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Urban flood modeling with porous shallow-water equations: a case study of model errors in the presence of anisotropic porosity

Introduction

Urban flood modeling is now possible at centimetric resolution or better with modern laser scanning data and flood models [START_REF] Bates | Integrating remote sensing data with flood inundation models: how far have we got?[END_REF][START_REF] Sampson | Use of terrestrial laser scanning data to derive decimetric resolution urban inundation models[END_REF]), but it is not advisable at this resolution over entire floodplains as the computational costs and memory demands are forbidding except on massively parallel computing architectures. Commonly used models are constrained by the Courant, Friedrichs, Lewy (CFL) condition for both stability and accuracy which dictates nearly an order-of-magnitude increase in computational effort every time the mesh resolution is doubled. For a Cartesian grid with a cell size of ∆x, the computational cost C of integrating a flood over a specified duration will scale as the product of the required number of computational cells n c and time steps n t ,

C ∼ n c n t ∼ 1 ∆x 3 (1)
because n c ∼ ∆x -2 and the CFL requirement to scale ∆t with ∆x. Thus, halving the cell size causes an eight fold increase in computational effort (nearly an order of magnitude) and at least a four-fold increase in memory demands. Previous work has shown that porosity models reduce computational demands by orders of magnitude [START_REF] Yu | Urban fluvial flood modelling using a two dimensional diffusion-wave treatment, part 2: development of a sub-grid-scale treatment[END_REF][START_REF] Mcmillan | Reduced complexity strategies for modelling urban floodplain inundation[END_REF]Soares-Frazão et al., 2008;[START_REF] Sanders | Integral formulation of shallow-water equations with anisotropic porosity for urban flood modeling[END_REF].

Porous shallow-water equations (porosity models) resolve urban flooding at a relatively coarse (and efficient) resolution compared to available geospatial data using additional parameters that account for sub-grid scale topographic features affecting the movement and storage flood water [START_REF] Defina | Two-dimensional shallow flow equations for partially dry areas[END_REF][START_REF] Yu | Urban fluvial flood modelling using a two dimensional diffusion-wave treatment, part 2: development of a sub-grid-scale treatment[END_REF][START_REF] Mcmillan | Reduced complexity strategies for modelling urban floodplain inundation[END_REF][START_REF] Sanders | Integration of a shallow-water model with a local time step[END_REF]Soares-Frazão et al., 2008;[START_REF] Cea | Unstructured finite volume discretization of two-dimensional depth-averaged shallow water equations with porosity[END_REF][START_REF] Chen | A coarse-grid approach to represent building blockage effects in 2D urban flood modelling[END_REF][START_REF] Guinot | Multiple porosity shallow water models for macroscopic modelling of urban floods[END_REF][START_REF] Schubert | Building treatments for urban flood inundation models and implications for predictive skill and modeling efficiency[END_REF]. In practice, the idea is to use a cell size on the order of meters or dekameters instead of a submetric resolution. This gives rise to models that resolve flooding at the pore scale roughly corresponding to the width of roadways and open spaces between buildings, in contrast with classical shallow-water models that resolve flooding at the point scale, as approximated by the grid resolution. [START_REF] Sanders | Integral formulation of shallow-water equations with anisotropic porosity for urban flood modeling[END_REF] and [START_REF] Guinot | Multiple porosity shallow water models for macroscopic modelling of urban floods[END_REF] introduce two alternative formu-lations of porosity models to capture porosity anisotropy, which can be expected in most practical applications. Anisotropy occurs in urban landscapes when there are preferential flow directions such as wide streets and narrow alleys aligned in perpedicular directions. Hypothetical examples of anisotropic flow have been presented in previous studies [START_REF] Sanders | Integral formulation of shallow-water equations with anisotropic porosity for urban flood modeling[END_REF][START_REF] Guinot | Multiple porosity shallow water models for macroscopic modelling of urban floods[END_REF], including numerous cass with angled channel-like flows through urban areas. Additionally, [START_REF] Schubert | Building treatments for urban flood inundation models and implications for predictive skill and modeling efficiency[END_REF] present a field-scale application of an anisotropic porosity model that outperforms models based on the classical shallow-water equations.

Porosity heterogeneity exists when the size of flow paths is spatially variable, and different porosity models resolve heterogeneity over different scales.

Isotropic porosity models are restricted to scales larger than the length scale of the Representative Elemental Volume (REV). This is typically an order of magnitude larger than the scale of flow obstructions in urban flood applications, nominally a kilometer or more [START_REF] Guinot | Multiple porosity shallow water models for macroscopic modelling of urban floods[END_REF]. On the other hand, the anisotropic porosity model developed by [START_REF] Sanders | Integral formulation of shallow-water equations with anisotropic porosity for urban flood modeling[END_REF] does not require the existence of an REV and can resolve heterogeneity at the grid scale.

