probability p and the estimator p̂n,k - but in the remaining of the paper we give proofs
in the exponential case, namely for AMSexpo(n, k; aexpo, x) with aexpo = − log(p), and we omit
the reference to the exponential case to simplify the notation. Whether we consider the general
or the exponential case will be clear from the context.

3 The Large Deviations Principle result for the AMS algorithm

The main result of this article is the following Theorem 3.1, which states a Large Deviations
Principle (in the sense of [DZ10]) for the distribution µn,k = L

(

p̂n,k
)

of p̂n,k for fixed probability
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p > 0 and k ∈ N
∗, in the limit n→ +∞.

Theorem 3.1. Assume that p ∈ (0, 1) and k ∈ N
∗ are fixed. Then the sequence

(

µn,k
)

n∈N,n>k

of distributions of the estimator p̂n,k of p obtained by the AMS(n, k; a) algorithm satisfies a
Large Deviations Principle with the rate function I defined by

I(y) =

{

+∞ if y /∈ (0, 1)

log(y) log( log(p)log(y)) + log(yp ) if y ∈ (0, 1).
(7)

We observe that the rate function does not depend on k.

Notice that the statement above is restricted to p ∈ (0, 1). Indeed, when p = 1, we have
almost surely p̂n,k = 1 (the algorithm stops after 0 iteration). Moreover, we always estimate
the probability of events which have a positive probability (otherwise the algorithm does not
stop after a finite number of iterations).

The following Proposition describes some properties of the rate function I.

Proposition 3.2. The rate function I is of class C∞ on its domain (0, 1).

Moreover, p is the unique minimizer of I: we have I(p) = I ′(p) = 0, I ′′(p) = 1
−p2 log(p)

> 0.

Finally, for any y ∈ (0, 1)\{p} we have I(y) > 0; I is decreasing on (0, p) and is increasing
on (p, 1).

Proof. Straightforward computations yield that for y ∈ (0, 1) we have

dI(y)

dy
=

log(log(p))− log(log(y))

y
,

d2I(y)

dy2
= − log(log(p))− log(log(y))

y2
− 1

y2 log(y)
.

Let ǫ ∈ (0,max(p, 1− p)); then from Theorem 3.1 we have when n→ +∞

1

n
log

(

P
(

|p̂n,k − p| ≥ ǫ
)

)

→
n→+∞

−min
(

I(p+ ǫ), I(p − ǫ)
)

< 0. (8)

Applying the Borel-Cantelli Lemma, we get the almost sure convergence p̂n,k → p.

Remark 3.3. The almost sure limit is consistent with the unbiasedness result (E[p̂n,k] = p)
from [BLR15]. There we were only able to prove the convergence in probability of p̂n,k to p.

Notice also that in [BGT14] we proved a Central Limit Theorem:

√
n
(

p̂n,k − p
)

→ N
(

0,−p2 log(p)
)

.

The asymptotic variance is given by I ′′(p).

We conclude this section with a result showing that the choice of the regime p (and k)
fixed and n → +∞ is crucial to get Theorem 3.1. Indeed, set k = 1, and for a given σ > 0

assume that n and p are related though the following formula: − log(p) = σ2n. Then pn,k

p
converges (in law) to a log-normal distribution, as stated in the following proposition.
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Proposition 3.4. If − log(p) = σ2n, we have the convergence in distribution

lim
n→∞

p̂n,1

p
= exp(σZ − σ2/2),

where Z ∼ N (0, 1).

The proof is postponed to Section 5.1, since it uses the same arguments as the proof of
Theorem 3.1 in the case k = 1.

Let ǫ > 0. Then (compare with (8) with ǫp instead of ǫ)

P
(

| p̂
n,1

p
− 1| ≥ ǫ

)

−→
n=−

log(p)

σ2 →+∞

PZ∼N (0,1)

(

| exp(σZ − σ2/2) − 1| ≥ ǫ
)

)

> 0,

where the limit is positive, while owing to (8) when p fixed, P
(

| p̂n,1

p − 1| ≥ ǫ
)

converges to 0
exponentially fast when n→ +∞.

4 Strategy of the proof

To prove Theorem 3.1, we in fact first prove a Large Deviations Principle for µ̃n,k = L
(

log(p̂n,k)
)

,
with rate function J given below.

Proposition 4.1. Assume that p ∈ (0, 1) and k ∈ N
∗ are fixed. Then the sequence

(

µ̃n,k
)

n∈N,n>k

of distributions of log(p̂n,k) obtained by the AMS(n, k; a) algorithm satisfies a Large Deviations
Principle with the rate function J defined by

J(z) =

{

+∞ if z ≥ 0

z − log(p)− z log( z
log(p)) if z < 0.

(9)

Then Theorem 3.1 immediately follows from Proposition 4.1 and the application of the
contraction principle (see [DZ10], Theorem 4.2.1): we have p̂n,k = exp

(

log(p̂n,k)
)

, and we
obtain the rate function with the identity I(y) = J(log(y)).

The proof of Proposition 4.1 relies on the use of the Gärtner-Ellis Theorem (see Theorem
2.3.6 in [DZ10]) and the asymptotic analysis when n → +∞ of the log-Laplace transform of
µ̃n,k.

Proposition 4.2. Set for any 1 ≤ k ≤ n− 1 and any λ ∈ R

Λn,k(λ) = log
(

E

[

exp
(

λ log(p̂n,k)
)

])

. (10)

Then for any fixed k ∈ N
∗ and any λ ∈ R we have the convergence

1

n
Λn,k(nλ)→ Λ(λ) = − log(p)(exp(−λ)− 1). (11)

The Fenchel-Legendre transform Λ∗ of Λ satisfies:

Λ∗(z) = sup
λ∈R

(

λz − Λ(λ)
)

=

{

+∞ if z ≥ 0

z − log(p)− z log( z
log(p)) if z < 0.

