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‡ GIPSA-Lab, Université de Grenoble, CNRS, France

ABSTRACT

The computation of a structured canonical polyadic de-

composition (CPD) is useful to address several important

modeling problems in real-world applications. In this paper,

we consider the identification of a nonlinear system by means

of a Wiener-Hammerstein model, assuming a high-order

Volterra kernel of that system has been previously estimated.

Such a kernel, viewed as a tensor, admits a CPD with banded

circulant factors which comprise the model parameters. To

estimate them, we formulate specialized estimators based on

recently proposed algorithms for the computation of struc-

tured CPDs. Then, considering the presence of additive white

Gaussian noise, we derive a closed-form expression for the

Cramer-Rao bound (CRB) associated with this estimation

problem. Finally, we assess the statistical performance of

the proposed estimators via Monte Carlo simulations, by

comparing their mean-square error with the CRB.

Index Terms— Tensor Decomposition, Structured CPD,

Cramér-Rao bound, Wiener-Hammerstein model

1. INTRODUCTION

The canonical polyadic decomposition (CPD), which can be

seen as one possible extension of the SVD to higher-order

tensors [1], is by now a well-established mathematical tool

utilized in many scientific disciplines [2]. As it requires only

mild assumptions for being essentially unique, the CPD pro-

vides means for blindly and jointly identifying the compo-

nents of multilinear models, which arise in many real-world

applications; see [1–3] for some examples.

In particular, the computation of CPDs having structured

factors –such as Vandermonde, Toeplitz or Hankel matrices–

has been shown useful in problems including channel esti-

mation [4], nonlinear system identification [5] and multidi-

mensional harmonic retrieval [6]. As a consequence, several

special-purpose algorithms have been developed [6–9].
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In practice, the data tensor to be decomposed is always

corrupted by noise. Therefore, the assessment of the sta-

tistical performance of CPD computation algorithms via

comparison with the Cramér-Rao bound (CRB) [10] is of

practical interest, since it can guide the choice for an appro-

priate algorithm in application domains. Furthermore, it can

provide valuable information for the study and development

of such algorithms. For the unstructured CPD, [11] has de-

rived the associated CRB and presented an evaluation of the

popular alternating least-squares (ALS) algorithm for tensors

of orders three and four. Regarding the structured case, the

CRB for the estimation of a complex CPD with a particular

Vandermonde factor has been derived in [12], motivated by

the problem of estimating the directions of arrival of multiple

source signals. Also, [13] has provided a closed-form expres-

sion for the CRB associated with the estimation of a CPD

having Hankel and/or Toeplitz factors.

This paper addresses the statistical evaluation of algo-

rithms specialized in computing a CPD having banded cir-

culant factors when applied to estimate the parameters of a

Wiener-Hammerstein (WH) model, which is a well-known

block-oriented model used for representing nonlinear dynam-

ical systems [14]. Because many systems of practical rele-

vance can be (approximately) described by the WH model,

the problem of identifying its parameters from a set of ex-

perimental data (i.e., measured input and output samples)

is well-studied; see, e.g., [14] and references therein. One

possible approach, as described in [5], consists in estimating

the WH model parameters by computing the structured CPD

of a kernel of its equivalent Volterra model. Here, we derive

a closed-form expression for the CRB associated with this

estimation problem, assuming the availability of a previously

identified Volterra kernel corrupted by white Gaussian noise.

Then, we formulate specialized estimation algorithms based

on the CP Toeplitz (CPTOEP) and circulant-constrained ALS

(CALS) methods proposed in [8, 9] and evaluate their perfor-

mance by comparing their mean-square error with the CRB

through Monte Carlo simulations.

Notation. Scalars are denoted by lowercase letters, e.g. θi



or aij , vectors by lowercase boldface, e.g. θ or aj , matrices

by boldface capitals, e.g. B or A(p), and higher order arrays

by calligraphic letters, e.g. X. We use the superscripts T for

transposition, † for pseudo-inverse, ⊠ and ⊙ denote the Kro-

necker and Khatri-Rao products, respectively, and ⊗ stands

for the (tensor) outer product. The shorthand a⊠p denotes

a⊠. . .⊠a, where a appears p times; a⊗p and A⊙p are defined

analogously. For our purposes, a tensor X of order P will be

assimilated to its array of coordinates, which is indexed by P
indices. Its entries will be denoted by xi1,...,iP .

