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STATISTICAL EFFICIENCY OF STRUCTURED CPD ESTIMATION APPLIED TO WIENER-HAMMERSTEIN MODELING

José Henrique de M. Goulart * , § , Maxime Boizard * * , † , Rémy Boyer * * , Gérard Favier * and Pierre Comon ‡

INTRODUCTION

The canonical polyadic decomposition (CPD), which can be seen as one possible extension of the SVD to higher-order tensors [START_REF] Comon | Tensors : A brief introduction[END_REF], is by now a well-established mathematical tool utilized in many scientific disciplines [START_REF] Kolda | Tensor decompositions and applications[END_REF]. As it requires only mild assumptions for being essentially unique, the CPD provides means for blindly and jointly identifying the components of multilinear models, which arise in many real-world applications; see [START_REF] Comon | Tensors : A brief introduction[END_REF][START_REF] Kolda | Tensor decompositions and applications[END_REF][START_REF] Lim | Blind multilinear identification[END_REF] for some examples.

In particular, the computation of CPDs having structured factors-such as Vandermonde, Toeplitz or Hankel matriceshas been shown useful in problems including channel estimation [START_REF] Fernandes | Blind channel identification algorithms based on the PARAFAC decomposition of cumulant tensors: the single and multiuser cases[END_REF], nonlinear system identification [START_REF] Favier | Tensor-based methods for system identification. Part 2: Three examples of tensor-based system identification methods[END_REF] and multidimensional harmonic retrieval [START_REF] Sorensen | Blind signal separation via tensor decomposition with Vandermonde factor: Canonical polyadic decomposition[END_REF]. As a consequence, several special-purpose algorithms have been developed [START_REF] Sorensen | Blind signal separation via tensor decomposition with Vandermonde factor: Canonical polyadic decomposition[END_REF][START_REF] Kibangou | Non-iterative solution for PARAFAC with a Toeplitz matrix factor[END_REF][START_REF] Sorensen | Tensor decompositions with banded matrix factors[END_REF][START_REF] Goulart | An algebraic solution for the Candecomp/PARAFAC decomposition with circulant factors[END_REF].

In practice, the data tensor to be decomposed is always corrupted by noise. Therefore, the assessment of the statistical performance of CPD computation algorithms via comparison with the Cramér-Rao bound (CRB) [START_REF] Kay | Fundamentals of Statistical Signal Processing: Estimation Theory[END_REF] is of practical interest, since it can guide the choice for an appropriate algorithm in application domains. Furthermore, it can provide valuable information for the study and development of such algorithms. For the unstructured CPD, [START_REF] Liu | Cramér-Rao lower bounds for low-rank decomposition of multidimensional arrays[END_REF] has derived the associated CRB and presented an evaluation of the popular alternating least-squares (ALS) algorithm for tensors of orders three and four. Regarding the structured case, the CRB for the estimation of a complex CPD with a particular Vandermonde factor has been derived in [START_REF] Sahnoun | Tensor polyadic decomposition for antenna array processing[END_REF], motivated by the problem of estimating the directions of arrival of multiple source signals. Also, [START_REF] Boizard | Performance estimation for tensor CP decomposition with structured factors[END_REF] has provided a closed-form expression for the CRB associated with the estimation of a CPD having Hankel and/or Toeplitz factors.

This paper addresses the statistical evaluation of algorithms specialized in computing a CPD having banded circulant factors when applied to estimate the parameters of a Wiener-Hammerstein (WH) model, which is a well-known block-oriented model used for representing nonlinear dynamical systems [START_REF] Haber | Nonlinear system identification -Input-Output Modeling Approach[END_REF]. Because many systems of practical relevance can be (approximately) described by the WH model, the problem of identifying its parameters from a set of experimental data (i.e., measured input and output samples) is well-studied; see, e.g., [START_REF] Haber | Nonlinear system identification -Input-Output Modeling Approach[END_REF] and references therein. One possible approach, as described in [START_REF] Favier | Tensor-based methods for system identification. Part 2: Three examples of tensor-based system identification methods[END_REF], consists in estimating the WH model parameters by computing the structured CPD of a kernel of its equivalent Volterra model. Here, we derive a closed-form expression for the CRB associated with this estimation problem, assuming the availability of a previously identified Volterra kernel corrupted by white Gaussian noise. Then, we formulate specialized estimation algorithms based on the CP Toeplitz (CPTOEP) and circulant-constrained ALS (CALS) methods proposed in [START_REF] Sorensen | Tensor decompositions with banded matrix factors[END_REF][START_REF] Goulart | An algebraic solution for the Candecomp/PARAFAC decomposition with circulant factors[END_REF] and evaluate their performance by comparing their mean-square error with the CRB through Monte Carlo simulations.

