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METASTABILITY FOR THE CONTACT PROCESS ON THE

PREFERENTIAL ATTACHMENT GRAPH

VAN HAO CAN

Abstract. We consider the contact process on the preferential attachment graph. The
work of Berger, Borgs, Chayes and Saberi [BBCS1] confirmed physicists’ predictions that
the contact process starting from a typical vertex becomes epidemic for an arbitrarily
small infection rate λ with positive probability. More precisely, they showed that with
probability λ

Θ(1), it survives for a time exponential in the largest degree. Here we
obtain sharp bounds for the density of infected sites at a time close to exponential in the
number of vertices (up to some logarithmic factor). In addition, a metastable result for
the extinction time is also proved.

1. Introduction

The paper aims at proving metastability results for the contact process on the preferen-
tial attachment random graph. We improve the [BBCS1]’s result in two aspects: obtaining
a better bound on the extinction time, and estimating more accurately the density of the
infected sites. Moreover, we also prove a metastable result for the extinction time.

The contact process is one of the most studied interacting particle systems, see in
particular Liggett’s book [L], and is also often interpreted as a model to describing how a
virus spreads in a network. Mathematically, it can be defined as follows: given a locally
finite graph G = (V,E) and λ > 0, the contact process on G with infection rate λ is
a Markov process (ξt)t≥0 on {0, 1}V . Vertices of V (also called sites) are regarded as
individuals which are either infected (state 1) or healthy (state 0). By considering ξt as a
subset of V via ξt ≡ {v : ξt(v) = 1}, the transition rates are given by

ξt → ξt \ {v} for v ∈ ξt at rate 1, and

ξt → ξt ∪ {v} for v 6∈ ξt at rate λ degξt(v),

where degξt(v) denotes the number of edges between v and other infected sites (Note that
if G is a simple graph, i.e. contains no multiple edges, then degξt(v) is just the number of

infected neighbors of v at time t). Given that A ⊂ V, we denote by (ξAt )t≥0 the contact
process with initial configuration A. If A = {v} we simply write (ξvt )t≥0.

Originally the contact process was studied on integer lattices or homogeneous trees.
More recently, probabilists started investigating this process on some families of random
graphs like the Galton-Watson trees, small world networks, configuration models, random
regular graphs, and preferential attachment graphs, see for instance [P, DJ, CD, CS, D,
MVY, MV, BBCS1].

The preferential attachment graph (a definition will be given later) is well-known as a
pattern of scale-free or social networks. Indeed, it not only shows the power-law degree
sequence of a host in real world networks, but also reflects a wisdom that the rich get
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richer - the newbies are more likely to get acquainted with more famous people rather
than a relatively unknown person. Therefore there has been great interest in this random
graph as well as the processes occurring on it, including the contact process. In [BBCS1],
by introducing a new representation of the graph, the authors proved a remarkable result
which validated physicists predictions that the phase transition of the contact process
occurs at λ = 0. More precisely, they showed that there are positive constants θ, c and
C, such that for all λ small enough

λc ≤ P
(

ξuexp(θλ2√n) 6= ∅
)

≤ λC ,(1)

where (ξut ) is the contact process starting from a uniformly chosen vertex.

In this paper we will improve (1) as follows.

Theorem 1.1. Let (Gn) be the sequential model of the preferential attachment graph with
parameters m ≥ 1 and α ∈ [0, 1). Consider the contact process (ξt)t≥0 with infection rate
λ > 0 starting from full occupancy on Gn. Then there exist positive constants c and C,
such that for λ small enough,

(2) P

(

cλ1+
2
ψ | logλ|− 1

ψ ≤ |ξtn |
n
≤ Cλ1+

2
ψ | log λ|− 1

ψ

)

= 1− o(1).

where ψ = 1−α
1+α

and (tn) is any sequence satisfying tn →∞ and tn ≤ Tn = exp
(

cλ2n
(log n)1/ψ

)

.

By a well-known property of the contact process called self-duality (see [L], Section I.1)
for any t ≥ 0 we have

∑

v∈Vn

1({ξvt 6= ∅}) (L)
= |ξt|.(3)

Therefore the survival probability as in (1) is just the expected value of the density of
infected sites as in Theorem 1.1, so that our result is a stronger form of the one in [BBCS1].
Additionally we get a more precise estimate of the density and we allow (tn) to be larger.

Since the empty configuration is the unique absorbing state of the contact process on
finite graphs, the contact process on Gn always dies out. Theorem 1.1 shows that before
dying, the contact process remains for a long time in a stationary situation in the sense
that the density of infected sites is stable for a time streched exponential in the number
of vertices. This metastable behavior for the contact process has been observed in some
examples, such as the finite boxes (see [L], Section I.3), the configuration models (see
[CD, CS, MVY]), the random regular graphs (see [LS]).

We also prove the following result.

Proposition 1.2. Let τn be the extinction time of the contact process on the sequential
preferential attachment graph with infection rate λ > 0 starting from full occupancy. Then
the following convergence in law holds

τn
E(τn)

(L)−→
n→∞

E(1),

with E(1) an exponential random variable with mean one.

In the proof of Proposition 1.2, see in particular (69) and (71), we show that after time
exp(log2 n), either the contact process dies out, or it equals the contact process starting
from full occupancy (and thus the initial configuration is forgotten). Since exp(log2 n) is
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much smaller than the extinction time, this shows the presence of the metastability of the
contact process.

This kind of meatastability result has been studied for different random processes,
see for instance [BH, OV] for the history and recent developments of this problem. In
particular, it has been proved for the contact process on finite boxes (see [CGOV, M]),
and finite homogeneous trees (see [CMMV]). Our method for proving Proposition 1.2 is
rather general and only requires some simple hypothesis on the maximal degree and the
diameter of the graph, which is satisfied in most scale-free random graphs models, like the
configuration model with power law distribution, or the preferential attachment graph.
We refer to Proposition 5.2 for more details.

Now let us make some comments on the proof of Theorem 1.1.
First, to obtain the time Tn we will use the maintenance mechanism as in [CD] instead
of the one in [BBCS1]. In the latter the authors used that in the preferential attachment
graph the maximal degree is of order

√
n, plus the well-known fact that for any vertex

v, the process survives a time exponential in the degree of v, once it is infected, yielding
(1). In the former, on the other hand, when considering the contact process on the
configuration model, Chatterjee and Durrett employed many vertices with total degree of
order n1−ε, for any ε > 0, and derived a much better bound on the extinction time. Here,
our strategy is to find vertices with degree larger than Cd(Gn), where C = C(λ) > 0 is a
constant and d(Gn) is the diameter of Gn, which is of order log n. Thanks to Proposition 1
in [CD], we can deduce that the virus propagates along these vertices for a time exponential
in their total degree. Moreover, the degree distribution of the graph, denoted by p, has
a power-law with exponent ν = 2 + 1/ψ. Thus the number of these vertices is of order
n(logn)1−ν and their total degree is of order n(logn)−1/ψ, which explains the bound on
tn in Theorem 1.1.