2. WIENER-HAMMERSTEIN MODEL

IDENTIFICATION VIA CPD

2.1. Tensors and the CP decomposition

The polyadic decomposition of a P th-order tensor is defined

by

X =

R∑

r=1

a(1)r ⊗ a(2)r ⊗ . . .⊗ a(P )
r , (1)

where a
(p)
r is the rth column of A(p) ∈ R

Ip×R. The minimal

value of R such that X can be written as in (1) is called the

rank of X, in which case we refer to the above decomposition

as the CPD of X. Another way of expressing (1) is

X = I×1 A
(1) · · · ×P A(P ),

where I ∈ R
R×···×R is the P th-order identity tensor and ×p

denotes the p-mode product (see, e.g., [2, Sec. 2.5]).

2.2. The WH model and its equivalent Volterra model

The structure of a discrete-time WH model is as depicted in

Fig. 1. Basically, it consists of a cascade connection compris-

ing a memoryless nonlinearity g(·) “sandwiched” by two lin-

ear systems, W (z) and H(z). Because of its structured form

constituted by fundamental blocks, the WH model is said to

belong to the class of the block-oriented models [14].

In this paper, we consider the time-invariant WH model

constituted by a polynomial nonlinearity of the form g(x) =
∑P

p=1 gpx
p and by the finite impulse response filters W (z) =

∑Lw−1
l=0 wlz

−l, H(z) =
∑R−1

r=0 hrz
−r. Hence, the resulting

expression relating the input u(n) to the output y(n) is

y(n) =

P∑

p=1

gp

R−1∑

r=0

hr

[
Lw+r−1∑

m=r

wm−ru(n−m)

]p

. (2)

After some manipulation, this relation can be put in the equiv-

alent Volterra model form

y(n) =
P∑

p=1

M−1∑

m1=0

· · ·
M−1∑

mp=0

k(p)(m1, . . . ,mp)

p
∏

q=1

u(n−mq),

-

u(n)
W (z) - g(·) - H(z)

y(n)
-

Fig. 1. Block-diagram of the Wiener-Hammerstein model.

whose symmetric discrete-time Volterra kernels are (uniquely)

given by [15]

k(p)(m1, . . . ,mp) = gp

L∑

l=l0

hl

p
∏

q=1

wmq−l, (3)

with M = Lw+R−1, l0 = max{0,m1−Lw+1, . . . ,mp−
Lw + 1} and L = min{R− 1,m1, . . . ,mp}.

2.3. CPD-based WH model identification

We now describe the WH model identification approach pro-

posed in [5], which involves computing the CPD of a symmet-

ric high-order Volterra kernel. We start by noting that, being a

function of multiple discrete indices, any pth-order symmetric

Volterra kernel k(p) of memory M can be uniquely identified

with a pth-order symmetric tensor X ∈ R
M×···×M defined

by xm1,...,mp
= k(p)(m1−1, . . . ,mp−1). Owing to its con-

volutive form involving separable terms, the kernel (3) can be

identified with the tensor

X = gp

R∑

r=1

hr−1c
⊗p
r = gp

R∑

r=1

hr−1 (Srw)
⊗p

, (4)

where Sr , [er . . . eLw+r−1], with em denoting the mth

canonical basis vector of RM , and w = [w0 . . . wLw−1]
T .

Expression (4) is a symmetric CPD that can also be written as

X = I×1 C · · · ×P−1 C×P [gpC diag(h)] , (5)

with I denoting the identity tensor, h = [h0 . . . hR−1]
T

and C = [c1 . . . cR] ∈ R
M×R. Note that the choice of

which factor is postmultiplied by diag(h) is irrelevant, due

to the scaling indeterminacy. We thus conclude that the WH

model (2) has equivalent symmetric Volterra kernels whose

CPD are constituted by circulant factors C and a factor of the

form gpC diag(h), which absorbs the scaling coefficients gp
and hr.

As the factors in (5) contain the parameters of the WH

model (2), the above observations suggest the following two-

step procedure for its identification: (i) estimate k(p) from

an available set of input/output samples, using some Volterra

kernel identification method (as, e.g., [16]), and (ii) compute

the structured CPD from the associated symmetric tensor X.

Note that this requires choosing some p ≥ 3, since otherwise

the model is not identifiable: for p = 1, it is a vector contain-

ing sums of products of coefficients gp, hr and wl; for p = 2,

we have a bilinear decomposition, which is only unique under

restrictive assumptions (such as orthogonality). Henceforth,

we assume that (i) has been accomplished and focus on the

problem of estimating the parameters from the CPD of X.