Notation. Scalars are denoted by lowercase letters, e.g. θ i or a ij , vectors by lowercase boldface, e.g. θ or a j , matrices by boldface capitals, e.g. B or A (p) , and higher order arrays by calligraphic letters, e.g. X. We use the superscripts T for transposition, † for pseudo-inverse, ⊠ and ⊙ denote the Kronecker and Khatri-Rao products, respectively, and ⊗ stands for the (tensor) outer product. The shorthand a ⊠p denotes a⊠. . .⊠a, where a appears p times; a ⊗p and A ⊙p are defined analogously. For our purposes, a tensor X of order P will be assimilated to its array of coordinates, which is indexed by P indices. Its entries will be denoted by x i1,...,iP .

WIENER-HAMMERSTEIN MODEL

IDENTIFICATION VIA CPD

Tensors and the CP decomposition

The polyadic decomposition of a pth-order tensor is defined by

X = R r=1 a (1) r ⊗ a (2) r ⊗ . . . ⊗ a (p) r , (1) 
where a

(q)
r is the r th column of A (q) ∈ R Iq×R . The minimal value of R such that X can be written as in ( 1) is called the rank of X, in which case we refer to the above decomposition as the CPD of X. Another way of expressing ( 1) is

X = I × 1 A (1) × 2 • • • × p A (p) ,
where I ∈ R Rו••×R is a pth-order diagonal tensor such that [I] r,...,r = 1 and × q denotes the mode-q product (see, e.g., [2, Sec. 2.5]).

The WH model and its equivalent Volterra model

The structure of a discrete-time WH model is as depicted in Fig. 1. Basically, it consists of a cascade connection comprising a memoryless nonlinearity g(•) "sandwiched" by two linear systems, W (z) and H(z). Because of its structured form constituted by fundamental blocks, the WH model is said to belong to the class of block-oriented models [START_REF] Haber | Nonlinear system identification -Input-Output Modeling Approach[END_REF].

In this paper, we consider the time-invariant WH model constituted by a polynomial nonlinearity g(x) = P p=1 g p x p and by finite impulse response filters W (z) =

Lw-1 l=0

w l z -l , with w 0 = 0, and

H(z) = R-1 r=0 h r z -r . Hence, the result- ing expression relating the input u(n) to the output y(n) is y(n) = P p=1 g p R-1 r=0 h r Lw+r-1 m=r w m-r u(n -m) p . (2) 
After some manipulation, this relation can be put in the equivalent Volterra model form 

y(n) = P p=1 M-1 m1=0 • • • M-1 mp=0 k (p) (m 1 , . . . , m p ) p q=1 u(n -m q ), - u(n) W (z) -g(•) -H(z) y(n) -
k (p) (m 1 , . . . , m p ) = g p L l=l0 h l p q=1 w mq-l , (3) 
with

M = L w + R -1, l 0 = max{0, m 1 -L w + 1, . . . , m p - L w + 1} and L = min{R -1, m 1 , . . . , m p }.