It is worth noting that for any graph with order n edges (including Gn), the extinction
time of the contact process is w.h.p. smaller than exp(Cn), for some C > 0, see for
instance Lemma 3.4 in [C]. Hence our bound on tn is nearly optimal.

Secondly, to gain the precise estimate on the density, we use ideas from [P, BBCS1,
CD, MVY]: if the virus starting at a typical vertex wants to survive a long time, it has
to infect a big vertex of degree significantly larger than λ−2. Then the virus is likely
to survive in the neighborhood of this vertex for a time which is long enough to infect
another big vertex, and so on. We can see that the time required for a virus to spread
from one big vertex to another is at least λ−Θ(1) (corresponding to the case when the
distance between them is constant). Besides, it was shown that if deg(v) ≥ K/λ2, then
the survival time of the contact process on the star graph formed by v and it neighbors
is about exp(cK). Hence the degree of big vertices should be larger than Cλ−2| logλ|.
Then we consider Λ, the set of vertices which have a big neighbor. The probability for
a vertex in Λ to infect its big neighbor is of order λ. Moreover, we will show in Section
4 that any big vertex has a positive probability to make the virus survive up to time
Tn. This means that the probability for the dual process starting from any vertex in
Λ to be active at time Tn is of order λ. Therefore the density of vertices from where
the dual process survives up to Tn is about λ times the density of Λ. This is of order

λ× p
(

[λ−2| log λ|,∞
))

λ−2| log λ| ≍ λ1+
2
ψ | log λ|− 1

ψ yielding the desired lower bound.
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We notice that the density of big vertices is of order p
(

[λ−2| log λ|,∞
))

, which is

o(λ1+
2
ψ | log λ|− 1

ψ ). Thus it is not optimal. Hence we need to consider also their neighbors.
In fact this idea of using Λ was first introduced in [CD] for the configuration model.

For the upper bound, we adapt the proof in [MVY] for Galton-Watson trees, see the
appendix.

It is interesting to note also that if we consider the contact process on the configuration

model with the same power-law degree distribution, the density is of order λ1+
2
ψ | log λ|− 2

ψ

(see [MVY, Theorem 1.1]), which is slightly smaller than the one in (2). This difference is
due to the fact that the distance between big vertices in the configuration model is about
| logλ|, instead of constant here.

Finally, the above strategy works properly when studying the contact process on the
Pólya-point graph. In fact, proving the following result helped us pave the way to potential
solutions for Theorem 1.1.

Proposition 1.3. Let (ξot ) be the contact process on the Pólya-point graph with infection
rate λ > 0 starting from the root o. There exist positive constants c and C, such that for
λ small enough,

cλ1+2/ψ| log λ|−1/ψ ≤ P(ξot 6= ∅ ∀t) ≤ Cλ1+2/ψ| log λ|−1/ψ.

Theorem 1.1 (resp. Proposition 1.3) implies that for all λ > 0, the contact process
becomes epidemic (resp. survives forever) with positive probability. We say that the
critical values of the contact process on the preferential attachment graph and its weak
limit are all zero. This is a new example of a more general phenomena that there is
a relationship between the phase transition for the contact process on a sequence of
finite graphs and the one on its weak local limit in the sense of Benjamini–Schramm’s
convergence. Here are some known results on this topic: the contact process on the integer
lattice Zd and on finite boxes J1, nKd exhibit a phase transition at the same critical value
λc = λc(d), see [L, Part I] for all d ≥ 1. The phase transition of the process on the
random regular graph of degree d and its limit, the homogeneous tree Td, occurs at the
same constant λ1(Td), see [MV]. The phase transition of the contact process on Tℓd (the
d-homogeneous tree of height ℓ) and its limit, the canopy tree CTd, happens at λ2(Td),
see [CMMV, MV]. The critical value of the contact process on the configuration model
with heavy tail degree distributions or on its limit, the Galton-Watson tree, is zero, see
[P, CD, MVY, MMVY, CS].

Now the paper is organized as follows. In the next section, based on [BBCS2], we
give the definition of the sequential model of the preferential attachment graph as well
as its weak local limit, the Pólya-point graph. We also prove preliminary results on the
graph structure and fix some notation. In Section 3, we prove Proposition 1.3. The main
theorem 1.1 and Proposition 1.2 are proved in Sections 4 and 5 respectively.

2. Preliminaries

2.1. Construction of the random graph and notation. Let us give a definition
following [BBCS2] of the sequential model of the preferential attachment graph with
parameters m ≥ 1 and α ∈ [0, 1). We construct a sequence of graphs (Gn) with vertex
set Vn = {v1, . . . , vn} as follows.

First G1 contains one vertex v1 and no edge, and G2 contains 2 vertices v1, v2 and m
edges connecting them. Given Gn−1, we define Gn the following way. Add the vertex
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vn to the graph, and draw edges between vn and m vertices wn,1, . . . , wn,m (possibly with

repetitions) from Gn−1 as follows: with probability α
(i)
n , the vertex wn,i is chosen uniformly

at random from Vn−1 where

α(i)
n =

{

α if i = 1,

α 2m(n−1)
2m(n−2)+2mα+(1−α)(i−1)

= α +O(n−1) if i ≥ 2.

Otherwise, wn,i = vk with probability

deg
(i)
n−1(vk)

Z
(i)
n−1

,

where

deg
(i)
n−1(vk) = degn−1(vk) + #{1 ≤ j ≤ i− 1 : wn,j = vk},

is the degree of vk before choosing wn,i, and

Z
(i)
n−1 =

n−1
∑

k=1

deg
(i)
n−1(vk) =

n−1
∑

k=1

degn−1(vk) + i− 1 = 2m(n− 2) + i− 1,

with degn−1(vk) the degree of vk in Gn−1.
This construction might seem less natural than in the independent model where with

probability α we choose wn,i uniformly from Vn−1 and with probability 1− α it is chosen
according to a simpler rule: wn,i = vk with probability degn−1(vk)/2m(n−2). However the
sequential model constructed above is easier to analyze because it is exchangeable, and as
a consequence it admits an alternative representation which contains more independence.
In [BBCS2], the authors called it the Pólya urn representation which we now recall in
the following theorem. To this end, we denote by β(a, b) the Beta distribution, whose
density is proportional to xa−1(1−x)b−1 on [0, 1], and by Γ(a, b) the Gamma distribution,
whose density is proportional to xa−1e−bx on [0,∞). For any a < b, U([a, b]) stands for
the uniform distribution on [a, b].

Theorem 2.1. [BBCS2, Theorem 2.1] Fix m ≥ 1, α ∈ [0, 1) and n ≥ 1. Set r =
α/(1− α), ψ1 = 1, and let ψ2, . . . , ψn be independent random variables with law

ψj ∼ β(m+ 2mr, (2j − 3)m+ 2mr(j − 1)).

Define

ϕj = ψj

n
∏

t=j+1

(1− ψt), Sk =

k
∑

j=1

ϕj, and Ik = [Sk−1, Sk).