3. ANALYTICAL CRB FOR CPD-BASED WH

ESTIMATION ALGORITHMS

3.1. Formulation of estimation problem

Let us consider that a pth-order tensor has been constructed

from an estimated kernel k(p) as described in the previous

section. In practice, it is evident that such a tensor satisfies

Y = X+N, where N is an error tensor accounting for the in-

evitable uncertainties which arise in the data-driven kernel es-

timation procedure. Furthermore, since k(p)(m1, . . . ,mp) is

symmetric in m1, . . . ,mp, in practice one estimates only the

elements whose indices pertain to a suitable non-redundant

domain such as D = {(m1, . . . ,mp) : m1 ≤ · · · ≤ mp},

determining the others by symmetry. Hence, Y and N are

also pth-order symmetric tensors, containing redundant ele-

ments. Introducing the selection matrix Ψ ∈ R
I×Mp

, where

I = |D| =
(
M+p−1

p

)
, which contains as rows1 every product

of the form eTmp
⊠ . . .⊠ eTm1

for (m1, . . . ,mp) ∈ D, we can

write the (non-redundant) vectorized model

y , Ψvec(Y) = x+ n ∈ R
I ,

where x = Ψvec(X) and n = Ψvec(N) is a random vector.

Now, from (4), we can deduce

vec(X) = gp

R∑

r=1

hr−1 (Srw)
⊠p

=

[

gp

R∑

r=1

hr−1S
⊠p
r

]

w⊠p

=

[

gp

R∑

r=1

hr−1Φr

]

w⊠p = Φ(h)f(w), (6)

where Φ(h) is given by the term between brackets, in which

Φr = S⊠p
r , and f(w) = w⊠p.

Our problem can therefore be expressed as that of estimat-

ing the parameters gp, w and h of the WH model from obser-

vations which satisfy y = ΨΦ(h)f(w) + n. We assume that

the random vector n has zero-mean i.i.d. components drawn

from the Gaussian distribution with variance σ2.

3.2. Identifiability

Due to the inherent scaling indeterminacy of our model, its

local identifiability is only guaranteed with further assump-

tions. To eliminate this indeterminacy, we assume h 6= 0 and

w0 = gp = 1, which is sufficient due to the model struc-

ture. Note that this entails no loss of generality, as the other

coefficients wl and gq can be rescaled accordingly. Defining

now w̃ such that w = [1 w̃T ]T , we can write the parameter

vector of the WH model as η = [w̃T hT ]T ∈ R
M . Global

identifiability, on the other hand, is related to the uniqueness

of the structured CPD. As the k-rank [2, 3] of C equals R,

uniqueness follows from Kruskal’s condition [2, Sec. 3.2] if

‖h‖0 = R (which implies that the k-rank of C diag(h) is

1The ordering of the rows of Ψ is of no consequence for our purposes.

R) and R ≥ 2. If ‖h‖0 < R, then the k-rank of C diag(h)
equals zero; in this case, Kruskal’s condition is only met for

P = 4 if R ≥ 3 and for P ≥ 5 if R ≥ 2.

3.3. Parameter estimation algorithms

In this section, we briefly review two methods that can be

used to estimate the parameters η of a model of the form (4).

3.3.1. Circulant-constrained ALS algorithm

The first method consists of a specialization of the well-

known alternating least squares (ALS) algorithm in which

the factor matrices of the CPD are constrained as in (4). In

the case of a CPD involving only circulant factors, such strat-

egy has already been followed in [9], leading to the CALS

algorithm. Here, we adapt that algorithm for our purposes.

Initially, we define El , [el . . . eR+l−1] ∈ R
M×R, for

l ∈ {1, . . . , Lw}, and E , [vec (E1) . . . vec (ELw
)]. With

these definitions, we have vec(C) = Ew. Next, we note that

any flat matrix unfolding of Y can then be written as

Y≈ C diag(h)
(
C⊙p−1

)T
= unvecR (Ew) diag(h)

(
C⊙p−1

)T

where the above approximation is due to the presence of noise

and the operator unvecR is defined such that, for every vec-

tor a = [aT1 . . . aTR]
T with ar ∈ R

N , unvecR(a) =
[a1 . . . aR]. Vectorizing both sides and using the property

vec(A diag(b)D) = (DT ⊙ A)b, we have also vec(Y) ≈

(C⊙p)h. Hence, given current estimates ŵk and ĥk, we can

update them with the scheme

(i) v̂k+1 =
1

R
ET vec

{

Y

(

Ŵk
T
)† [

diag
(

ĥk
)]−1

}

,

(ii) ŵk+1 =
1

[v̂k+1]1
v̂k+1,

(iii) ĥk+1 =
(

Ŵk+1 ⊙ Ĉk+1
)†

vec(Y),

where Ĉk = [S1ŵ
k . . . SRŵ

k] and Ŵk = (Ĉk)⊙p−1.

Note that, to derive these update equations, we have used the

fact that E† = (1/R)ET .