Since porosity anisotropy is a critical consideration for practical applications, this study presents modeling of a unique experimental test case involving dam-break flow through an anistropic array of obstructions, which builds on earlier experimental work and modeling studies focused on isotropic arrays of obstructions [START_REF] Testa | Flash flood flow experiment in a simplified urban district[END_REF]Soares-Frazão and Zech, 2008). A classical shallow-water model and both isotropic and anisotropic porosity models are applied and calibrated. The objective is to measure and report the magnitude of porosity model errors in an absolute sense and also relative to other errors which collectively limit the overall accuracy of the model. A Results point to significant differences in porosity model errors across alternative porosity model formulatoins.

Methods and Materials

Porosity Definition

Porosity can be defined in more than one way, namely as a volume average fraction of pore space in a porous media or as an areal average fraction of pore space, as in a slice through the porous medium [START_REF] Bear | Dynamics of Fluids in Porous Media[END_REF]. Both volumetric and areal porosity can be expected to vary spatially in the case of a heterogeneous porous medium, and areal porosity can also vary with the orientation of the plane over which the areal average is taken, and thus exhibit anisotropy. If an urban land surface filled with solid features is taken as a porous medium, then the pore space represents the gaps between the solid features, the volumetric porosity represents the fraction of the land surface able to store water, and the areal porosity represents the fraction of space available for flood conveyance which is directionally dependent.

Porous Shallow-Water Equations

The anisotropic porosity model of [START_REF] Sanders | Integral formulation of shallow-water equations with anisotropic porosity for urban flood modeling[END_REF] is written as integral statements of mass and momentum conservation for an arbitrary 2D domain Ω with boundary Γ and unit outward normal vector n as follows,

∂ ∂t Ω iU dΩ + Γ iE • n dΓ = Γ iH • n dΓ + Ω iS dΩ (2) 
where

U =      h uh vh      E =      uh vh u 2 h + 1 2 gh 2 uvh uvh v 2 h + 1 2 gh 2      (3) S =      0 -(c f D + c b D )uV -(c f D + c b D )vV      H =      0 0 1 2 gh| 2 ηo 0 0 1 2 gh| 2 ηo      (4) 
where u=x-component of velocity, v=y-component of velocity, g=gravitational

constant, V = (u 2 + v 2 ) 1/2 , c f D is a ground friction drag coefficient, c b D is a
drag coefficient for sub-grid scale flow obstructions, and h| ηo is the depth corresponding to a piecewise constant water surface elevation η o and piecewise linear ground elevation z within Ω. The H term is introduced to transform the classical ground slope source term to a boundary integral that preserves stationary solutions. Based on the limits of this transformation, the momentum equations appearing in Eq. 2 are restricted to numerical schemes that are first-or second order accurate in space [START_REF] Sanders | Integral formulation of shallow-water equations with anisotropic porosity for urban flood modeling[END_REF].

The variable i(x, y) appearing in Eq. 2 is defined for the spatial domain D ∈ R 2 and represents a binary density function that takes on a value of zero or unity depending on the presence or absence of a solid flow barrier as follows [START_REF] Sanders | Integral formulation of shallow-water equations with anisotropic porosity for urban flood modeling[END_REF],

i(x, y) =    0 if (x, y) ∈ D b 1 otherwise (5)
where D b is a subdomain of D that corresponds to solid obstacles. Two gridbased porosity parameters are dependent on the density function (Eq. 5) as follows,

φ j = 1 Ω j Ω j i dΩ ψ k = 1 Γ k Γ k i dΓ (6) 
where Ω j corresponds to the two-dimensional (2D) spatial domain of the j th computational cell and Γ k corresponds to the k th computational edge of a mesh. Note that φ j represents the fraction of a cell area occupied by voids, and ψ k represents the fraction of a cell edge occupied by voids. Consequently, these parameters affect the relative storage of cells and conveyance between cells, respectively. Importantly, anisotropic blockage effects are explicitly resolved by the distribution of ψ k values across the computational mesh. It is noted that isotropic porous shallow-water equations can be recovered from Eq. 2 under the assumption that φ j =ψ k ∀k. Additionally, Eq. 2 revert to the classical shallow-water equations in the limit that i(x, y) = 1.