CPD-based WH model identification

We now describe the WH model identification approach proposed in [START_REF] Favier | Tensor-based methods for system identification. Part 2: Three examples of tensor-based system identification methods[END_REF], which involves computing the CPD of a symmetric high-order Volterra kernel. We start by noting that, being a function of multiple discrete indices, any pth-order symmetric Volterra kernel k (p) of memory M can be uniquely identified with a pth-order symmetric tensor

X ∈ R Mו••×M defined by x m1,...,mp = k (p) (m 1 -1, . . . , m p -1)
. Owing to its convolutive form involving separable terms, the kernel in (3) can be identified with the tensor

X = g p R r=1 h r-1 c ⊗p r = g p R r=1 h r-1 (S r w) ⊗p , (4) 
where S r [e r . . . e Lw+r-1 ], with e m denoting the mth canonical basis vector of R M , and w = [w 0 . . . w Lw-1 ] T . Expression (4) is a symmetric CPD that can also be written as

X = I × 1 C × 2 • • • × p-1 C × p [g p C diag(h)] , (5) where h = [h 0 . . . h R-1 ] T and C = [c 1 . . . c R ] ∈ R M×R .
Note that the choice of which factor is postmultiplied by diag(h) is irrelevant, due to the scaling indeterminacy. We thus conclude that the WH model (2) has equivalent symmetric Volterra kernels whose CPD are constituted by circulant factors C and a factor of the form g p C diag(h), which absorbs the scaling coefficients g p and h r .

As the factors in (5) contain the parameters of the linear blocks of the WH model (2), the above observations suggest the following three-step procedure for its identification: (i) estimate k (p) from an available set of input/output samples, using some Volterra kernel identification method (as, e.g., [START_REF] Kibangou | Identification of fifth-order Volterra systems using i.i.d. inputs[END_REF]), (ii) compute the structured CPD from the associated symmetric tensor X and (iii) estimate the coefficients g q , q = p, in the least-squares sense as explained in [START_REF] Favier | Tensor-based methods for system identification. Part 2: Three examples of tensor-based system identification methods[END_REF]. Note that this requires choosing some p ≥ 3, since otherwise the model is not identifiable: for p = 1, it is a vector containing sums of products of coefficients g p , h r and w l ; for p = 2, we have a bilinear decomposition, which is only unique under restrictive assumptions (such as orthogonality). Henceforth, we assume that (i) has been accomplished and focus on step (ii).

ANALYTICAL CRB FOR CPD-BASED WH ESTIMATION ALGORITHMS

Formulation of estimation problem

Let us consider that a pth-order tensor has been constructed from a non-null estimated kernel k (p) , as described in the previous section. In practice, it is evident that such a tensor satisfies Y = X + N, where N is an error tensor accounting for the inevitable uncertainties which arise in the data-driven kernel estimation procedure. 

(X) = g p R r=1 h r-1 (S r w) ⊠p = g p R r=1 h r-1 S ⊠p r w ⊠p = g p R r=1 h r-1 Φ r w ⊠p = Φ(h)f (w), (6) 
where Φ(h) is given by the term between brackets, in which Φ r = S ⊠p r , and f (w) = w ⊠p . Our problem can therefore be expressed as that of estimating the parameters g p , w and h of the WH model from observations which satisfy y = ΨΦ(h)f (w) + n. We assume that the random vector n has zero-mean i.i.d. components drawn from the Gaussian distribution with variance σ 2 .

Identifiability

Due to the inherent scaling indeterminacy of our model, its local identifiability is only guaranteed with further assumptions. To eliminate this indeterminacy, we assume w 0 = g p = 1, which is sufficient due to the model structure. Note that this entails no loss of generality, as h and the other coefficients w l can be rescaled accordingly. Defining now w such that w = [1 wT ] T , we can write the parameter vector of the WH model as η = [ wT h T ] T ∈ R M . Global identifiability, on the other hand, is related to the uniqueness of the structured CPD. As the k-rank [START_REF] Kolda | Tensor decompositions and applications[END_REF][START_REF] Lim | Blind multilinear identification[END_REF] of C equals R, uniqueness follows from Kruskal's condition [2, Sec. 3.2] if h 0 = R (which 1 The ordering of the rows of Ψ is of no consequence for our purposes.

implies that the k-rank of C diag(h) is R) and R ≥ 2. If h 0 < R, then the k-rank of C diag(h) equals zero; in this case, Kruskal's condition is only met for P = 4 if R ≥ 3 and for P ≥ 5 if R ≥ 2.