Conditionally on ψ1, . . . , ψn, let {Uk,i}k=1,...,n,i=1,...,m be a sequence of independent random
variables, with Uk,i ∼ U([0, Sk−1]). Start with the vertex set Vn = {v1, . . . , vn}. For
j < k, join vj and vk by as many edges as the number of indices i ∈ {1, . . . , m}, such that
Uk,i ∈ Ij. Denote the resulting random graph by Gn.

Then Gn has the same distribution as the sequential model of the preferential attachment
graph.

We remark that in [BBCS2], the authors state the theorem for m ≥ 2. However, their
proof also works properly when m = 1.

From now on, we always consider the random multi-graph Gn constructed as in this
theorem.
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We now look at the local structure of Gn. It was shown in [BBCS2] that Gn is locally
tree-like, with some subtle degree distribution that we now recall. First we define some
constants:

χ =
1 + 2r

2 + 2r
and ψ =

1− χ
χ

=
1

1 + 2r
.

Note that 1/2 ≤ χ < 1 and 0 < ψ ≤ 1. Let F ∼ Γ(m+2mr, 1) and F ′ ∼ Γ(m+2mr+1, 1).
We will construct inductively a random rooted tree (T, o) with vertices identified with

elements of ∪ℓ≥1Nℓ (where vertices at generation ℓ are elements of Nℓ) and a map which
associates to each vertex v a position xv in [0, 1]. Additionally each vertex (except the
root) will be assigned a type, either R or L.

• The root o = (0) has position xo = Uχ
0 , where U0 ∼ U([0, 1]).

• Given v ∈ T and its position xv, define

mv =

{

m if v is the root or of type L,
m− 1 if v is of type R.

and

γv ∼
{

F if v is the root or of type R,
F ′ if v is of type L.

The children of v are (v, 1),. . . ,(v,mv), (v,mv+1),. . . ,(v,mv+qv), the first mv’s are
of type L and the remaining ones are of typeR. Conditionally on xv, x(v,1), . . . , x(v,mv)
are i.i.d. uniform random variable in [0, xv], and x(v,mv+1), . . . , x(v,mv+qv) are the
points of the Poisson point process on [xv, 1] with intensity

ρv(x)dx = γv
ψxψ−1

xψv
dx.

This procedure defines inductively an infinite rooted tree (T, o), which is called
the Pólya-point graph and (xv)v∈T is called the Pólya-point process.

For any vertex v in a graph G and any integer R, we call BG(v, R) the ball of radius R
around v in G, which contains all vertices at distance smaller than or equal to R from v
and all edges connecting them.

Theorem 2.2. [BBCS2, Theorem 2.2] Assume that the random graph Gn is constructed
as in Theorem 2.1. Let u be a vertex chosen uniformly at random in Gn and let R be some
fixed constant. Then BGn(u,R) converges weakly to the ball BT (o, R) in the Pólya-point
graph.

Note that in [BBCS2] the authors prove this theorem for m ≥ 2. For m = 1, recently,
in [BMR] the authors show that the local limit of preferential attachment graph is always
the Pólya-point graph regardless the initial (seed) graph (in our case, the initial graph
contains two vertices v1, v2 and one edge connecting them).

Now we introduce some notation. We call P a probability measure on a space in which
the random graph Gn is defined together with the contact process. Since we will fix λ,
we omit it in the notation. We also call P a probability measure on a space in which the
Pólya-point graph as well as the contact process are defined.

We denote the indicator function of a set A by 1(A). For any vertices v and w we write
v ∼ w if there is an edge between them (in which case we say that they are neighbors or
connected), and v 6∼ w otherwise. We denote by |G| the order of G.
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A graph in which all vertices have degree one, except one which is connected to all the
others is called a star graph. The only vertex with degree larger than one is called the
center of the star graph, or central vertex.

If f and g are two real functions, we write f = O(g) if there exists a constant C > 0,
such that f(x) ≤ Cg(x) for all x; f & g (or equivalently g . f) if g = O(f); f ≍ g if
f = O(g) and g = O(f); f = o(g) if f(x)/g(x)→ 0 as x→∞. Finally for a sequence of
r.v.s (Xn) and a function f : N → (0,∞), we say that Xn ≍ f(n) holds w.h.p. if there
exist positive constants c and C, such that P(cf(n) ≤ Xn ≤ Cf(n))→ 1.

2.2. Preliminary results on the random graph. We first recall a version of the
Azuma-Hoeffding inequality for martingales which we will use throughout this paper (see
for instance [CL]).

Lemma 2.3. Let (Xi)i≥0 be a martingale satisfying |Xi −Xi−1| ≤ 1 for all i ≥ 1. Then
for any n and t > 0, we have

P (|Xn −X0| ≥ t) ≤ 2 exp(−t2/2n).
From this inequality we can deduce a large deviations result. Let (Xi)i≥1 be a sequence
of independent Bernoulli random variables. Assume that 0 < 2p ≤ E(Xi) ≤Mp for all i.
Then there exists c = c(M) > 0, such that for all n

P

(

np ≤
n
∑

i=1

Xi ≤ 2Mnp

)

≥ 1− exp(−cnp).(4)

Now we present some estimates on the sequences (ϕi), (ψj) and (Sk).

Lemma 2.4. Let (ϕi)i, (ψj)j and (Sk)k be sequences of random variables as in Theorem
2.1. Then there exist positive constants µ and θ0, such that for all θ ≤ θ0, the following
assertions hold.

(i) E(ψj) =
χ
j
+O( 1

j2
), E(ψ2

j ) ≍ 1
j2
.

(ii) For any ε > 0, there exists K = K(ε) <∞, such that

P(Eε) ≥ 1− ε,
where

Eε =
{∣

∣

∣

Sj
Sk
−
(

j

k

)χ ∣
∣

∣
≤ ε(j/k)χ ∀K(ε) ≤ j ≤ k ≤ n

}

.

(iii) As n tends to infinity,

P(iψi ≤ 2 logn ∀ i = 1, . . . , n) = 1− o(1).
(iv) P (µ/j ≥ ψj ≥ θ/j) ≥ 2θ.

(v) E(ϕj1(ψj ≥ θ/j)) ≥ θE(ϕj).

Proof. Let us start with Part (i). Observe that if ψ ∼ β(a, b), then

E(ψ) =
a

a+ b
and E(ψ2) =

a(a + 1)

(a+ b)(a + b+ 1)
.

Hence the result follows from the fact that ψj ∼ β(m+ 2mr, (2j − 3)m+ 2mr(j − 1)).



8 VAN HAO CAN

Part (ii) is a direct consequence of Lemma 3.1 in [BBCS2]. We now prove (iii). Since
ψi ∼ β(a, bi) with a = m+2mr and bi = (2m+2mr)i−(3m+2mr), we have for i ≥ 2 logn

P

(

ψi >
2 logn

i

)

=
1

B(a, bi)

∫ 1

2 logn/i

xa−1(1− x)bi−1dx

. bai

(

1− 2 logn

i

)bi

. n−2.

Here, we have used that B(a, b) ≍ O(b−a) when a is fixed. On the other hand, when
i < 2 logn, this probability is zero. Therefore

P(iψi ≤ 2 logn ∀ i = 1, . . . , n) = 1− o(1).
For Part (iv), Chebyshev’s inequality gives that for any δ ∈ (0, 1)

P (|ψj − E(ψj)| > (1− δ)E(ψj)) ≤
Var(ψj)

(1− δ)2E(ψj)2
.