Presently it is not clear how well isotropic and anisotropic porosity models resolve flow at the pore scale where information is needed to assess the risks facing individual land parcels in an urban area, especially when the obstructions exhibit anisotropy. Eqs. 2 resolve flow properties on a grid-cell by grid-cell basis which corresponds to the pore scale since the model requires a grid that aligns cells with pore spaces [START_REF] Sanders | Integral formulation of shallow-water equations with anisotropic porosity for urban flood modeling[END_REF]. In contrast, isotropic models require the existence of an REV where the porosity is scale-independent and where areal and volumetric porosities converge to a single scalar value [START_REF] Bear | Dynamics of Fluids in Porous Media[END_REF]. The length scale of the REV is roughly an order of magnitude larger than the length scale of obstructions in urban landscapes [START_REF] Guinot | Multiple porosity shallow water models for macroscopic modelling of urban floods[END_REF], so assuming that pore sizes and obstructions are similarly sized, the isotropic models theoretically resolve flow at roughly an order of magnitude larger scale than the anisotropic model presented here.

On the other hand, [START_REF] Guinot | Multiple porosity shallow water models for macroscopic modelling of urban floods[END_REF] suggests that isotropic models can yield representative results at scales 2-3 times smaller than the REV scale.

The ground friction drag coefficient is parameterized by a Darcy-Weisbach f as follows, c f D = f /8 which is in turn computed using a modified form of the Haaland equation [START_REF] Haaland | Simple and explicit formulas for the friction factor in turbulent pipe flow[END_REF] presented by [START_REF] Arega | Dispersion model for tidal wetlands[END_REF] which considers the Nikuradse sand-grain roughness height k s and the depth-based Reynolds number Re h = V h/ν, where ν represents the kinematic viscosity. The building drag coefficient is scaled by the projected area of solid barriers as follows, c b D = 1 2 c o D a f h where a f represents frontal area [START_REF] Nepf | Drag, turbulence and diffusion in flow through emergent vegetation[END_REF]. The units of a f are length -1 , corresponding to the frontal width of obstructions in Ω normalized by Ω. c o D is classical drag coefficient that accounts for shape and Reynolds number effects on drag [START_REF] Sanders | Integral formulation of shallow-water equations with anisotropic porosity for urban flood modeling[END_REF].

Numerical Methods

The integral porosity model is solved using a Godunov-based finite volume scheme that allows for triangular, quadrilateral, or mixed meshes [START_REF] Kim | Mesh type tradeoffs in 2D hydrodynamic modeling of flooding with a Godunov-based flow solver[END_REF]. The scheme uses Roe's approximate Riemann solver with a critical flow fix, an adaptive method of variable reconstruction for uneven topography that minimizes numerical dissipation [START_REF] Begnudelli | An adaptive Godunovbased model for flood simulation[END_REF], a local time stepping scheme [START_REF] Sanders | Integration of a shallow-water model with a local time step[END_REF], a improved Volume-Free Surface-Reconstruction (VFR) technique for wetting and drying, and inclusion of grid based porosity parameters [START_REF] Sanders | Integral formulation of shallow-water equations with anisotropic porosity for urban flood modeling[END_REF] which is of particular interest here. The scheme is explicit and conditionally stable in accordance with a CFL condition [START_REF] Kim | Mesh type tradeoffs in 2D hydrodynamic modeling of flooding with a Godunov-based flow solver[END_REF].

Laboratory Experiment

Laboratory-scale modeling of anisotropic blockage effects was carried out in a physical model constructed at the Korea Institute of Construction Technology (KICT). 

Summary of Models

A classical shallow-water model (CSW), the anisotropic porosity model (PSW-A), and four isotropic porosity models (PSW-I) were applied. Additionally, results of the classical shallow-water model were averaged over each porosity-model grid cell to yield a pore scale classical shallow-water model result (CSW-P). Table 1 presents a summary of the seven models, and Fig. 2 presents the computational meshes used. Note that Fig. 2b corresponds to the gap-conforming mesh required of the anisotropic model [START_REF] Sanders | Integral formulation of shallow-water equations with anisotropic porosity for urban flood modeling[END_REF], where vertices are placed at the centroid of obstructions, cells are aligned with pore spaces, and edges intersect constrictions in the pore space.

Additionally, Fig. 2c corresponds to a region conforming mesh that precisely circumscribes the subdomain filled with flow barriers (Soares-Frazão et al., 2008;[START_REF] Guinot | Multiple porosity shallow water models for macroscopic modelling of urban floods[END_REF]. Four variants of the isotropic porosity model are used to account for both mesh designs and two alternative porosity values corresponding to the region-average volumetric porosity Soares-Frazão et al.

( 2008) and the areal porosity [START_REF] Guinot | Multiple porosity shallow water models for macroscopic modelling of urban floods[END_REF], as shown in Table 1. It is noted that an REV cannot be rigorously established in this test case due to the anisotropy, heterogeneity and limited spatial extent of the flow barriers, so the assumptions required to apply the isotropic model are not satisfied.

However, isotropic models have yielded credible predictions in other applications where these requirements were not satisified [START_REF] Guinot | Multiple porosity shallow water models for macroscopic modelling of urban floods[END_REF], motivating further study here.