Parameter estimation algorithms

In this section, we briefly review two methods that can be used to estimate the parameters η of a model of the form (4).

Circulant-constrained ALS algorithm

The first method consists of a specialization of the wellknown alternating least squares (ALS) algorithm in which the factor matrices of the CPD are constrained as in [START_REF] Favier | Tensor-based methods for system identification. Part 2: Three examples of tensor-based system identification methods[END_REF]. In the case of a CPD involving only circulant factors, such strategy has already been followed in [START_REF] Goulart | An algebraic solution for the Candecomp/PARAFAC decomposition with circulant factors[END_REF], leading to the CALS algorithm. Here, we adapt that algorithm for our purposes.

Initially, we define E l [e l . . . e R+l-1 ] ∈ R M×R , for l ∈ {1, . . . , L w }, and E [vec (E 1 ) . . . vec (E Lw )]. With these definitions, we have vec(C) = Ew. Next, we note that any flat matrix unfolding of Y can then be written as

Y ≈ C diag(h) C ⊙p-1 T = unvec R (Ew) diag(h) C ⊙p-1 T
where the above approximation is due to the presence of noise and the operator unvec R is defined such that,

∀ a = [a T 1 . . . a T R ] T with a r ∈ R N , unvec R (a) = [a 1 . . . a R ]. Using the property vec(A diag(b)D) = (D T ⊙ A)b, we have also vec(Y) ≈ (C ⊙p ) h.
Hence, given current estimates ŵk and ĥk , we can update them with the scheme

(i) vk+1 = 1 R E T vec Y Ŵk T † diag ĥk -1 , (ii) ŵk+1 = 1 [v k+1 ] 1 vk+1 , (iii) ĥk+1 = Ŵk+1 ⊙ Ĉk+1 † vec(Y),
where Ĉk = [S 1 ŵk . . . S R ŵk ] and Ŵk = ( Ĉk ) ⊙p-1 . Note that, to derive (i), we have used

E † = (1/R) E T .
As stopping criteria, one can check whether the relative difference between two consecutive values of the reconstruction error

J k Y = Y -I × 1 Ĉk × 2 • • • × p Ĉk diag ĥk 2 F
falls below some fixed threshold ǫ Y > 0 or a maximum number of iterations K max is attained.

CPTOEP algorithm

Since the objective is multimodal, the main goal is to find a good approximation of the solution by using a low-complexity algorithm. In [START_REF] Sorensen | Tensor decompositions with banded matrix factors[END_REF], non-iterative procedures have been proposed, which are able to compute the exact CPD when matrix factors are banded or structured. Consider a matrix unfolding of Y under the form: Ỹ ≈ (C (1) ⊙ C (2) )A T , where the structure of A = C (3) ⊙ . . . ⊙ C (p) is ignored, and where C (n) are assumed Toeplitz circulant of same size M × R, that is, they can each be expressed in the orthonormal basis {E ℓ , 1 ≤ ℓ ≤ L w } defined in Section 3.3.1:

C (n) = Lw ℓ=1 c (n) ℓ E ℓ , n ∈ {1, . . . , p}.
Let Ỹ = UΣV T denote the SVD of Ỹ. Then there exists a matrix N such that UN = (C (1) ⊙ C (2) ) and N -1 ΣV T = A T . Following the lines of [START_REF] Sorensen | Tensor decompositions with banded matrix factors[END_REF], one can find matrix N and coefficients

Z ij = c (1) i c (2) 
j by solving a linear system of M 2 R equations in L 2 w + R 2 -1 unknowns. If there are more equations than unknowns and if the system has full rank R, the solution (N, Z) is unique. First, coefficients c

(1) i and c

(2) j are obtained from the best rank-1 approximation of matrix Z, which eventually yields estimates Ĉ(1) and Ĉ(2) . Next, we calculate Ĉ = ( Ĉ(1) + Ĉ(2) )/2, and the estimate of h is obtained as in stage (iii) of the CALS algorithm.

The algorithm described above is suboptimal for several reasons: (a) the model is noisy, (b) the p factor matrices are assumed to be independent, whereas they are not, and (c) the structure of A is ignored. Hence the solution obtained will be inaccurate, but can be easily refined by a quasi-Newton algorithm, as will be subsequently shown.