(12)
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Then for any k ∈ N
∗, the sequence of distributions

(

µ̃n,k
)

n∈N,n>k
satisfies a Large Devia-

tions Principle, with the rate function J = Λ∗.

The proof of (11) is the main task of this paper. In Section 5.1, we give a first easy proof in
the case k = 1, relying on the knowledge of the distribution of Jn,1: it is a Poisson distribution
with mean −n log(p). We can then compute explicitly Λn,1(λ) and prove (11). In Section 5.2,
we study the general case k ≥ 1 with the method introduced in [BLR15], in the exponential
case: for the algorithm AMSexpo(n, k; a, x), we derive a functional equation on the Laplace
transform exp

(

Λn,k(λ) as a function of the initial condition x, for fixed parameter λ.

For completeness, we close this Section with the computation of the Fenchel-Legendre
transform J = Λ∗ of Λ in Proposition 4.2.

Proof. First, assume that z ≥ 0. Then λz − Λ(λ)→ +∞ when λ→ +∞: thus Λ∗(z) = +∞.
Notice that this result is not surprising, since log(p̂n,k) < 0 almost surely.

If z < 0, the map λ ∈ R 7→ λz − Λ(λ) admits the limit −∞ for z → ±∞, and attains

its maximum at the unique solution λz of the equation z − dΛ(λ)
dλ (λz) = 0, which is given by

λz = − log
(

z
log(p)

)

. Then Λ∗(z) = λzz − Λ(λz), which gives (12).

5 Proof of Proposition 4.2

5.1 The case k = 1

We start with a proof of Theorem 3.1 when k = 1: in this case, we have Cn,1 = 1 almost
surely, and the number of iterations Jn,1 follows a Poisson distribution P(−n log(p)) (see for
instance [BLR15], [GHML11]).

As a consequence, it is very easy to prove Proposition 4.1. Let λ ∈ R. Then

Γn,1(λ) = exp
(

Λn,1(λ)
)

= E
[

exp
(

λ log(p̂n,1)
)]

= E
[

exp
(

λ log(1− 1/n)Jn,1
)]

= exp
(

−n log(p)
(

exp(λ log(1− 1/n))− 1
)

)

.

It is now easy to conclude: when n→ +∞

1

n
log

(

Λ(nλ)
)

= − log(p)
(

exp(nλ log(1− 1/n))− 1
)

→
n→+∞

− log(p)
(

exp(−λ)− 1
)

.

We have performed explicit calculations, using the knowledge of the distribution of Jn,1.
However for k > 1, we cannot rely on such simple arguments and we need other tools.

We would like to use the connexion with the Poisson distribution in order to give an
interpretation of the rate functions I and J . More precisely, I is obtained from J by the
contraction principle (I(y) = J(log(y))), and J is the rate function obtained in the Cramer
theorem where the distribution R is such that −R ∼ P

(

− log(p)
)

. Indeed, let (Rm)m∈N∗ be
independent, with the same distribution as X; if we denote by Rn = 1

n

∑n
m=1 Rm the empirical

10



average, we compute for any λ ∈ R

E
[

exp
(

nλRn

)]

=
(

E
[

exp
(

λR
)

)n

=
(

exp
(

− log(p)
(

exp(−λ)− 1
))

)n
.

To conclude this section on the case k = 1, we prove Proposition 3.4. We use again the
explicit knowledge of the distribution of Jn,1 and use a Central Limit Theorem on exponential
distributions to conclude.

Proof of Proposition 3.4. We write (with a = − log(p) = σ2n)

p̂n,1

p
= exp(Jn,1 log(1− 1/n) + a)

= exp

(

Jn,1 − na√
na

√
na log(1− 1/n) + a+ na ln(1− 1/n)

)

.

By the Central Limit Theorem on the Poisson distribution, one gets, in the limit n → +∞,
the following convergence in distribution

Jn,1 − na√
na

→ N (0, 1).

Moreover, when n → +∞, we have
√
na log(1 − 1/n) = nσ log(1 − 1/n) → −σ and a +

na log(1− 1/n) = σ2
(

n+ n2 ln(1− 1/n)
)

tends to −σ2

2 . This concludes the proof.

5.2 The general case

In this section, we give the main arguments used to prove Proposition 4.2 in the general case
k ∈ N

∗. In particular, we want to show that the rate function we obtain does not depend on
k. The proof of some important but technical results is postponed to Section 7.

Even if in Section 5.1 above we have proved Proposition 4.2 in the case k = 1, we include
this case in our general framework, and obtain an alternative proof.

To this aim, we make use of the strategy introduced in [BLR15] to study the proper-
ties of the AMS(n, k; a) algorithm. First, as explained in Section 2.3, we are allowed to
restrict the study to the case where X is exponentially distributed: it is enough to study the
AMSexpo(n, k; aexpo) algorithm, where aexpo = − log(p).