Definition of Errors

Three 

Model Parameterization and Calibration

In all seven models, mesh vertex heights were assigned based on reservoir or floodplain bed elevations, and mesh cells were assigned a Nikuradse sandgrain roughness height k s to model bottom shear. Further, a no-normal-flux boundary condition was enforced along the reservoir boundaries and concrete wall separating the reservoir and floodplain, and a free-outflow boundary condition was enforced along the remaining three sides of the floodplain.

The gate opening was modeled as an instantaneous breach since the time scale of opening (<3 s) is short compared with the time-scale of the breach flow (>100 s).

To apply the anisotropic porosity model, the cell-based porosity φ j and edge-based porosity ψ k were computed based on the intersection of the mesh with the footprint of the solid blocks following previously described methods [START_REF] Sanders | Integral formulation of shallow-water equations with anisotropic porosity for urban flood modeling[END_REF][START_REF] Schubert | Building treatments for urban flood inundation models and implications for predictive skill and modeling efficiency[END_REF]. Additionally, the frontal area parameter a f required to parameterize drag was computed on a cell-bycell basis in accordance with the projected area facing the dam as described previously [START_REF] Sanders | Integral formulation of shallow-water equations with anisotropic porosity for urban flood modeling[END_REF].

To apply the isotropic porosity models, φ j and ψ k were assigned a uniform value inside the block zone as shown in Table 1. Volumetric porosity values used in PSW-I-1A and PSW-I-2A are based on the spatial extent of cells that contact the obstructions, and the porosity values differ slightly based on the mesh. Areal porosity values used in PSW-I-1B and PSW-I-2B are based on the transect E-E' in Fig. 1d. A uniform frontal area parameter was also specified inside the block zone equal to the total frontal area facing the dam, normalized by the size of the block zone. This corresponds to 0.83 and 1.29 m -1 (Table 1) for the meshes shown Fig. 2b and2c, respectively.

Outside the block zone, a porosity value of unity was assigned in all porosity models. Also, the frontal area was set to zero.

The roughness parameter, k s , was manually calibrated by applying CSW to the first KICT flow scenario (h 0 =0.30 m) with k s values ranging from 0.03 to 0.3 cm, which is an established range for concrete [START_REF] Munson | Fundamentals of fluid mechanics[END_REF]).

The k s value achieving the best agreement between predicted depths and gage measurements (minimum L 1 norm) was subsequently used in all other models and in the second KICT flow scenario (h 0 =0.45 m).

To calibrate c o D , each of the porosity models was applied to the first KICT flow scenario with c o D values ranging from 1.0 to 3.0. This range corresponds to rectangular shaped blocks in an idealized two-dimensional flow [START_REF] Munson | Fundamentals of fluid mechanics[END_REF], and it is recognized that c o D may also vary depending on sheltering effects from the clustering of solid barriers and three-dimensional flow effects [START_REF] Sanders | Integral formulation of shallow-water equations with anisotropic porosity for urban flood modeling[END_REF]. Several options deserve consideration as the reference solution for the L 1 error norm. Calibration to gage measurements is the first option and is motivated by the goal of minimizing the overall error in the porosity model prediction, whereas another option is calibration to CSW-P predictions which is motivated by the goal of minimizing porosity model errors. Further, calbration to CSW-P depth and/or velocity predictions is possible. Here, all three options are pursued: calibration to depth measurements, CSW-P predictions of depth at gage locations, and CSW-P predictions of velocity at gage locations.

Results

Convergence of the CSW model

A resolution of 0.05 m was selected for CSW after a convergence check with a 0.025 m mesh of approximately 1.3 million computational cells. This showed that the average convergence error (measured over the simulation period at each gage) of the CSW depth prediction was less than 2 mm at all stations except Gage 2, where the convergence error was found to be 6 mm. Over all stations, the average convergence error was approximately 1 mm. Gage 2 is located in front of the leading row of obstructions (see Fig. 1). Here, super-critical flow through the breach strikes the first row of blocks, and a bow shock (hydraulic jump) forms across the width of the blocks as shown in Fig. 3. Based on the curvature of the shock wave, Gage 2 is on the windward side of the shock and Gages 11 and 18 are on the leeward side. Further, the width of the shock wave (measured in y direction on Fig. 3) is minimal at Gage 2: over a distance of 30 cm in the y direction, the water depth rises up from 5 cm to 16 cm, and then down again to 10 cm, approximately, based on results shown in Fig. 3(b). As the mesh is coarsened from 0.025 to 0.05 m resolution, this narrow band of super-elevated water is diffused slightly and its windward edge moves closer to Gage 2, leading to higher water depth predictions. Hence, the relatively large convergence error at Gage 2 is explained by its position at the leading edge of a shock wave.