Closed-form expression for the CRB

If we assume that η contains deterministic parameters associated with a system of interest, we have that the (vectorized) measured kernel satisfies y ∼ N (x, σ 2 I I ), where σ 2 denotes the variance of the elements of n. Hence, the mean-square error (MSE) of any locally unbiased estimator η(y) satisfies

E η -η(y) 2 ≥ Lw-1 k=1 CRB ( wk ) + R r=1 CRB (h r ) trace(B(η))
,

where the CRB matrix B(η) can be computed by applying the Slepian-Bangs formula, which yields [START_REF] Boizard | Performance estimation for tensor CP decomposition with structured factors[END_REF] 

B(η) = σ 2 J(η) T J(η) -1 ,
where J(η) ∈ R I×M is the Jacobian matrix given by

J(η) = [J( w) J(h)] = ∂x ∂ w ∂x ∂h .
From ( 6) and the definition of f , we have

∂x ∂ w = ΨΦ(h) ∂f ∂ w = ΨΦ(h) [z 1 ( w) . . . z Lw-1 ( w)] ,
in which z l ( w) = p q=1 w ⊠q-1 ⊠ e l+1 ⊠ w ⊠p-q (with the convention w ⊠0 = 1). To derive J(h), we first apply the property vec(ABD) = (D T ⊠ A)vec(B) to write

x = vec(ΨΦ(h)f (w)) = f T (w) ⊠ Ψ vec(Φ(h)), leading thus to ∂x ∂h = f T (w) ⊠ Ψ [vec(Φ 1 ) . . . vec(Φ R )] .
In order to identify the contribution of w and h in CRB( wk ) and CRB(h r ), we propose to extend the results presented in [START_REF] Boizard | Performance estimation for tensor CP decomposition with structured factors[END_REF] by using oblique projection. This is the purpose of the following proposition. We denote by E AB the oblique projection whose range is A and whose null space contains B (see [START_REF] Behrens | Signal processing applications of oblique projection operators[END_REF] for details).

Proposition 3.1 The closed-form expression for the CRB of wk is given by:

CRB( wk ) = σ 2 g k 2 -E G k J(h) g k 2 -E J(h)G k g k 2 ,
where g k is the kth column of J( w) and G k is the submatrix of J( w) obtained by removing its kth column. Similarly, the closed-form expression for the CRB of h r is:

CRB(h r ) = σ 2 d r 2 -E DrJ( w) d r 2 -E J( w)Dr d r 2 ,
where d r is the rth column of J(h) and D r is the submatrix of J(h) obtained by removing its rth column.

The proof is omitted due to the lack of space.

SIMULATION RESULTS

To illustrate the utility of the derived CRB, we now present some Monte Carlo simulation results. Specifically, we evaluate several estimators when applied to identify a WH model with parameters w T = [1 0.538 1.834 -2.259 0.862] T , h = [1.594 -6.538 -2.168] T from estimates of the equivalent symmetric third-order kernel X, proceeding as follows. For each realization of the (symmetric) noise tensor N, we vary σ 2 and then construct a data tensor Y = X + N for each chosen level of σ 2 . Next, we compute estimates η(y) ∈ R 7 given by: (i) the family of estimators N -CALS, which consist in applying N times the algorithm of Section 3.3.1 with random initializations and keeping the best solution in terms of reconstruction error (w.r.t. Y); (ii) the estimator CPTOEP, described in Section 3.3.2; (iii) the estimator CPTOEP-CALS, which corresponds to refining the CPTOEP estimate by applying the CALS algorithm; (iv) the estimator CPTOEP-BFGS, in which a similar refinement is obtained by minimizing a least-squares criterion (w.r.t. Y) with the Broyden-Fletcher-Goldfarb-Shanno (BFGS) algorithm 2 [START_REF] Byrd | A limited memory algorithm for bound constrained optimization[END_REF]. The maximum number of iterations established for CALS and BFGS is K max = 2000. We choose ǫ Y = 10 -10 and set the tolerance of BFGS also as 10 -10 . For each estimate η(y), we compute ε η = ηη(y) 2 . This procedure is repeated for 100 realizations of N and then ε η is averaged for each level of σ 2 , yielding a mean-square error estimate denoted by MSE η . The results are shown in Table 1, as well as the computed values of the CRB. One can see that 1-CALS has a very poor performance, due to its frequent premature termination or inability to converge. Although 5-CALS performs better, its results are degraded for the same reasons. CPTOEP, in its turn, performs slightly worse than 10-CALS, but attains a similar level when refined by CALS. Yet, there remains a gap between their MSE curves and that of the CRB. Indeed, only CPTOEP-BGFS attains an MSE close to the CRB. Note that a similar gap has been reported by [START_REF] Liu | Cramér-Rao lower bounds for low-rank decomposition of multidimensional arrays[END_REF] for the ALS algorithm. Along the lines of their discussion, we believe that, in the case of CALS, this gap is due to the convergence problems which are always observed in practice, at least for a few runs. As for CPTOEP, this seems to happen because the adapted procedure yields suboptimal estimates.