Moreover, if ψ ∼ β(a, b), then

Var(ψ)

E(ψ)2
=

E(ψ2)

E(ψ)2
− 1 =

(a+ 1)(a+ b)

a(a+ b+ 1)
− 1 =

b

a(a + b+ 1)
≤ 1

a
.

Therefore for any j

P(ψj ∈ (δE(ψj), (2− δ)E(ψj))) ≥ 1− 1

(1− δ)2(m+ 2mr)
.

Hence thanks to (i) we can choose positive constants µ and θ, such that for all j

(5) P

(

ψj ∈
(

θ

j
,
µ

j

))

≥ 2θ.

For (v), we notice that by (i), E(ψj) ≍ 1/j. Hence

E(ψj1(ψj ≥ θ/j)) ≥ E(ψj)− (θ/j) ≥ cE(ψj),(6)

for some constants c and θ independent of j. Moreover, using the fact that these random
variables (ψj)j≥0 are independent, we obtain

E(ϕj1(ψj ≥ θ/j)) = E

(

ψj1(ψj ≥ θ/j)
n
∏

t=j+1

(1− ψt)
)

= E(ψj1(ψj ≥ θ/j))E

(

n
∏

t=j+1

(1− ψt)
)

≥ cE(ψj)E

(

n
∏

t=j+1

(1− ψt)
)

= cE(ϕj).

Here for the third line, we have used (6). �
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The preferential attachment graph is known as a prototype of small world networks
whose diameter and typical distance (the distance between two randomly chosen vertices)
are of logarithmic order. In fact, these quantities in the independent model were well-
studied, see for instance [DVH] or [H]. In the following two lemmas, we prove similar
estimates for the sequential model. These estimates are in fact weaker but sufficient for
our purpose.

Lemma 2.5. Let d(Gn) be the diameter of the random graph Gn, i.e. the maximal distance
between any pair of vertices in Gn. Then there exists a positive constant b1, such that

P(d(Gn) ≤ b1 logn) = 1− o(1).
Proof. Let ε ∈ (0, 1/2) be given, and recall the definitions of K(ε) and Eε given in Lemma
2.4 (ii). We first bound d(v1, vn). Define a decreasing random sequence (ni)i≥0 as follows
n0 = n and for i ≥ 1, ni+1 is arbitrarily chosen from indices such that vni+1

receives an
edge emanating from vni. Define

Xi = 1({ni ≤ ni−1/2}) and Fi = σ(nj : j ≤ i) ∨ σ((ϕt)).
By the construction of the graph in Theorem 2.1, we have

E(Xi+1 | Fi) = P(ni+1 ≤ ni/2 | Fi) =
S[ni/2]

Sni−1
,

with (Si) as in Theorem 2.1. We now define

σn = inf{i : ni+1 ≤ logn}.
If i ≤ σn, then ni > log n > 2K(ε) for n large enough. Therefore by Lemma 2.4 (ii), we
have on Eε for i ≤ σn

S[ni/2]

Sni−1
≥ (1− ε)

(

[ni/2]

ni − 1

)χ

≥ 1

2χ+1
=: p.

In other words, we have

E(Xi+1 | Fi, Eε)1(i ≤ σn) ≥ p1(i ≤ σn).(7)

Let

Yk =
k
∑

i=1

(Xi − E(Xi | Fi−1, Eε)) .

Then (Yk) is a martingale with respect to the filtration (Fk) and |Yk − Yk−1| ≤ 1. By
using Lemma 2.3 we get that

P (Yk ≤ −kp/2 | (ϕt)) ≤ 2 exp(−kp2/8).(8)

Note that there is a slight abuse of notation: the left-hand side of (8) should be a con-
ditional expectation of an indicator variable, but for simplicity we just write it as a
conditional probability. Now, it follows from (7) and (8) that

P

(

k
∑

i=1

Xi ≤ kp/2 | (ϕt), Eε, σn ≥ k

)

≤ 2 exp(−kp2/8).(9)
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Moreover, if
∑k

1 Xi > (log2 n− log2 logn), then nk ≤ log n or equivalently σn ≤ k. Hence
for all C = C(p) large enough

P

(

σn ≥ C log n,

C logn
∑

i=1

Xi > (C log n)p/2 | (ϕt), Eε
)

≤P
(

σn ≥ C log n,

C logn
∑

i=1

Xi > log2 n− log2 log n | (ϕt), Eε
)

= 0

Therefore, we have

P(σn ≥ C log n | (ϕt), Eε) = Pn

(

σn ≥ C logn,

C logn
∑

i=1

Xi ≤ (C logn)p/2 | (ϕt), Eε
)

≤ 2 exp(−(C log n)p2/8)) = O(n−2).(10)

Here for the last line, we have used (9) for k = C logn, with some C large enough. On
the other hand,

{σn ≤ C logn} ⊂ {∃ k ≤ logn : d(vn, vk) ≤ C logn},
and d(v1, vk) ≤ logn for all k ≤ log n. Therefore,

{σn ≤ C log n} ⊂ {d(vn, v1) ≤ (C + 1) logn}.
Hence by (10), we obtain that

(11) P(d(v1, vn) ≥ (C + 1) logn | (ϕt), Eε) = O(n−2).

Let dGk(vi, vj) be the distance between vi and vj in Gk for i, j ≤ k ≤ n. Note that

dGk(vi, vj) ≥ d(vi, vj) = dGn(vi, vj).

Similarly to (11), we deduce that on Eε, for all i ≥ C logn,

P(d(v1, vi) ≥ (C + 1) log i | (ϕt)) ≤ P(dGi(v1, vi) ≥ (C + 1) log i | (ϕt)) = O(i−2).

Hence on Eε
P(d(v1, vi) ≤ (C + 1) logn ∀ i ≥ C log n | (ϕt)) = 1− o(1).

Therefore by taking expectation with respect to (ϕt) and using Lemma 2.4 (ii), we get

P(d(Gn) ≤ 2(C + 1) logn) ≥ 1− 2ε,

which proves the result by letting ε tend to 0. �

Before proving the lower bound on the typical distance, we make a remark which will
be used frequently in this paper. It follows from the definition of Gn that for all i < j,

P(vi 6∼ vj | (ϕt)) =
(

1− ϕi
Sj−1

)m

.

Hence
ϕi
Sj−1

≤ P(vi ∼ vj | (ϕt)) ≤
mϕi
Sj−1

.

Then by using the following identities

Sj−1 =

j−1
∑

t=1

ϕt =
n
∏

t=j

(1− ψt) and ϕi = ψi

n
∏

t=i+1

(1− ψt),
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we obtain that

(12)
ψiSi
Sj−1

≤ P(vi ∼ vj | (ϕt)) ≤ m
ψiSi
Sj−1

.

Lemma 2.6. Let w1 and w2 be two uniformly chosen vertices from Vn. Then there is a
positive constant b2, such that w.h.p.

d(w1, w2) ≥
b2 logn

log log n
.