Moreover, one of the main ideas is to consider the initial condition of the algorithm as
an extra variable: for x ∈ [0, a), we study the AMSexpo(n, k; aexpo, x) algorithm. From now
on, in this Section, and in Section 7, we only consider the exponential case and we omit the
dependence.
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Definition 5.1. We use the following notation: for any (x, y) ∈ R
2

f(y) = exp(−y)1y≥0 , F (y) =
(

1− exp(−y)
)

1y≥0 =

∫ y

−∞

f(z)dz;

f(y;x) =
f(y)

1− F (x)
1y≥x , F (y;x) =

F (y)− F (x)

1− F (x)
1y≥x =

∫ y

−∞

f(z;x)dz;

fn,k(y;x) = k

(

n

k

)

F (y;x)k−1f(y;x)
(

1− F (y;x)
)n−k

,

Fn,k(y;x) =

∫ y

x
fn,k(z;x)dz.

Let X be exponentially distributed with parameter 1. Then f (resp. F )) is the density (resp.
the c.d.f.) of L(X). For x ≥ 0, f(·;x) (resp. F (·;x)) is the density (resp. the c.d.f.) of the
conditional distribution L

(

X|X > x
)

.

Finally, let (X1, . . . ,Xn) be i.i.d. with the distribution of L(X), with the associated order
statistics X(1) < . . . < X(n). Then fn,k(·;x) (resp. Fn,k(·;x)) is the density (resp. the c.d.f.)
of the k-th order statistic X(k).

The main object we need to study is the following function Γn,k of λ ∈ R (considered as a
fixed parameter) and the initial condition x ∈ [0, a]

Γn,k(λ;x) = E

[

exp
(

nλ log(p̂n,k(x))
)

]

(13)

= exp
(

Λn,k(nλ;x)
)

.

Notice that we include x = a in the domain of definition of the functions Γn,k and Λn,k (defined
by (10)). It is also important to remark that we evaluate the latter at (nλ;x).

We state several fundamental results which together yield Proposition 4.2 in the x-dependent
case; to get (11) it is then enough to take x = 0.

First, Proposition 5.2 gives a functional equation satisfied by Γn,k(λ; ·) on [0, a], for any
value of the parameters 1 ≤ k < n and λ ∈ R.

We use the following auxiliary function:

Θn,k(λ;x) =

k−1
∑

ℓ=0

exp
(

nλ log(1− ℓ

n
)
)

(

Fn,ℓ(a;x)− Fn,ℓ+1(a;x)
)

, (14)

with the convention Fn,0(y;x) = 1y≥x.

Proposition 5.2. For any n ∈ N
∗, k ∈ {1, . . . , n− 1}, and λ ∈ R, the function Γn,k(λ; ·) is

solution on the interval [0, a] of the functional equation (with the unknown Γ):

Γ(x) =

∫ a

x
exp

(

nλ log(1− k

n
)
)

Γ(y)fn,k(y;x)dy +Θn,k(λ;x). (15)

Notice that for the moment, it is not cleat that Γn,k is the unique solution of the functional
equation (15). We will prove this property below.

For completeness, we include a proof of this result, even if follows the same lines as Propo-
sition 4.2 in [BLR15].
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Proof of Propositon 5.2. We decompose the expectation according to the value of the (ran-
dom) number of iterations Jn,k(x) in the algorithm starting from x:

Γn,k(λ;x) = E

[

exp
(

nλ log(p̂n,k(x))
)

]

= E

[

exp
(

nλ log(p̂n,k(x))
)

1Jn,k(x)=0

]

+ E

[

exp
(

nλ log(p̂n,k(x))
)

1Jn,k(x)≥1

]

.

First, since
{

Jn,k(x) = 0
}

=
{

Z1 ≥ a
}

=
⋃k−1

ℓ=0

{

X(ℓ+1) ≥ a > X(ℓ)

}

, we have

E

[

exp
(

nλ log(p̂n,k(x))
)

1Jn,k(x)=0

]

= E

[

exp
(

nλ log(Cn,k(x))
)

1Jn,k(x)=0

]

=

k−1
∑

ℓ=0

exp
(

nλ log(1− ℓ

n
)
)(

Fn,ℓ(a;x)− Fn,ℓ+1(a;x)
)

= Θn,k(λ;x).

Second, we use
{

Jn,k(x) ≥ 1
}

=
{

Z1 ≤ a
}

and condition with respect to Z1:

E

[

exp
(

nλ log(p̂n,k(x))
)

1Jn,k(x)≥1

]

= E

[

E
[

exp
(

nλ log(p̂n,k(x))
)∣

∣Z1
]

1Z1<a

]

= E

[

E
[

exp
(

nλ log((1− k/n)J
n,k(x)−1Cn,k(x)) + nλ log(1− k/n)

)
∣

∣Z1
]

1Z1<a

]

= exp
(

nλ log(1− k

n
)
)

E

[

E
[

exp
(

nλ log((1 − k/n)J
n,k(Z1)Cn,k(Z1))

)
∣

∣Z1
]

1Z1<a

]

= exp
(

nλ log(1− k

n
)
)

E

[

Γn,k(Z
1;x)1Z1<a

]

=

∫ a

x
exp

(

nλ log(1− k

n
)
)

Γn,k(λ; y)fn,k(y;x)dy.

We have used a kind of Markov property for the algorithm: up to taking into account for one
more iteration, the algorithm behaves the same starting from x or from Z1 ∈ (x, a].

Notice that the functional equation (15) involves a simple factor depending only on λ,
n and k in the integral, and that on both the left and the right-hand sides the function Γ
is evaluated at the same value of the parameter λ. These observations are consequences of
the choice to prove a Large Deviations Principle for log(p̂n,k) (instead of p̂n,k) thanks to the
Gärtner-Ellis Theorem, and to conclude with the use of the contraction principle; the same
trick was used in [BGT14] to prove the Central Limit Theorem, thanks to the delta-method
and the use of Levy Theorem. If one replaces log(p̂n,k(x)) with p̂n,k(x) in (13), then one
obtains a more complicated functional equation where the observations above do not hold,
and which is not easily exploitable. In particular, one does not obtain a nice counterpart of
the fundamental result, Proposition 5.3 below.