Finally, we note that the above comparison is justified since, under the assumption of Gaussian additive noise, the least-squares criterion leads to the maximum likelihood (ML) estimator. In signal-in-noise problems, the ML estimator is often approximately unbiased even for a small sample size, provided that the SNR is sufficiently high [START_REF] Kay | Fundamentals of Statistical Signal Processing: Estimation Theory[END_REF].

CONCLUSION

A closed-form expression of the CRB has been derived for the parameter estimates of a CPD having identical banded circulant factors, one of which is post-multiplied by a diagonal scaling matrix. Then, two specialized algorithms have been proposed to compute a CPD with that structure. The first, named CALS, is an adaptation of the ALS method taking the structural constraints into account, whereas the second is composed of two steps: (i) compute an approximate solution thanks to a non iterative algorithm (CPTOEP), and (ii) refine the solution via CALS or via a quasi-Newton descent (BFGS). The latter (CPTOEP-BFGS) reached the Cramér-Rao bound over a wide range of SNR values. The proposed algorithms have been applied to identify a WH model, and their statistical performance has been evaluated using the derived CRB.

Fig. 1 .

 1 Fig. 1. Block-diagram of the Wiener-Hammerstein model.

  Furthermore, since k (p) (m 1 , . . . , m p ) is symmetric in m 1 , . . . , m p , in practice one estimates only the elements whose indices pertain to a suitable non-redundant domain such as D = {(m 1 , . . . , m p ) : m 1 ≤ • • • ≤ m p }, determining the others by symmetry. Hence, Y and N are also pth-order symmetric tensors, containing redundant elements. Introducing the selection matrix Ψ ∈ R I×M p , where I = |D| = M+p-1 p , which contains as rows 1 every product of the form e T mp ⊠ . . . ⊠ e T m1 for (m 1 , . . . , m p ) ∈ D, we can write the (non-redundant) vectorized model y Ψvec(Y) = x + n ∈ R I , where x = Ψvec(X) and n = Ψvec(N) is a random vector. Now, from (4), we can deduce vec

Table 1 .

 1 Simulation results: estimated MSE η values (in dB).

				1/σ 2 (dB)		
	Estimator	10	20	30	40	50	60
	1-CALS	19.22 17.14 18.37 17.68 18.53 17.86
	5-CALS	-15.04 -25.05 4.04	4.05 -55.07 4.06
	10-CALS	-15.04 -25.05 -35.04 -45.07 -55.02 -65.07
	CPTOEP	-13.96 -23.94 -33.94 -43.94 -53.94 -63.94
	CPTOEP-CALS -15.04 -25.04 -35.04 -45.05 -55.02 -65.13
	CPTOEP-BFGS -20.04 -30.03 -40.03 -50.02 -60.01 -69.62
	CRB	-20.18 -30.18 -40.18 -50.18 -60.18 -70.18

Specifically, we used the Fortran implementation whose Matlab interface is available at http://github.com/pcarbo/lbfgsb-matlab.
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