It is noted that porosity models use a 30 cm mesh resolution (Fig. 2(c) and (d), and Table 1), which is too coarse to sharply resolve the narrow band of super-elevated water at Gage 2. This shows that pore scale and point scale values of flood predictions may differ substantially as a result of localized wakes and wave reflections from flow obstructions.

Calibration of k s

Fig. 4 shows CSW model predictions of depth using k s values from 0.03 to 0.3 cm, compared with measurements for a selection of gages. Additionally, In the analysis of model errors which follows, results of all three calibrations are considered and referenced as Calib1 (measured depth), Calib2

(CSW-P depth prediction), and Calib3 (CSW-P velocity prediction).

Model Predictions and Errors

Table 4 provides a summary of all model configurations and run times, 

Structural Model Errors

The CSW prediction is shown to yield a good approximation of flood depths across the spatial domain (Fig. 5), with an average error of only 0.63 cm (Table 5), which represents just 2% of the initial depth in the reservoir.

The main limitations of CSW are noted at Sta. 18 where a spurious wave is measured in the experiment that is not explained by the model, and at Sta.

5 where the model overpredicts flood depths roughly by a factor of two. In a second test case involving h 0 =0.45 m (Fig. 6), the average error is 0.89 cm (Table 5) which is again just 2% of the initial depth in the reservoir. Hence, after calibration of the model to the first test case, the model performs with the same relative error in a second test case.

Scale Errors

Differences between point scale (CSW) predictions and pore-scale (CSW-P) predictions of flood depth constitute the scale error which is at least 65% smaller than the structural model error according to L 1 norms shown in Table 5. In particular, the scale error in depth is 0.18 cm in the first test case where the structural model error is 0.63 cm. In the second test case, the scale error is 0.30 cm while the structural model error is 0.89 cm.

Table 5 also shows that the scale error in velocity is 7.45 and 9.12 cm/s, which corresponds to about 2% of the theoretical peak velocity of a dry-bed dam break flood wave, (gh 0 ) 1/2 . Fig. 5 and 6 illuminate the origin of the scale error. In the first test case (Fig. 5), CSW-P notably departs from CSW at Sta. 2 which is explained by the shock waves shown in Fig. 3. This occurs because at the point scale, the prediction corresponds to one side of the shock or the other, while at the pore scale, the prediction corresponds to a spatial average around the shock.

Noticeable differences also occur at two other stations outside perimeter of the obstructions (e.g., Sta. 17 and 18), while differences away from the obstructions (Sta. 5, 6, and 7) and at stations off center from the main flow path (Sta. 19 and 20) are minimal.

Differences between the point scale and pore-scale velocities in Fig. 7 and 8 are noted at Sta. 2, 15 and 16 where relatively high velocities occur due to the alignment of this channel with the dam-break flood wave. Here, faster velocities occur along the centerline and slower velocities occur near the blocks as a result of wakes, and the monitoring stations sample the fastest moving water. Relatively large scale effects are also noted at Sta. 18 and 21.

Porosity Model Errors

Attention is now focused on porosity model errors in flood depth and velocity, which are measured by a comparison of porosity model predictions and CSW-P. Table 5 shows that the anistropic porosity model introduces a significantly smaller error in depth and velocity than all of the isotropic porosity models. For example, in the first and second test cases, isotropic model errors in depth were 65-210% and 77-240% greater than the anistropic model, respectively, based on Calib2. Additionally, isotropic model errors in velocity were 83-97% and 80-86% greater than the anistropic model for the first and second test cases, respectively, based on Calib3. Data in Table 5 also shows that the magnitude of the porosity model errors is mostly greater than or equal to the scale error, but less than the structural model errors, for both depth and velocity. The exception is the second test case where the anisotropic porosity model errors in depth are actually smaller than the scale error.

The total error of the porosity models relative to point-scale predictive skill is also shown in Table 5, with L 1 norms based on gage depth measurements. The total errors of the anisotropic porosity model are nearly identical to CSW and CSW-P based on Calib1, while all of the isotropic models yield larger total errors. Errors in the isotropic models range from 16 to 59% higher than CSW errors in the first test case, and 2 to 29% higher in the second test case, based on Calib1.