We now state in Proposition 5.3 that solutions Γ of the functional equation (15) are in
fact solutions of a linear Ordinary Differential Equation (ODE) of order k, with constant
coefficients.

Proposition 5.3. For any n ∈ N
∗, k ∈ {1, . . . , n− 1}, and λ ∈ R, let Γ be a solution of the

functional equation (15). Then it is solution of the following linear ODE of order k:

dk

dxk
Γn,k(λ;x) = exp

(

nλ log(1− k

n
)
)

µn,kΓn,k(λ;x) +

k−1
∑

m=0

rn,km

dm

dxm
Γn,k(λ;x). (16)
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The coefficients µn,k and (rn,km )0≤m≤k−1 satisfy the following properties:

µn,k = (−1)kn . . . (n− k + 1)

νk −
k−1
∑

m=0

rn,km νm = (ν − n) . . . (ν − n+ k − 1) for all ν ∈ R.
(17)

A sketch of proof of this result is postponed to Section 7. It uses the same arguments as to
prove the corresponding functional equation in [BLR15]. For the proof of (17) in particular,
we refer to that article.

To conclude on uniqueness of the solution of (15), and then prove asymptotic expansions
on Γn,k, we prove the following Lemma.

Lemma 5.4. For any fixed k ∈ {1, . . . , } and any λ ∈ R, we have for any m ∈ {0, . . . , k − 1}

dm

dxm
Γn,k(λ;x)

∣

∣

∣

x=a
= dm

dxmΘn,k(λ;x)
∣

∣

∣

x=a
(18)

∼
n→∞

nm
(

1− exp(−λ)
)m

.

By Cauchy-Lipschitz theory, the linear ODE (16) with the conditions (18) at x = a admits
a unique solution; therefore it is clear that Γn,k is the unique solution of (15).

Remark 5.5. To prove the Central Limit Theorem in [BGT14], we used a similar result

although in a weaker form: we only needed to prove dm

dxmΘn,k(λ;x)
∣

∣

∣

x=a
= O(nm). Here we

require a more precise asymptotic result in order to prove that the coefficient γ1n,k(λ) defined
in Proposition 5.6 below converges to 1 (in fact, we only need that it is bounded from below by
a positive constant).

We finally explain how to obtain asymptotic knowledge on Γn,k(λ;x) and Λn,k(nλ, x) when
n → +∞. First, the k roots

(

νℓn,k(λ)
)

1≤ℓ≤k
of the polynomial equation associated with the

linear ODE (16) are pairwise distinct for n large enough (the other parameters λ and k being
fixed), and more precisely they satisfy (20). As a consequence, the solution Γn,k can be written

(see (19)) as a linear combination of exponential functions x 7→ exp
(

νℓn,k(λ) (x− a)
)

. Finally,

using the asymptotic expression for the derivatives of order 0, . . . , k − 1 at x = a, we obtain
a linear system of equations, solve it using the Cramer’s formulae and obtain the asymptotic
expression (21). The proof is postponed to Section 7.

Proposition 5.6. Let k ∈ {1, . . . , } and λ ∈ R be fixed. Then for n large enough, we have for
any x ∈ [0, a]

Γn,k(λ, x) =
k

∑

ℓ=1

γℓn,k(λ) exp
(

νℓn,k(λ) (x− a)
)

, (19)

where

νℓn,k(λ) ∼ n
(

1− e−λei2π
(ℓ−1)

k

)

(20)

and

γℓn,k(λ)→ 1ℓ=1. (21)
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We now conclude and prove Proposition 4.1, namely the Large Deviations Principle for
(

L(log(p̂n,k))
)

n>k
.

We start with the case k > 1. Then for any ℓ ∈ {2, . . . , k} we have for any λ ∈ R

Re
(

1− e−λei2π(ℓ−1)/k
)

> Re
(

1− e−λ
)

.

As a consequence, for x < a we have when n→ +∞

eν
ℓ
n,k(λ)(x−a) = o

(

e1−exp(−λ))(x−a)
)

,

and thus

1

n
Λn,k(nλ;x) =

1

n
log(Γn,k(λ;x)) ∼

n→+∞
ν1n,k(λ)(x − a) →

n→+∞
(1− e−λ)(x− a).

When k = 1, the linear ODE (16) is of order 1, and it is easy to check that

Γn,1(λ;x) = exp
(

ν1n,k(λ)(x− a)
)

,

so that the same asymptotic result as above holds.
It remains to take x = a, and to recall that a = − log(p) if p = P(X > a) and X is

exponentially distributed with parameter 1.

This concludes the proof of Proposition 4.1.

6 Comparison with other algorithms

We propose a comparison (in terms of large deviations) of the Adaptive Multilevel Splitting
algorithm with the two other methods described in the Introduction: a direct, naive Monte-
Carlo method, based on a non-interacting system of replicas with the same size (see the
estimator (3)) , and a non-adaptive version of multilevel splitting (see the estimator (2)).

In the first case, we obtain that large deviations are much less likely for the AMS algorithm
than for the crude Monte-Carlo method. In the second case, we show that the AMS estimator
is more efficient than the non-adaptive one taken in the limit of a large number N of fixed
levels.

These results are consistent with the cost analysis and the comparison based on the central
limit theorem, see [BLR15], [BGT14], [CDMFG12], [CG14].