Proof. Fix ε ∈ (0, 1/2) a positive constant. Then we define

Iε = Eε ∩ {iψi ≤ 2 logn ∀ i = 1, . . . , n},
with Eε as in Lemma 2.4. It follows from 2.4 (ii) and (iii) that for all n large enough

(13) P(Iε) ≥ 1− 2ε.

We now use an argument from [H, Lemma 7.16] to bound the typical distance. We call a
sequence of distinct vertices π = (π1, . . . , πk) a self-avoiding path. We write π ⊂ Gn if πi
and πi+1 are neighbors for all 1 ≤ i ≤ k − 1. Let Π(i, j, k) be the set of all self-avoiding
paths of length k starting from vi and ending at vj . We then claim that for all i, j, k ≥ 1,

(i) P(d(vi, vj) = k | (ϕt), Iε) ≤ gk(i, j) :=
∑

π∈Π(i,j,k)

P(π ⊂ Gn | (ϕt), Iε),

(ii) gk+1(i, j) ≤
∑

s 6=i,j
g1(i, s)gk(s, j).

The first claim is clear, because if d(vi, vj) = k then there exists a self-avoiding path in
Π(i, j, k) which is in Gn. For the second one, we note that for any self-avoiding path
π = (π1, . . . , πk),

P(π ⊂ Gn | (ϕt), Iε) = P(π1 ∼ π2 | (ϕt), Iε)× P(π̄ ⊂ Gn | (ϕt), Iε),
where π̄ = (π2, . . . , πk). Indeed, if j < k, then the event that vj ∼ vk depends only on the
(Uk,i)i≤m. Hence this result follows from the facts that the vertices in π are distinct and
that the {(Uk,i)i≤m}k are independent. We are now in position to prove (ii):

gk+1(i, j) =
∑

s 6=i,j

∑

vi 6∈π̄
π̄∈Π(s,j,k)

P(vi ∼ vs, π̄ ⊂ Gn | (ϕt), Iε)

≤
∑

s 6=i,j

∑

π̄∈Π(s,j,k)

P(vi ∼ vs | (ϕt), Iε)× P(π̄ ⊂ Gn | (ϕt), Iε)

=
∑

s 6=i,j
g1(i, s)gk(s, j).

We prove by induction on k that there is a positive constant C, such that

gk(i, j) ≤
(C logn)2k−1

√
ij

.(14)

For k = 1, it follows from (12) that for all i < j,

g1(i, j) = P(vi ∼ vj | (ϕt), Iε)

≤ mE

(

ψiSi
Sj−1

| (ϕt), Iε
)

.(15)
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We now claim that on Iε

(16)
ψiSi
Sj−1

≤ 4 logn√
ij

.

Indeed, we recall that on Iε,

ψi ≤
2 logn

i
∀ i = 1, . . . , n and

∣

∣

∣

Si
Sj
−
(

i

j

)χ ∣
∣

∣
≤ ε

(

i

j

)χ

∀j ≥ i ≥ K(ε),

with K(ε) as in Lemma 2.4 (ii).
If i < j ≤ K(ε) then (16) holds for all n large enough (the left hand-side is bounded

by 1 and the right-hand side tends to infinity). If j > i ≥ K(ε) then

ψi
Si
Sj−1

≤ 2 logn

i
× (1 + ε)

(

i

j − 1

)χ

≤ 4 logn√
ij

,(17)

since i < j and χ ≥ 1/2 > ε. If i ≤ K(ε) < j then using ψi ≤ 1 and the fact that the
sequence (Si) is increasing, we obtain

ψi
Si
Sj−1

≤ SK(ε)

Sj−1

≤ (1 + ε)

(

K(ε)

j − 1

)χ

≤ 4 logn√
ij

,

for all n large enough. In any case, (16) holds. It follows from (15) and (16) that (14)
holds for k = 1.

Assume now that (14) is true for some k, and let us prove it for k + 1. By using the
induction hypothesis and (ii), we get that

gk+1(i, j) ≤
∑

s 6=i,j
g1(i, s)gk(s, j)

≤
∑

s 6=i,j

C log n√
is

(C log n)2k−1

√
sj

≤ (C log n)2k+1

√
ij

,

which proves the induction step. Now it follows from (i) and (14) that

P(d(w1, w2) ≤ K | (ϕt), Iε) ≤
1

n2

K
∑

k=1

∑

1≤i,j≤n
gk(i, j)

≤ 1

n2

K
∑

k=1

∑

1≤i,j≤n

(C log n)2k−1

√
ij

≤ (C log n)2K

n
.

Therefore ifK = logn/(3C log log n), then P(d(w1, w2 | (ϕt), Iε) ≤ K) = o(1). Combining
this with (13) gives the desired lower bound with b2 = 1/(3C). �

Remark 2.7. The bound in Lemma 2.6 is probably not sharp. Indeed for the independent
model, it is proved in [DVH] or [H] that if α > 0 (or equivalent χ > 1/2), then w.h.p.
d(w1, w2) ≥ c logn; and otherwise, w.h.p. d(w1, w2) ≥ log n/(C + log logn), for some
positive constants c and C.
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2.3. Graphical construction of the contact process. We briefly recall here the
graphical construction of the contact process (see more in Liggett’s book [L]).

Fix λ > 0 and an oriented graph G (recall that a non-oriented graph can also be seen
as oriented by associating to each edge two oriented edges). Then assign independent
Poisson point processes Dv of rate 1 to each vertex v ∈ V and De of rate λ to each
oriented edge e. Set also D(v,w) := ∪e:v→wDe, for each ordered pair (v, w) of vertices,
where the notation e : v → w means that the oriented edge e goes from v to w.

We say that there is an infection path from (v, s) to (w, t), and we denote it by

(v, s)←→ (w, t),(18)

either if s = t and v = w, or if s < t and if there is a sequence of times s = s0 < s1 <
. . . < sl < sl+1 = t, and a sequence of vertices v = v0, v1, . . . , vl = w such that for every
i = 1, . . . , l

{

si ∈ D(vi−1,vi) and
Dvi ∩ [si, si+1] = ∅.

Furthermore, for any A, B two subsets of Vn and I, J two subsets of [0,∞), we write

A× I ←→ B × J,
if there exists v ∈ A, w ∈ B, s ∈ I and t ∈ J , such that (18) holds. Then for any A ⊂ Vn,
the contact process with initial configuration A is defined by

ξAt := {v ∈ Vn : A× {0} ←→ (v, t)} ,
for all t ≥ 0. It is well known that (ξAt )t≥0 has the same distribution as the process
defined in the introduction. Moreover, this graphic construction allows us to couple
contact processes with different initial states with additivity property: for all t ≥ 0 and
A,B ⊂ V ,

ξA∪Bt = ξAt ∪ ξBt .
2.4. Contact process on star graphs. We will see that star graphs play a crucial
role in the conservation of the virus on the preferential attachment graph. Hence, it is
important to understand the behavior of the contact process on a single star graph as
well as the transmission between them. These have been studied for a long time by many
authors, for instance in [P, BBCS1, CD, MVY]. The results we need will be summarized
in Lemma 2.8 and 2.9 below. We say that a vertex v is lit (the term is taken from [CD])
at some time t if the proportion of its infected neighbors at time t is larger than λ/(16e).