Spatial Variability

Previously shown results reveal at-a-station dynamics, but it is also worthwhile to examine the spatial structure of flood predictions. For the h 0 =0.30 m case, Fig. 9 shows contours of pore-scale flood depth and vectors representing the pore scale velocity magnitude and direction 50 s after the dam-break as depicted by: (Fig. 9a) CSW-P model, (Fig. 9b) PSW-A model, and (Fig. 9c-f) the four isotropic porosity models. CSW-P model predicts a zone of elevated water (region colored green, yellow and red) that approximates a triangular shape, and this shape is retained fairly well by PSW-A model, but not as well by the isotropic models. The isotropic models predict a more rounded shape which reflects a lack of directionality. Focusing on the bow shock in front of the obstructions, CSW-P model and PSW-A model predict a laterally distorted shape, while the isotropic models predict a more rounded shape, again reflecting a lack of directionality. block from the dam. On the other hand, the isotropic porosity models fail to capture this depth variability and instead predict a relatively smooth variation of the flood depth through the block zone. This is a result of using a uniform porosity value through the region of obstacles, and consistent with the design of isotropic models to predict flow properties at the REV scale which is considerably larger than the pore scale. Fig. 9 and 10 also reveal insight into the sensitivity of isotropic porosity models to the porosity value.

Generally, with a decrease in the porosity value, the height of the bow shock increases and it shifts forwards towards the dam.

Discussion

The preceding results show that porosity model errors may be significantly larger than scale errors which poses an opportunity for improved porosity models. The margin for improvement of the anisotropic model relative to flood heights is small, but the potential for improvement of the velocity predictions is greater and motivates improved models of flow resistance, possibly allowing for more spatial variability in parameters, or even fundamentally new approaches or more advanced calibration procedures. However, research directed at improving porosity model formulations should be mindful of structural model errors. Based on the data presented here, the anisotropic model is equally accurate as the point-scale classical shallow-water model relative to flood depth prediction, so further reduction in porosity model errors cannot be expected to reduce total errors. Broadly, porosity models cannot be expected to predict flood heights any more accurately than the pore-scale average of the foundational flow model, in this case the classical shallow-water equations.

There is critical need for urban flood inundation models that can be efficiently applied over practical scales such as a city or regional flood plain, and these results and previous studies [START_REF] Yu | Urban fluvial flood modelling using a two dimensional diffusion-wave treatment, part 2: development of a sub-grid-scale treatment[END_REF][START_REF] Mcmillan | Reduced complexity strategies for modelling urban floodplain inundation[END_REF]Soares-Frazão and Zech, 2008;[START_REF] Sanders | Integral formulation of shallow-water equations with anisotropic porosity for urban flood modeling[END_REF][START_REF] Guinot | Multiple porosity shallow water models for macroscopic modelling of urban floods[END_REF] reveal great potential to address this need. But aside from accuracy, another critical question to address is whether any of the porosity models can be more easily parameterized and validated in practical applications. High quality site data is often available for flood modeling studies but calibration data is rare, so there is a need for flood models with parameters that can be estimated deterministically and relied upon to make accurate predictions.

This further supports use of the anisotropic model presented here because porosity parameters are a deterministic function of the flow obstructions [START_REF] Sanders | Integral formulation of shallow-water equations with anisotropic porosity for urban flood modeling[END_REF][START_REF] Schubert | Building treatments for urban flood inundation models and implications for predictive skill and modeling efficiency[END_REF], in contrast with the isotropic model where it is unclear how to define a porosity given that a range of values could be used corresponding to volumetric and aerial porosities defined at different spatial scales. However, calibration data may still needed to estimate porosity model drag parameters (e.g., [START_REF] Schubert | Building treatments for urban flood inundation models and implications for predictive skill and modeling efficiency[END_REF]). In the less common scenario where high quality site data are not available to guide the porosity specification, but calibration data exists, the isotropic model may be preferred as the porosity value itself can be used as a calibration parameter.

Conclusions

Urban also show that porosity model errors in depth and velocity are significantly higher using an isotropic porosity model compared with an anisotropic model, and that the anisotropic porosity model is no less accurate than a fine grid shallow-water model, based on the total error. Recognizing that all porosity models reduced run times by a factor of nearly a thousand compared with the classical shallow-water models, the anistropic porosity model stands out as the most efficient approach for pore-scale modeling based on its low level of error, among models considered here. Additionally, the anistropic porosity model used here is more successful at resolving pore-scale flow variability than isotropic models because the latter are constrained to scales larger than the REV.

Results show that significant differences may exist between pore-scale and point-scale flood conditions in close proximity to flow obstructions, for example due to wave reflections and wakes, so porosity model flood predictions should be used cautiously to inform point-scale flood risk decision-making, such as whether flood heights will rise above the threshold of a door along a roadway. However, results validate the utility of porosity models for mapping flood heights at the pore-scale, i.e., the average flood height across a roadway.

Further research into porosity models should be directed at reducing porosity model errors in velocity, for example with improved drag parameterizations, but should be mindful of limitations posed by structural model errors. Finally, the cell averaging of fine-scale classical shallow-water model predictions is found to be an effective approach for gaging the merits of alternative porosity model formulations, as this enables a direct measure of the porosity model error.

• Fig. 10. Profile of flood depth after dam-break for h 0 =0.30 m at B-B'in 1 Fig. 1(c).
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Captions of Tables

• Table 1. Shallow-water model formulations and corresponding meshes shown in Fig. 2.