As stopping criteria, one can check if either the relative

difference between two consecutive values of the reconstruc-

tion error Jk
Y =

∥
∥
∥Y− I×1 Ĉ

k · · · ×p Ĉ
k diag

(

ĥk
)∥
∥
∥

2

F
falls

below some fixed threshold ǫY > 0 or a maximum number of

iterations Kmax is attained.

3.3.2. CPTOEP algorithm

Since the objective is multimodal, the main goal is to find a

good approximation of the solution by using a low-complexity

algorithm. In [8], non-iterative procedures have been pro-

posed, which are able to compute the exact CPD when matrix

factors are banded or structured. Consider a matrix unfolding



of Y under the form: Ỹ ≈ (C(1)⊙C(2))AT , where the struc-

ture of A is ignored, and where C(n) are assumed Toeplitz

circulant of same size M × R, that is, they can each be ex-

pressed in the orthonormal basis {Eℓ, 1 ≤ ℓ ≤ Lw} defined

in Section 3.3.1:

C(n) =

Lw∑

ℓ=1

c
(n)
ℓ Eℓ, n ∈ {1, 2}.

Let Ỹ = UΣVT denote the SVD of Ỹ. Then there exists a

matrix N such that UN = (C(1) ⊙C(2)) and N−1ΣVT =
AT . Following the lines of [8], one can find matrix N and co-

efficients Zij = c
(1)
i c

(2)
j by solving a linear system of M2R

equations in L2
w +R2 − 1 unknowns. If there are more equa-

tions than unknowns and if the system has full rank R, the

solution (N,Z) is unique. First, coefficients c
(1)
i and c

(2)
j

are obtained from the best rank-1 approximation of matrix

Z, which eventually yields estimates Ĉ(1) and Ĉ(2). Next,

we calculate Ĉ = (Ĉ(1) + Ĉ(2))/2, and the estimate of h is

obtained as in stage (iii) of the CALS algorithm.

The algorithm described above is suboptimal for several

reasons: (a) the model is noisy, (b) the 3 factor matrices are

assumed to be independent, whereas they are not, and (c) the

structure of the 3rd matrix, A, is ignored. Hence the solution

obtained will be inaccurate, but can be easily refined by a

quasi-Newton algorithm, as will be subsequently shown.

3.4. Closed-form expression for the CRB

If we assume that η contains deterministic parameters asso-

ciated with a system of interest, we have that the (vectorized)

measured kernel satisfies y ∼ N (x, σ2II), where σ2 denotes

the variance of the elements of n. Hence, the mean-square

error (MSE) of any locally unbiased estimator η̂(y) satisfies

E
{

‖η − η̂(y)‖2
}

≥
Lw−1∑

k=1

CRB (w̃k) +

R∑

r=1

CRB (hr)

︸ ︷︷ ︸

trace(B(η))

,

where the CRB matrix B(η) can be computed by apply-

ing the Slepian-Bangs formula, which yields [13]

B(η) = σ2
(
J(η)TJ(η)

)−1
,

where J(η) ∈ R
I×M is the Jacobian matrix given by

J(η) = [J(w̃) J(h)] =

[
∂x

∂w̃

∂x

∂h

]

.

From (6) and the definition of f , we have

∂x

∂w̃
= ΨΦ(h)

∂f

∂w̃
= ΨΦ(h) [z1(w̃) . . . zLw−1(w̃)] ,

in which zl(w̃) =
∑p

q=1 w
⊠q−1 ⊠ el+1 ⊠w⊠p−q (with the

convention w⊠0 = 1). To derive J(h), we first apply the

property vec(ABD) = (DT ⊠A)vec(B) to write

x = vec(ΨΦ(h)f(w)) =
(
fT (w)⊠Ψ

)
vec(Φ(h)),

leading thus to

∂x

∂h
=

(
fT (w)⊠Ψ

)
[vec(Φ1) . . . vec(ΦR)] .

In order to identify the contribution of w and h in

CRB(w̃k) and CRB(hr), we propose to extend the results

presented in [13] by using oblique projection. This is the pur-

pose of the following proposition. Denote EAB the oblique

projection whose range is 〈A〉 and whose null space contains

〈B〉 (see [17] for details).

Proposition 3.1 The closed-form expression for the CRB of

w̃k is given by:

CRB(w̃k) =
σ2

‖gk‖2 − ‖EGkJ(h)gk‖2 − ‖EJ(h)Gk
gk‖2

,

where gk is the kth column of J(w̃) and Gk is the submatrix

of J(w̃) obtained by removing its kth column. Similarly, the

closed-form expression for the CRB of hr is:

CRB(hr) =
σ2

‖dr‖2 − ‖EDrJ(w̃)dr‖2 − ‖EJ(w̃)Dr
dr‖2

,

where dr is the rth column of J(h) and Dr is the submatrix

of J(h) obtained by removing its rth column.