Lemma 2.8. Let (ξt) be the contact process on a star graph S with center v. There exists
a positive constant c∗, such that the following assertions hold.

(i) P (v is lit at time 1 | ξ0(v) = 1) ≥ (1− exp(−c∗λ|S|))/e.

(ii) P (∃t > 0 : v is lit at time t | ξ0(v) = 1)→ 1 as |S| → ∞.

(iii) If λ2|S| ≥ 64e2, and v is lit at time 0, then v is lit during the time interval
[exp(c∗λ2|S|), 2 exp(c∗λ2|S|)] with probability larger than 1− 2 exp(−c∗λ2|S|).

Proof. Parts (i) and (ii) are exactly Lemma 3.1 (i), (iii) in [MVY]. For (iii) we need an
additional definition: a vertex v is said to be hot at some time t if the proportion of its
infected neighbors at time t is larger than λ/(8e). Then in [CD] the authors proved (with
different constants in the definition of lit and hot vertices, but this does not effect the
proof) that
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• if v is lit at some time t, then it becomes hot before t+ exp(c∗λ2 deg(v)),
• if v is hot at some time t, then it remains lit until t+ 2 exp(c∗λ2 deg(v)),

with probability larger than 1−exp(−c∗λ2 deg(v)). Now (iii) follows from these claims. �

The following result is Lemma 3.2 in [MVY].

Lemma 2.9. Let us consider the contact process on a graph G = (V,E). There exist
positive constants c∗ and λ0, such that if 0 < λ < λ0, the following holds. Let v and w be
two vertices satisfying deg(v) ≥ 7

c∗
1
λ2

log
(

1
λ

)

d(v, w). Assume that v is lit at time 0. Then
w is lit before exp(c∗λ2 deg(v)) with probability larger than 1− 2 exp(−c∗λ2 deg(v)).

3. Proof of Proposition 1.3

In this section we study the contact process on the Pólya-point graph (T, o). To prove
Proposition 1.2, we have to show that

P(ξot 6= ∅ ∀t ≥ 0) . λ1+
2
ψ | log λ|−1

ψ ,(19)

and

P(ξot 6= ∅ ∀t ≥ 0) & λ1+
2
ψ | log λ|−1

ψ .(20)

The proof of (19) is based on the proof of the upper bound in Proposition 1.4 in [MVY]
for the case of the contact process on Galton-Watson trees, and we put it in Appendix.

3.1. Proof of (20). In this part, we first estimate the probability that there is an infinite
sequence of vertices, including a neighbor of the root, with larger and larger degree and
a small enough distance between any two consecutive elements of the sequence. We then
repeatedly apply Lemma 2.8 and 2.9 to bound from below the probability that the virus
propagates along these vertices, and like this survives forever. To this end, we denote by

ϕ(λ) =
7

c∗
1

λ2
log

(

1

λ

)

,(21)

with c∗ as in Lemma 2.8 and 2.9.
We denote by w0 = (0), and x0 = xw0. For any i ≥ 1, let

wi = (0, 1, ..., 1) and xi = xwi,

where wi has i 1s. Then wi’s degree conditioned on xi is m + 1 plus a Poisson random
variable with parameter

γ

xψi

∫ 1

xi

ψxψ−1dx = γ
1− xψi
xψi

,

where γ is a Gamma random variable with parameters a = m+2mr+1 and 1. Therefore
letting κ = (1− xψi )/xψi , we have

P(deg(wi) = m+ 1 + k | xi) = E

(

e−γκ

k!
(γκ)k

∣

∣

∣
xi

)

=
κkΓ(k + a)

(κ+ 1)k+aΓ(a)k!

=
Γ(k + a)

Γ(a)k!
(1− xψi )kxaψi ,(22)

where Γ(b) =
∫∞
0
xb−1e−xdx.



CONTACT PROCESS ON THE PREFERENTIAL ATTACHMENT GRAPH 15

Lemma 3.1. There is a positive constant c, such that for λ small enough,

P(N ) ≥ cϕ(λ)−1/ψ,

where

N = {∃(jℓ)ℓ≥1 : j1 = 1, deg(wjℓ) ≥ 2ℓ+1ϕ(λ)/ψ ≥ ϕ(λ)d(wjℓ, wjℓ+1
) ∀ℓ ≥ 1}.

Proof. It follows from Markov’s inequality that for any k ≥ 1,

(23) P

(

k
∏

i=1

Ui > 2−(k+1)/2

)

≤ 2−(k−1)/2,

where (Ui) is a sequence of i.i.d. uniform random variables in [0, 1].
Since Γ(k + a)/k! ≍ ka−1, there is a positive constant C, such that for all k ≥ 1

Γ(k + a)

Γ(a)k!
≤ Cka−1.

Then it follows from (22) that

(24) P(deg(wi) ≤ m+ 1 + (c/xψi ) | xi) ≤
[c/xψi ]
∑

k=0

Cka−1xaψi ≤ Cca,

for any c > 0. Set j1 = 1 and jℓ = [4ℓ/ψ] for ℓ ≥ 2. Then define

Nℓ =
{

xjℓ ≤ (4ℓϕ(λ)/(cψ))−1/ψ, deg(wjℓ) ≥ 2ℓ+1ϕ(λ)/ψ
}

for all ℓ ≥ 1, where c is a positive constant to be chosen later.

Since 2ℓ+1ϕ(λ)/ψ ≥ 4ϕ(λ)/ψ = ϕ(λ)d(wjℓ, wjℓ+1
), we have

(25) N ⊃
∞
⋂

ℓ=1

Nℓ.

Since xjℓ is distributed as x1U1 . . . Ujℓ−1, applying (23) gives that

P(xjℓ ≤ x14
−ℓ/ψ) ≥ 1− 2(4−ℓ/ψ).

Therefore

(26) P
(

xjℓ ≤ (4ℓϕ(λ)/(cψ))−1/ψ | N1

)

≥ 1− 2(4−ℓ/ψ).

By using (24) with (21−ℓc) instead of c we obtain that

(27) P
(

deg(wjℓ) ≥ 2ℓ+1ϕ(λ)/ψ | xjℓ ≤ (4ℓϕ(λ)/(cψ))−1/ψ
)

≥ 1− C(21−ℓc)a.
Then it follows from (26) and (27) that

(28) P

( ∞
⋂

ℓ=2

Nℓ | N1

)

≥ 1− 2

∞
∑

ℓ=2

4−ℓ/ψ − C
∞
∑

ℓ=2

(21−ℓc)a ≥ 1/4,

provided c is small enough. We now estimate P(N1). Let

ϕ̄(λ) = (4ϕ(λ)/(cψ))−1/ψ.



16 VAN HAO CAN

Recall that x1 is uniformly distributed on [0, x0], with x0 ∼ Uχ
0 and U0 ∼ U([0, 1]).