6.1 Crude Monte-Carlo

We compare the performance of the AMS algorithm with the use of a Crude Monte-Carlo
estimation in the large n limit.

Let (Xm)m∈N∗ a sequence of independent and identically distributed random variables,
each one being equal in law with X.

Then for any n ∈ N
∗

pn =
1

n

n
∑

m=1

1Xm>a (22)

is an unbiased estimator of p.
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It is a classical result (Theorem 2.2.3 in [DZ10]) due to Cramer that the sequence
(

L(pn)
)

n∈N∗

satisfies a Large Deviations Principle with the rate function (case of Bernoulli random vari-
ables, see Exercice 2.2.23 in [DZ10]):

I(y) =
{

+∞ if y /∈ (0, 1)

y log
(

y
p

)

+ (1− y) log
(

1−y
1−p

)

if y ∈ (0, 1).
(23)

The comparison between the algorithms is based on the following result:

Proposition 6.1. For any p ∈ (0, 1) and any y ∈ (0, 1), we have

I(y) ≥ I(y),
I(y) = I(y) if and only if y = p.

Proof. We explicitly mention the dependence of I and of I with respect to p, and we define

D(y, p) = I(y, p)− I(y, p).

It is clear that D(p, p) = 0 for any p ∈ (0, 1). We compute that

∂D(y, p)

∂p
=

1− y

p log(p)

( log(y)

1− y
− log(p)

1− p

)

;

since the function t 7→ log(t)
1−t is strictly decreasing on (0, 1) (as can be seen by computing its

first and second order derivatives), we see that for any y, p ∈ (0, 1)2 we have the inequalities

∂D(y, p)

∂p
> 0 if y > p and

∂D(y, p)

∂p
< 0 if y < p.

Using D(p, p) = 0, it is easy to conclude.

Now let ǫ ∈ (0,max(p, 1− p)); then for n large we have

P(p̂n,k − p > ǫ)

P(pn − p > ǫ)
= exp

(

n∆(ǫ, n)
)

→ 0,

exponentially fast, since we have by the Large Deviations Principles ∆(ǫ, n) → I(p + ǫ) −
I(p+ ǫ) < 0 when n→ +∞ (notice that both I and I are increasing on (p, 1)).

The same arguments apply to get

P(p̂n,k − p < −ǫ)
P(pn − p < −ǫ) → 0.

As a consequence, the probability of observing large deviations from the mean p is much
smaller for the AMS algorithm than when using a crude Monte-Carlo estimator, in the large
n limit. This statement is a new way of expressing the efficiency of the AMS algorithm.

Notice that in the discussion above we have not assumed that we are estimating a proba-
bility in a rare event regime: the conclusion holds for any p ∈ (0, 1). Now it is also instructive
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to compare I((1 + ǫ)p) and I((1 + ǫ)p) for a given ǫ ∈ (0, 1) and when p → 0: it amounts at
looking at deviations of the relative error, and we have

lim
n→+∞

1

n
log

(

P(
p̂n,k − p

p
> ǫ)

)

= −I
(

p(1 + ǫ)
)

∼p→0 −
(

log(1 + ǫ)
)2

−2 log(p)
lim

n→+∞

1

n
log

(

P(
pn − p

p
> ǫ)

)

= −I
(

p(1 + ǫ)
)

∼p→0 −p
(

(1 + ǫ) log(1 + ǫ)− ǫ
)

.

Given δ > 0, in order to have a probability lower than δ that the relative error is larger than
ǫ, in the small p limit, one thus needs a number of replicas n which scales like 1/p when using
the crude Monte-Carlo method, while it scales like − log(p) (which is much smaller) when
using the AMS algorithm. Moreover, since the expected workload is of size n when using the
Monte-Carlo method and of size −n log(p) when using the AMS algorithm, it is clear that in
terms of large deviations from the mean the AMS algorithm is more efficient than the crude
Monte-Carlo method.

Notice that this discussion is consistent with the conclusions coming from the Central
Limit Theorem, where in the regime p → 0 the asymptotic variance is equivalent to p when
using the crude Monte-Carlo method and −p2 log(p) when using the AMS algorithm: to obtain
reliable confidence intervals on the relative error, the number of replicas n scales in the same
way.

6.2 Non-adaptive Multilevel Splitting

We now compare the rate function I obtained for the Large Deviations Principle on the AMS
algorithm, with the one we obtain when using a deterministic (non-adaptive) sequence of
levels.

Namely, using Assumption 2.1, we decompose the probability as a telescoping product of
N ∈ N

∗ conditional probabilities

p = P(X > a) =

N
∏

i=1

P(X > ai
∣

∣X > ai−1), (24)

associated with a given non-decreasing sequence of levels a0 = 0 < a1 < . . . < aN = a. We
denote by p(i) = P(X > ai

∣

∣X > ai−1) the i-th conditional probability. The sequence is of size
N and we study the asymptotic regime N → +∞.

We can define an unbiased estimator of p as follows: let n ∈ N
∗ and set

p̂Nn =

N
∏

i=1

p(i)n , (25)

where
(

p
(i)
n

)

1≤i≤N
is a family of independent random variables, where each p

(i)
n is a Crude

Monte-Carlo estimator (as defined in the section above) for the probability p(i) with n real-

izations. More precisely, let
(

X
(i)
m

)

1≤m≤n,1≤i≤N
be independent random variables, such that

L
(

X
(i)
m

)

= L(X|X > ai−1), and set

p(i)n =
1

n

n
∑

m=1

1
X

(i)
m >ai

. (26)
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From a practical point of view, notice that the computation of these estimators requires the
sampling of random variables according to the conditional distribution L(X|X > ai−1) for
each i ∈ {1, . . . , N}, just like for the adaptive version.