The proof is omitted due to the lack of space.

4. SIMULATION RESULTS

To illustrate the utility of the derived CRB, we now present

some Monte Carlo simulation results. Specifically, we evalu-

ate several estimators when applied to identify a WH model

with parameters wT = [1 0.538 1.834 -2.259 0.862]T ,

h = [1.594 -6.538 -2.168]T from estimates of the equiva-

lent symmetric third-order kernel X, proceeding as follows.

For each realization of the (symmetric) noise tensor N, we

vary σ2 and then construct a data tensor Y = X+N for each

chosen level of σ2. Next, we compute estimates η̂(y) given

by: (i) the family of estimators N -CALS, which consist in

applying N times the algorithm of Section 3.3.1 with random

initializations and keeping the best solution in terms of recon-

struction error (w.r.t.Y); (ii) the estimator CPTOEP, described

in Section 3.3.2; (iii) the estimator CPTOEP-CALS, which

corresponds to refining the CPTOEP estimate by applying

the CALS algorithm; (iv) the estimator CPTOEP-BFGS,

in which a similar refinement is obtained by minimizing a

least-squares criterion (w.r.t. Y) with the Broyden–Fletcher–

Goldfarb–Shanno (BFGS) algorithm2 [18]. The maximum

2Specifically, we used the Fortran implementation whose Matlab interface

is available at http://github.com/pcarbo/lbfgsb-matlab.



Table 1. Simulation results: estimated MSEη values (in dB).

1/σ2 (dB)

Estimator 10 20 30 40 50 60

1-CALS 19.22 17.14 18.37 17.68 18.53 17.86

5-CALS -15.04 -25.05 4.04 4.05 -55.07 4.06

10-CALS -15.04 -25.05 -35.04 -45.07 -55.02 -65.07

CPTOEP -13.96 -23.94 -33.94 -43.94 -53.94 -63.94

CPTOEP-CALS -15.04 -25.04 -35.04 -45.05 -55.02 -65.13

CPTOEP-BFGS -20.04 -30.03 -40.03 -50.02 -60.01 -69.62

CRB -20.18 -30.18 -40.18 -50.18 -60.18 -70.18

number of iterations established for CALS and BFGS is

Kmax = 2000. We choose ǫY = 10−10 and set the tolerance

of BFGS also to 10−10. For each estimate η̂(y), we compute

εη = ‖η − η̂(y)‖2. This procedure is repeated for 100 re-

alizations of N and then εη is averaged for each level of σ2,

yielding a mean-square error estimate denoted by MSEη.

The results are shown in Table 1, as well as the computed

values of the CRB. One can see that 1-CALS has a very poor

performance, due to its frequent premature termination or in-

ability to converge. Although 5-CALS performs better, its re-

sults are degraded for the same reasons. CPTOEP, in its turn,

performs slightly worse than 10-CALS, but attains a similar

level when refined by CALS. Yet, there remains a gap be-

tween their MSE curves and that of the CRB. Indeed, only

the CPTOEP-BGFS estimator attains an MSE close to the

CRB. Note that a similar gap has been reported by [11] for

the ALS algorithm. Along the lines of their discussion, we

believe that, in the case of CALS, this gap is due to the con-

vergence problems which are always observed in practice, at

least for a few runs. As for CPTOEP, this seems to happen

because the adapted procedure yields suboptimal estimates.

Finally, we note that the above comparison is justified

since, under the assumption of Gaussian additive noise, the

least-squares criterion leads to the maximum likelihood (ML)

estimator. In signal-in-noise problems, the ML estimator is

often approximately unbiased even for a small sample size,

provided that the SNR is sufficiently high [10].

5. CONCLUSION

A closed-form expression of the CRB has been derived for the

parameter estimates of a CPD having banded circulant fac-

tors. Then, two specialized algorithms have been proposed to

compute the CPD of a symmetric tensor whose factors are cir-

culant Toeplitz. The first is an adaptation of the ALS method

taking the structural constraints into account, whereas the sec-

ond is composed of two steps: (i) compute an approximate

solution thanks to a non iterative algorithm (CPTOEP), and

(ii) refine the solution by a quasi-Newton descent (BFGS).

The latter (CPTOEP-BFGS) reached the Cramér-Rao bound

over a wide range of SNR values. The proposed algorithms

have been applied to identify WH models, and their statistical

performance has been evaluated using the derived CRB.
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