Therefore

P(x1 ≤ ϕ̄(λ)) = E

(

min{ϕ̄(λ), x0}
x0

)

≥ ϕ̄(λ)P(x0 ≥ ϕ̄(λ))

= ϕ̄(λ)(1− ϕ̄(λ)1/χ)
≥ ϕ̄(λ)/2,(29)

for λ small enough. On the other hand, (24) gives that for c small enough

(30) P(N1 | x1 ≤ ϕ̄(λ)) ≥ 1− Cca ≥ 1/2.

We thus can choose c such that the two inequalities in (28) and (30) are satisfied. Now it
follows from (25), (28), (29) and (30) that

P(N ) & ϕ̄(λ),

which implies the result. �

Proof of (20). By repeatedly applying Lemma 2.9 to the pair of vertices (wiℓ , wiℓ+1
), we

obtain that

P(ξt 6= ∅ ∀t ≥ T | N , w1 is lit at some time T ) ≥ 1− 2
∞
∑

ℓ=1

exp(−c∗λ22ℓ+1ϕ(λ)/ψ)

≥ 1− 2
∞
∑

ℓ=1

exp(−7(2ℓ+1)| log λ|/ψ)

≥ 1/2,(31)

for λ small enough. On the other hand, by using Lemma 2.8 (i), we have

P(w1 is lit at some time T | N , o is infected at time 0)

≥ cλE(1− exp(−c∗λ deg(w1)) | N ) ≥ cλ/2,(32)

for some c > 0 (note that on N , we have c∗λ deg(w1) ≥ 7). Now it follows from (31), (32)
and Lemma 3.1 that

P(ξt 6= ∅ ∀t ≥ 0) ≥ (1/2)× (cλ/2)× P(N ) & λ1+2/ψ| log λ|−1/ψ,

which proves (20) �

4. Proof of Theorem 1.1.

By using the self-duality of the contact process (3), we see that to prove (2), it is
sufficient to show that

P

(

1

n

∑

v∈Vn

1({ξvtn 6= ∅}) ≤ Cλ1+2/ψ| log λ|−1/ψ

)

= 1− o(1),(33)

and

P

(

1

n

∑

v∈Vn

1({ξvtn 6= ∅}) ≥ cλ1+2/ψ| log λ|−1/ψ

)

= 1− o(1),(34)

for some positive constants c and C. We will prove these two statements in the next two
subsections.
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4.1. Proof of (33). For r ≥ 1, we define

LT (o, r) = {(o, 0)↔ BT (o, r)
c × R+},

the event that the contact process on the Pólya-point graph starting from the root infects
vertices outside BT (o, r). Then we have

{ξot 6= ∅ ∀t} = ∩∞r=1LT (o, r).
Hence, it follows from (19) that there are positive constants C and R = R(λ), such that

P(LT (o, R)) ≤ Cλ1+
2
ψ | logλ|−1

ψ .(35)

For any v ∈ Vn and R as in (35), we define

Ln(v, R) = {(v, 0)↔ BGn(v, R)
c × R+}

and
Xv = 1(Ln(v, R)).

Theorem 2.2 yields that

(36) lim
n→∞

P(Ln(u,R)) = P(LT (o, R)),

where u is a uniformly chosen vertex from Vn. By combing this with (35) we obtain that

lim
n→∞

P(Xu = 1) ≤ Cλ1+2/ψ| log λ|−1/ψ,

or equivalently

lim
n→∞

1

n

∑

v∈Vn

P(Xv = 1) ≤ Cλ1+2/ψ| log λ|−1/ψ.(37)

Now, let us consider

Wn = {(v, v′) ∈ Vn × Vn : d(v, v′) ≥ 2R + 3},
with R as in (35). Since R+1 ≤ b2 logn/(log log n) for n large enough, Lemma 2.6 implies
that

∑

v,v′∈Vn

P((v, v′) 6∈ Wn) = o(n2).

On the other hand, if (v, v′) ∈ Wn then Xv and Xv′ are independent. Therefore
∑

v,v′∈Vn

Cov(Xv, Xv′) = o(n2).(38)

Thanks to (37) and (38) by using Chebyshev’s inequality we get that

P

(

1

n

∑

v∈Vn

Xv ≤ 2Cλ1+2/ψ| log λ|−1/ψ

)

= 1− o(1).(39)

Since the contact process on a finite ball in the Pólya-point graph a.s. dies out,

lim
t→∞

P(LT (o, R)c ∩ {ξot 6= ∅}) = 0.

Hence for any ε > 0, there exists tε, such that

P(LT (o, R)c ∩ {ξotε 6= ∅}) ≤ ε.(40)

For any v ∈ Vn, define
Xv,ε = 1(Ln(v, R)c ∩ {ξvtε 6= ∅}).
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Then for n large enough such that tn ≥ tε, we have

1({ξvtn 6= ∅}) ≤ Xv +Xv,ε.(41)

It follows from Theorem 2.2 and (40) that

lim
n→∞

En(Xu,ε) = P(LT (o, R)c ∩ {ξotε 6= ∅}) ≤ ε.

By using this and Markov’s inequality we get that for n large enough, and for any η > 0,

P

(

1

n

∑

v∈Vn

Xv,ε > η

)

≤
∑

v∈Vn E(Xv,ε)

nη
=

E(Xu,ε)

η
≤ 2ε

η
.(42)

By combining (39), (41) and (42), then letting ε tend to 0, we obtain that

P

(

1

n

∑

v∈Vn

1({ξvtn 6= ∅}) ≤ 3Cλ1+2/ψ| log λ|−1/ψ

)

= 1− o(1),

which proves (33). �

4.2. Proof of (34). This subsection is divided into three parts. In the first one, we will
show that w.h.p. there are many vertices with large degree (larger than κ∗ log n). By
using on the other hand that the diameter of the graph is smaller than b1 logn, we can
deduce that if one of these large degree vertices is infected, then the virus survives w.h.p.
for a time exp(cn/(log n)1/ψ), see Proposition 4.2. In the second part, we measure the
density of potential vertices which are promising for spreading the virus to some of these
large degree vertices. In the last part, we estimate the proportion of potential vertices
which really send the virus to large degree vertices, getting this way (34).

4.2.1. Lower bound on the extinction time. Our aim in this part is to find large degree
vertices as mentioned above. We then prove that if one of them is infected, the virus is
likely to survive a long time.

Lemma 4.1. Let κ > 0 be given. Then there exists a positive constant c̄ = c̄(κ), such
that An holds w.h.p. with

An = {Gn contains c̄n/(log n)1/(1−χ) disjoint star graphs of size larger than κ log n}.
Proof. Let ε ∈ (0, 1/3) be given, and let us recall the event Eε and the constant K = K(ε)
defined in Lemma 2.4:

Eε =
{∣

∣

∣

Sj
Sk
−
(

j

k

)χ ∣
∣

∣
≤ ε(j/k)χ ∀K(ε) ≤ j ≤ k ≤ n

}

.