Here n thus denotes the number of replicas used for the estimation of the probabilities
in both the adaptive and the non-adaptive versions. We needed the extra parameter N to
denote the number of iterations (i.e. the length of the sequence of levels) of the algorithm,

while we know that the average number of iterations is of the order −n log(p)
k in the adaptive

case. Therefore, to study the non-adaptive version, we first let n → +∞, and then analyze
the behavior of the asymptotic quantities with respect to N (in the limit N → +∞), while
for the adaptive version we need to pass to the limit only once, namely n→ +∞.

Clearly, by the independence properties of the random variables introduced here we have

E[p̂Nn ] = p.

Moreover, it is well-known that, for a given value of N (the length of the sequence of lev-
els) the asymptotic variance (when n goes to +∞) is minimized when p(i) = p1/N for any
i ∈ {1, . . . , N} (i.e. the conditional probabilities in (24) are equal); moreover the asymptotic

variance is a decreasing function of N , which converges to −p2 log(p)
n when N → +∞. From a

practical point of view, the computation of the associated sequence of levels a1, . . . , aN−1 is a
priori difficult: the adaptive version overcomes this issue, and in the regime N → +∞ both
the non-adaptive and the adaptive version have the same statistical properties.

As a consequence, from now on we assume that p(i) = p1/N for any i ∈ {1, . . . , N}.
For any i ∈ {1, . . . , N},

(

L(p(i)n )
)

n∈N∗
satisfies a Large Deviations Principle with the rate

function (see (23))

IN(y) =

{

+∞ if y /∈ (0, 1)

y log
(

y
p1/N

)

+ (1− y) log
(

1−y
1−p1/N

)

if y ∈ (0, 1).
(27)

Since for any n ∈ N
∗ the random variables

(

p
(i)
n

)

1≤i≤N
are independent, it is easy to generalize

this statement as follows. The sequence
(

L(p(1)n , . . . , p
(N)
n )

)

n∈N∗
satisfies a Large Deviations

Principle in R
N with the rate function (with abuse of notation IN refers both to the function

depending on a 1-dimensional or a N -dimensional variable)

IN (y1, . . . , yN ) =

N
∑

i=1

IN (yi). (28)

Now as a consequence of the contraction principle, since p̂Nn =
∏N

i=1 p
(i)
n , the sequence

(

p̂Nn
)

n∈N∗

also satisfies a Large Deviations Principle with the rate function

IN (y) = inf

{

IN (yN , . . . , yN ) ; y =

N
∏

i=1

yi

}

. (29)

On the one hand, it is clear that if y /∈ (0, 1), then IN (y) = +∞. Indeed, for any (y1, . . . , yN )
satisfying the constraint y =

∏N
i=1 yi /∈ (0, 1), at least one of the yi’s satisfies yi /∈ (0, 1), which

yields IN (yi) = IN(y1, . . . , yn) = +∞.
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On the other hand, by definition of IN , we have for any y ∈ (0, 1)

IN (y) ≤ IN (y1/N , . . . , y1/N ) = NIN (y1/N )

= Ny1/N log
(y1/N

p1/N
)

+N(1− y1/N ) log
(1− y1/N

1− p1/N
)

→
N→∞

log(y)− log(p)− log(y) log
( log(y)

log(p)

)

= I(y).

For our purpose, this inequality is sufficient.
We now interpret the previous inequality in terms of asymptotic estimates for deviations

of p̂Nn and of p̂n,k with respect to their expected value p. Let ǫ > 0, then we have by definition
of the Large Deviations Principle with rate function IN

lim inf
n→+∞

1

n
log

(

P
(∣

∣p̂Nn − p
∣

∣ > ǫ
)

)

≥ − inf {IN (y) ; |y − p| ≥ ǫ}

≥ − inf
{

NIN (y1/N ) ; |y − p| ≥ ǫ
}

≥ −min
{

NIN ((p + ǫ)1/N ), NIN ((p − ǫ)1/N )
}

,

using that IN is non-increasing on (−∞, p1/N ) and non-decreasing on (p1/N ,+∞).
To conclude, notice that

lim
N→+∞

−min
{

NIN ((p + ǫ)1/N ), NIN ((p − ǫ)1/N )
}

= −min {I(p+ ǫ), I(p − ǫ)}

= lim
n→+∞

1

n
log

(

P
(
∣

∣p̂n,k − p
∣

∣ > ǫ
)

)

.

We can thus assess that the Adaptive Multilevel Splitting algorithm is more efficient (in
a large sense) than the non-adaptive version in terms of large deviations when the number of
replicas n goes to +∞ and in the limit of large number N if levels.

7 Proof of the technical estimates

In this section, we give detailed proofs for the technical auxiliary results used in Section 5.2.

Proof of Proposition 5.3. We proceed by recursion, like in the proof of Proposition 6.4 in
[BLR15] and Lemma 2 in [BGT14]. We fix the values of 1 ≤ k < n and of λ ∈ R.