• Table 2. L 1 norms of flood depth for calibration of roughness height (k s ) on CSW (unit: cm).

• Table 3. L 1 norms of flood depth for calibration of drag coefficient (c o D )

on PSW-A and PSW-I.

• Table 4. Model parameters and run time.

• Table 5. L 1 norms of flood depth and velocity based on calibration and reference solution.
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  better understanding of errors is needed to effectively use porosity models in flood hazard mapping. Three types of errors are reported: (a) structural model errors associated with the shallow-water equations which constitute the foundation of the porosity models, (b) scale errors arising from a grid size that matches the pore scale instead of the point scale, and (c) porosity model errors associated the parameterization of sub-grid scale obstructions.

  Fig.1(c). Two different flow scenarios are considered corresponding to an initial reservoir water depth (h 0 ) of 0.30 m and 0.45 m, measured relative to the floodplain elevation[START_REF] Yoon | Experimental study on flood inundation considering urban characteristics (FFC06-05)[END_REF].Within each 3x3 cluster, the gap between buildings is 0.1 m facing the dam (section E-E' in Fig.1(d)) and 0.4 m perpendicular to the dam (section G-G' in Fig.1(d)). This introduces a strong degree of anisotropy in the porosity field, a 1 to 4 ratio in the cross-sectional area available for flow between blocks. The KICT problem also introduces pore scale heterogeneity in the porosity distribution. For example, considering again Fig.1(d), the areal porosity ψ varies significantly between Sections D-D' and E-E' in the y direction, with ψ E < ψ D , and between Sections G-G' and F-F' in the x direction, with ψ G < ψ F . Similarly, the volumetric porosity φ varies significantly between domain a and b shown in Fig. 1(d), with φ b < φ a .

  types of errors are reported: (a) structural model errors, (b) scale errors and (c) porosity model errors. Structural model errors are defined by the difference, as measured by L 1 = N j=1 |(w 1 ) j -(w 2 ) j |/N, between the converged CSW prediction and gage measurements of flood depths. Scale errors are defined by the difference between the CSW (point scale) and CSW-P (pore scale) predictions at gage locations, and are computed for both depth and velocity. Porosity model errors are defined by the difference between porosity model predictions and CSW-P at gage locations (pore scale com-parison), and are evaluated for both depth and velocity.

3. 3 .

 3 Calibration of c o D Table 3 presents L 1 norms in porosity model predictions as a function of c o D and different reference solutions. This shows that optimal c o D depends on the porosity model and also depends on whether the goal is to minimize total errors or porosity model errors. In four of the five models, minimizing porosity model errors calls for a drag coefficient on the low end of the range (1.0) while minimizing total errors calls for a drag coefficient at the high end of the range (3.0). We conjecture that the goal of a porosity model should be to reproduce as accurately as possible the pore-scale averaged solution of the shallow-water equations, and not necessary match measurements. However, the results here clearly indicate that c o D can be tuned to improve the agreement with measurements. The calibration also shows that over a range of physically realistic drag coefficient values, the anisotropic model consistently produces smaller total errors and porosity model errors in flood depths. Further, the anisotropic model performs particularly well with respect to velocity predictions, as the porosity model errors are nearly twice as large for isotropic models versus the anisotropic model.

  Figs. 5 and 6 present predictions and gage measurements of flood depth for the first (h 0 =0.30 m) and second (h 0 =0.45 m) test cases based on Calib1, and Figs. 7 and 8 present model predictions of velocity for the first and second test cases based on Calib1. Results from Calib2 and 3 are not shown graphically, but Table 5 shows L 1 norms according to the porosity model, the calibration, and the reference solution. L 1 norms based on flood depth measurements are used to measure the structural model error in the CSW model and the total error in the porosity models, while L 1 norms based on the CSW-P prediction are used to measure porosity model errors. The scale

Fig. 10

 10 Fig.10shows the flood depth distribution for the h 0 =0.30 m case at four

  flood models based on porous shallow-water equations predict flood depths and velocities with three types of errors: (a) structural model errors associated with the limitations of the 2D shallow-water equations (e.g., hydrostatic pressure, vertical uniform velocity distributions), (b) scale errors associated with use of a relatively coarse, pore scale grid comparable to the spacing between buildings, and (c) porosity model errors related to the treatment of sub-grid scale obstructions. Results show that in this unique test case with anisotropy in the porosity distribution as in practical applications, porosity model errors are mostly greater than scale errors but less than structural model errors, although in one test case the porosity model error of the anisotropic model was slightly less than the scale error. Results
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 3 Fig. 3. Computational mesh for (a) CSW and CSW-P, (b) PSW-A, PSW-I-2A and PSW-I-2B, and (c) PSW-I-1A and PSW-I-1B.
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 56 Fig. 5. Comparison of predicted flood depth and measurement for h 0 =0.30 m.
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 7 Fig. 7. Comparison of predicted velocity for h 0 =0.30 m.
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 8109 Fig. 8. Comparison of predicted velocity for h 0 =0.45 m.