Differentiating recursively with respect to x, for any 0 ≤ l ≤ k − 1 and for any 0 ≤ x ≤ a
we have (for a family of coefficients described by (32) below)

dl

dxl
(Γn,k(λ;x)−Θn,k(λ;x)) = µn,k

l exp
(

nλ log(1− k

n
)
)

∫ a

x
Γn,k(λ; y)fn,k−l(y;x)dy

+
l−1
∑

m=0

rn,km,l

dm

dxm
(Γn,k(λ;x)−Θn,k(λ;x)) , (30)

and that differentiating once more we get

dk

dxk
(Γn,k(λ;x) −Θn,k(λ;x)) = µn,k exp

(

nλ log(1− k

n
)
)

Γn,k(λ;x)

+

k−1
∑

m=0

rn,km

dm

dxm
(Γn,k(λ;x)−Θn,k(λ;x)) , (31)
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with µn,k := µn,k
k and rn,km := rn,km,k.

The coefficients satisfy

µn,k
0 = 1, µn,k

l+1 = −(n− k + l + 1)µn,k
l ;











rn,k0,l+1 = −(n− k + l + 1)rn,k0,l , if l > 0,

rn,km,l+1 = rn,km−1,l − (n− k + l + 1)rn,km,l, 1 ≤ m ≤ l,

rn,kl,l = −1.

(32)

Notice that these coefficients do not depend on λ, and are the same as in [BLR15] and [BGT14].
Properties (17) are proved in [BLR15].

Thanks to (17), for all j ∈ {0, . . . , k − 1} and any x ∈ [0, a] we have

dk

dxk
exp ((n − k + j + 1)(x− a)) =

k−1
∑

m=0

rn,km

dm

dxm
exp ((n − k + j + 1)(x− a)) .

Using the expression of Fn,k, straightforward computations show that Θn,k(λ; ·) is a linear
combination of the exponential functions z 7→ exp(−nz), . . . , exp(−(n− k + 1)z); therefore

dk

dxk
Θn,k(t, x) =

k−1
∑

m=0

rn,km

dm

dxm
Θn,k(t, x),

and thus (31) gives (16).

Proof of Lemma 5.4. From (30), the equality in (18) is clear.
We claim that for any 0 ≤ m ≤ k − 1 and any 0 ≤ ℓ ≤ k − 1

dm

dxm

(

Fn,ℓ(a;x)− Fn,ℓ+1(a;x)
)

∣

∣

x=a
∼

n→∞
nm

(

m

ℓ

)

(−1)ℓ. (33)

In particular, dm

dxm

(

Fn,ℓ(a;x) − Fn,ℓ+1(a;x)
)

∣

∣

x=a
= 0 =

(m
ℓ

)

for n large enough as soon as

ℓ > m. Conclusion is then straightforward: using the definition (14) of Θn,k, we get

1

nm

dm

dxm
Θn,k(λ;x)

∣

∣

x=a
=

1

nm

k−1
∑

ℓ=0

dm

dxm
exp

(

nλ log(1− ℓ

n
)
)

(

Fn,ℓ(a;x)− Fn,ℓ+1(a;x)
)

∣

∣

x=a

→
n→∞

m
∑

ℓ=0

(

m

ℓ

)

(−1)ℓ exp
(

−ℓλ
)

=
(

1− exp
(

−λ
)

)m
.

We now prove (33) by induction on m.
We first consider m = 0. Then for any ℓ ∈ N

∗ we have Fn,ℓ(a; a) = 0 and Fn,0(a; a) = 1
(by the convention Fn,0(y;x) = 1y≥x), and (33) holds.

Let us also consider m = 1, when k ≥ 2. Then d
dxFn,0(a;x)

∣

∣

x=a
= 0, while for any x ≤ a

d

dx
Fn,ℓ(a;x) =

d

dx
Fn,ℓ(a− x; 0) = −fn,ℓ(a− x; 0) = −fn,ℓ(a;x)
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as a consequence of the absence of memory property of the exponential distribution.
Now since fn,ℓ(a, a) = n1ℓ=1, we get (33) for m = 1.
The induction is based on the following relations (deduced from elementary computations;

for a proof see [BLR15], Section 6.3)











d

dx
fn,1(y;x) = nfn,1(y;x).

for ℓ ∈ {2, . . . , n− 1}, d

dx
fn,ℓ(y;x) = (n− ℓ+ 1)

(

fn,ℓ(y;x)− fn,ℓ−1(y;x)
)

.

(34)

Thanks to the first formula in (34), we easily get (33) for ℓ = 0 by induction on m.
If now ℓ ∈ {1, . . . , k − 1}, we have the recursive formula for m ≥ 1

dm+1

dxm+1

(

Fn,ℓ(a;x)− Fn,ℓ+1(a;x)
)

∣

∣

x=a
=

dm

dxm

(

fn,ℓ+1(a;x) − fn,ℓ(a;x)
)

∣

∣

x=a

= (n− ℓ)
dm−1

dxm−1

(

fn,ℓ+1(a;x)− fn,ℓ(a;x)
)

∣

∣

x=a

−(n− ℓ+ 1)
dm−1

dxm−1

(

fn,ℓ(a;x)− fn,ℓ−1(a;x)
)

∣

∣

x=a

= (n− ℓ)
dm

dxm

(

Fn,ℓ(a;x) − Fn,ℓ+1(a;x)
)

∣

∣

x=a

−(n− ℓ+ 1)
dm

dxm

(

Fn,ℓ−1(a;x)− Fn,ℓ(a;x)
)

∣

∣

x=a

Finally using the induction hypothesis and obtain

1

nm+1

dm+1

dxm+1

(

Fn,ℓ(a;x)− Fn,ℓ+1(a;x)
)

∣

∣

x=a
→

n→+∞
(−1)ℓ

(

m

ℓ

)

− (−1)ℓ−1

(

m

ℓ− 1

)

= (−1)ℓ
(

m+ 1

ℓ

)

.

This concludes the proof of Lemma 5.4.

Proof of Proposition 5.6. The νℓn,k(λ) are the roots of the caracteristic equation associated
with the linear ODE (16):

(n − ν)...(n − k + 1− ν)

n...(n− k + 1)
− exp

(

nλ log(1− k

n
)
)

= 0,

which can be rewritten as a polynomial equation of degree k with respect to the variable
νn = ν

n :

(1− νn)...(1 − k−1
n − νn)

1...(1 − k−1
n )

− exp
(

nλ log(1− k

n
)
)

= 0,

where exp
(

nλ log(1 − k
n)
)

→
n→+∞

exp(−kλ).
By continuity of the roots of polynomials of degree k with respect to the coefficients, we

get that for all ℓ ∈ {1, . . . , k} (with an appropriate ordering of the roots)

νℓn,k(λ)

n
→ νℓ∞,k(λ)
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where (1− νℓ∞,k(λ))
k = e−kλ. This identity immediately yields (20).

As a consequence, for n large enough the roots νℓn,k(λ) are pairwise distinct. Then (19)

holds for some complex numbers γℓn,k(λ), where ℓ ∈ {1, . . . , k}. Thanks to (19) evaluated at
x = a, these coefficients are solution of the following linear system of equations:























γ1n,k(λ) + ...+ γkn,k(λ) = Γn,k(λ;x)
∣

∣

x=a
,

γ1n,k(λ)ν
1
n,k(λ) + ...+ γkn,k(λ)ν

k
n,k(λ) =

d
dxΓn,k(λ;x)

∣

∣

x=a
,

...

γ1n,k(λ)
(

ν1n,k(λ)
)k−1

+ ...+ γkn,k(λ)
(

νkn,k(λ)
)k−1

= dk−1

dxk−1Γn,k(λ;x)
∣

∣

x=a
.

(35)

This system is equivalent with



























γ1n,k(λ) + ...+ γkn,k(λ) = Γn,k(λ;x)
∣

∣

x=a
→

n→+∞
1,

γ1n,k(λ)ν
1
n,k(λ) + ...+ γkn,k(λ)ν

k
n,k(λ) =

1
n

d
dxΓn,k(λ;x)

∣

∣

x=a
→

n→+∞
ν1∞,k(λ),

...

γ1n,k(λ)ν
1
n,k(λ)

k−1 + ...+ γkn,k(λ)ν
k
n,k(λ)

k−1 = 1
nk−1

dk−1

dxk−1Γn,k(λ;x)
∣

∣

x=a
→

n→+∞
ν1∞,k(λ)

k−1,

(36)

thanks to (18) and (20), where νℓn,k(λ) =
νℓn,k(λ)

n →
n→+∞

νℓ∞,k(λ).

It is now easy to get (21), which concludes the proof of Proposition 5.6.

8 Conclusion and perspectives

We have established (Theorem 3.1) a Large Deviations Principle result for the Adaptive Mul-
tilevel Splitting AMS(n, k) Algorithm in an idealized setting, when the number of replicas n
goes to infinity while the parameter k and the threshold a remain fixed. The rate function
does not depend on k: when k = 1, the proof is very simple and uses an interpretation of the
algorithm with a Poisson process (the number of iterations follows a Poisson distribution).
When k > 1, we rely on a functional equation technique which was already used to prove
unbiasedness and asymptotic normality of the estimator in the previous works [BLR15] and
[BGT14].

We were able to relate the efficiency of the algorithm with this Large Deviations result,
with a comparison with two algorithms (see Section 6): a crude Monte-Carlo method and a
non-adaptive version. More generally, in other situations Large Deviations could be a powerful
tool to compare adaptive or non-adaptive multilevel splitting algorithms, instead of resorting
only on comparison of asymptotic variances associated with central limit theorems.

Let us mention a few open directions for future works. First, it should be interesting to
look at the regime where k also goes to infinity, with k/n converging to a proportion α ∈ (0, 1).
We expect to prove that the optimal rate function is obtained for α decreasing to 0: indeed, the
asymptotic variance is minimized in this regime. A comparison with a non-adaptive version
of the algorithm is expected to show that the adaptive algorithm behaves (in terms of large
deviations) like the non-adaptive version when the number of replicas and of levels goes to
infinity, like in the regime we have studied in this paper.
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A severe restriction is given by the so-called idealized setting: we need to know how to
sample according to the conditional distribution L(X|X > x). In practice, and especially
when computing crossing probabilities for high dimensional metastable stochastic processes,
it is not satisfied and the multilevel splitting algorithm needs to use an importance function
to define appropriate levels, and at each step the computation of the new sample uses the one
at the previous iteration (thanks to a branching procedure of the successful trajectories). A
natural question is whether one can prove a Large Deviations Principle in such a framework,
and study quantitatively how the rate function depends on the importance function.

In fact, when using both non-adaptive (see [GKvO02], [GHSZ98]) and adaptive ([BGG+],
in preparation) multilevel splitting algorithms, one may observe a very large difference between
the value of the estimator (averaged over a number M of independent realizations) and the
true result, or between the results obtained for different choices of the importance function.
Even if the estimator of the probability is unbiased, in such situations one observes an apparent
bias toward smaller values if M is not sufficiently large. This phenomenon is explained by
specificity of the models: there are several channels to reach the region B from A (in the case
of the estimation of crossing probabilities between metastable states of a Markov process),
which may be sampled very differently when the importance function changes. It should be
interesting to investigate the relation between this phenomenon and the Large Deviations
Principle for the associated estimator.
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