Table 2 shows

 2 L 1 norms for CSW model. These results demonstrate that the influence of roughness depends on the gage location, but overall roughness does not exhibit a strong influence on the average error. The implication is that momentum losses are dominated by the geometric constriction and form drag associated with the solid blocks, not skin friction from the bottom boundary. All subsequent modeling uses k s =0.03 cm since this leads to the most accurate prediction based on the values considered.

Table 1 .

 1 Shallow-water model formulations and corresponding meshes shown in Fig.2

	Case	Description	Mesh in Fig. 2	Num. of nodes	Num. of cells	Resolution (m) Avg. Max. Min.
	CSW	Classical shallow-water	(a)	330464 328612 0.05	0.05	0.05
	CSW-P	Pore-scale average of CSW	(a)	330464 328612 0.05	0.05	0.05
	PSW-A	Anisotropic porosity model	(b)	9216		0.30	0.33	0.25
	PSW-I-1A	Isotropic porosity model ( 𝜙= 𝜓=0.74)	(c)	9412		0.30	0.33	0.25
	PSW-I-1B	Isotropic porosity model ( 𝜙= 𝜓=0.40)	(c)	9412		0.30	0.33	0.25
	PSW-I-2A	Isotropic porosity model ( 𝜙= 𝜓=0.83)	(b)	9216		0.30	0.33	0.25
	PSW-I-2B	Isotropic porosity model ( 𝜙= 𝜓=0.50)	(b)	9216		0.30	0.33	0.25

Table 2 .

 2 L 1 norms of flood depth for calibration of roughness height (k s ) on CSW (unit: cm).

	Case	k s (cm)	Gages inside block zone 2 11&18 12&19 13&20 14&21 15	16	Gages outside block zone Entire Avg. 17 Avg. 3&7 4&6 5 Avg.
		0.03 1.08 1.22 0.66 0.44 0.58 1.49 0.23 0.29 0.75 0.33 0.39 0.81 0.51 0.63
		0.05 0.94 1.23 0.66 0.44 0.62 1.49 0.23 0.29 0.74 0.35 0.44 0.82 0.54 0.64
	CSW	0.10 0.71 1.24 0.66 0.44 0.70 1.48 0.23 0.29 0.72 0.40 0.53 0.89 0.61 0.66
		0.20 0.56 1.25 0.66 0.45 0.83 1.46 0.23 0.30 0.72 0.49 0.66 1.03 0.72 0.72
		0.30 0.57 1.26 0.67 0.46 0.91 1.44 0.23 0.30 0.73 0.56 0.74 1.12 0.81 0.77

Table 3 .

 3 L 1 norms of flood depth and velocity for calibration of drag coefficient (𝑐 𝐷 𝑜 ) on PSW-A and PSW-I. Case L 1 of flood depth (unit: cm) L 1 of flood depth (unit: cm) L 1 of flood velocity (unit: cm/s) Calib1: Ref.-Measured ℎ Calib2: Ref.-Predicted ℎ on CSW-P Calib3: Ref.-Predicted 𝑉 on CSW-P PSW-A 0.705 0.681 0.669 0.663 0.660 0.165 0.186 0.21 0.231 0.248 10.958 11.816 12.513 13.111 13.695 PSW-I-1A 1.068 1.021 1.015 1.012 1.003 0.507 0.545 0.578 0.592 0.590 21.730 21.893 22.132 22.136 21.960 PSW-I-1B 0.751 0.732 0.726 0.728 0.732 0.337 0.387 0.422 0.446 0.464 21.581 21.812 21.956 22.123 22.171 PSW-I-2A 1.152 1.088 1.04 1.003 0.974 0.601 0.529 0.533 0.543 0.533 22.084 21.05 20.798 20.505 20.142 PSW-I-2B 0.815 0.78 0.761 0.752 0.749 0.278 0.284 0.317 0.341 0

	𝑐 𝐷 𝑜 =1.0 1.5	2.0	2.5	3.0 𝑐 𝐷 𝑜 =1.0 1.5	2.0	2.5	3.0 𝑐 𝐷 𝑜 =1.0 1.5	2.0	2.5	3.0

Acknowledgements

This work was supported by the MRPI program of the University of California Office of the President and the Infrastructure Management and Extreme Events program of the National Science Foundation (CMMI-1129730). The authors wish to thank K. Yoon and his research team for their efforts to conduct the laboratory experiments presented here.

Captions of Figures
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