Set an = (M log n)1/(1−χ), with M to be chosen later. Denote by

A = {vi : i ∈ [n/an, 2n/an] and ψi ∈ (θ/i, µ/i)}
and

J0 = Eε ∩ {|A| ≥ θn/an},
with θ, µ as in Lemma 2.4. Recall that the events {ψi ∈ (θ/i, µ/i)} are independent and
have probability larger than 2θ. Therefore (4) implies that w.h.p. |A| ≥ θn/an. Hence
by Lemma 2.4 (ii), we have for n large enough

P(J0) ≥ 1− 2ε.



CONTACT PROCESS ON THE PREFERENTIAL ATTACHMENT GRAPH 19

We now suppose that J0 occurs. Then, the elements of A can be written as {vj1 , ..., vjℓ}
with ℓ ∈ [θn/an, n/an]. Then define

A1 = {vj : n/2 ≤ j ≤ n}.
We will show that all vertices in A have a large number of neighbors in A1. Indeed, it
follows from (12) and Lemma 2.4 (ii) that for K(ε) ≤ j < k,

P(vj ∼ vk | (ϕt), Eε) ≍
ψjSj
Sk−1

≍ ψj

(

j

k − 1

)κ

.

Hence, for all vj ∈ A and vk ∈ A1,

(43) P(vj ∼ vk | J0) ≍
a1−χn

n
.

Conditionally on (ψj), the events {{vj1 ∼ vk}}k∈A1 are independent. Hence thanks to (4)
we get that there are positive constants θ1, c, and C, such that

P

(

ca1−χn ≤
∑

vk∈A1

1(vj1 ∼ vk) ≤ Ca1−χn | Eε
)

≥ 1− exp(−θ1a1−χn ),

or equivalently

(44) P(J1 | J0) ≥ 1− exp(−θ1a1−χn ),

where
J1 = {ca1−χn ≤ |B1| ≤ Ca1−χn }

and
B1 = {vk ∈ A1 : vj1 ∼ vk}.

Note that in this proof, the value of the constant θ1 may change from line to line. Now
let us consider

A2 = A1 \B1 and B2 = {vk ∈ A2 : vj2 ∼ vk}.
We notice that on J1 ∩ E , the cardinality of A2 is larger than n/2−Ca1−χn ≥ n/4. Thus,
similarly to (44), there exist positive constants c1 and C1, such that

(45) P(J2 | J1 ∩ J0) ≥ 1− exp(−θ1a1−χn ),

where
J2 = {c1a1−χn ≤ |B2| ≤ C1a

1−χ
n }.

Here we can also assume that c1 ≤ c and C1 ≥ C. Likewise for all 2 ≤ s ≤ ℓ, define
recursively

As = As−1 \Bs−1, Bs = {vk ∈ As : vjs ∼ vk},
Js = {c1a1−χn ≤ |Bs| ≤ C1a

1−χ
n }.

On
s−1∩
i=0
Ji, we have |As| ≥ n/2− sC1a

1−χ
n ≥ n/4. Therefore, similarly to (45)

P

(

Js |
s−1∩
i=0
Ji
)

≥ 1− exp−(θ1a1−χn ).

Hence

P

(

ℓ∩
i=1
Ji | J0

)

≥ 1− n exp(−θ1a1−χn )/an.

Taking M large enough such that c1a
1−χ
n ≥ κ log n and n exp(−θ1a1−χn ) ≤ 1 yields that

P(|Bs| ≥ κ log n ∀ 1 ≤ s ≤ ℓ | J0) ≥ 1− a−1
n .(46)
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Moreover, by definition Bs ∩ Bt = ∅ for all s 6= t. Hence, all vertices in A have more
than κ log n distinct neighbors. Finally, take c̄ such that c̄n/(log n)1/(1−χ) ≤ θn/an, for
instance c̄ ≤ θM−1/(1−χ). In conclusion, we have shown that for any given ε ∈ (0, 1/3),

P(An) ≥ 1− 2ε− a−1
n ≥ 1− 3ε,

for n large enough. Since this holds for any ε > 0, the result follows. �

To determine the constant κ in the definition of An, we first recall that

P(Bn) = 1− o(1),
where

Bn = {d(Gn) ≤ b1 logn}.
Hence to apply Lemma 2.9 to the large degree vertices exhibited in the previous lemma,
we need

κ logn ≥ 7

c∗
1

λ2
log

(

1

λ

)

b1 log n.

Moreover, in (48), we will use that κ ≥ 3/(c∗λ2). So we let

(47) κ∗ = max
{ 7

c∗
1

λ2
log

(

1

λ

)

b1,
3

c∗λ2

}

.

Then we let c̄∗ = c̄∗(κ∗) and An be defined accordingly as in Lemma 4.1.

A set of vertices V = {w1, . . . , wk} ⊂ Vn is called good if |S(wi)\∪j 6=iS(wj)| ≥ κ∗ log n
for all 1 ≤ i ≤ k, where S(v) denotes the star graph formed by v and its neighbors.

Let V ∗
n be a maximal good set i.e. |V ∗

n | = max{|V | : V ⊂ Vn is good}.
Proposition 4.2. There exists a positive constant c, such that

P (ξTn 6= ∅ | ξ0 ∩ V ∗
n 6= ∅) = 1− o(1),

where Tn = exp(cλ2n/(log n)1/ψ).

Proof. Thanks to Lemma 2.5 and 4.1, we can assume that d(Gn) ≤ b1 logn and |V ∗
n | ≥

c̄∗n/(log n)1/(1−χ). Assume also that at time 0 a vertex in V ∗
n , say v, is infected.

Due to the definition of V ∗
n , for any w ∈ V ∗

n , we can select from the set of w’s neighbors
a subset D(w) of size κ∗ logn, such that D(w) ∩D(w′) = ∅ for all w 6= w′.
We say that a vertex w in V ∗

n is infested at some time t if the proportion of infected sites
in D(w) at time t is larger than λ/(16e) (the term is taken from [MMVY]).

It follows from Lemma 2.8 (ii) that v becomes infested with probability tending to 1,
as n→∞. Using Lemma 2.8 (iii) and 2.9 (note that |D(w)| ≥ (7/(c∗λ2))| log λ|d(w,w′)),
we deduce that for any t ≥ 0 and w ∈ V ∗

n ,

P(w is infested at t+ 2 exp(c∗λ2κ∗ log n) | v is infested at t)

≥ 1− 4 exp(−c∗λ2κ∗ logn).

Therefore

P(All vertices in V ∗
n are infested at t+ 2 exp(c∗λ2κ∗ log n) | v is infested at t)

≥ 1− 4n exp(−c∗λ2κ∗ log n)

≥ 1− n−1,(48)

where we have used that c∗λ2κ∗ ≥ 3. Now if all vertices in V ∗
n are infested at the

same time, then the proof of Proposition 1 in [CD] shows that the virus survives a time
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exponential in
∑

v∈V ∗

n
deg(v). More precisely, let In,t be the number of infested vertices

in V ∗
n at time t. Then there is a positive constant η, such that for all k ≤ |V ∗

n |,
P (In,sk ≥ k/2 | In,0 ≥ k) ≥ 1− s−1

k ,

where sk = exp(ηλ2kκ∗ logn). The result follows by taking k =
[

c̄∗n/(log n)1/(1−χ)
]

. �

4.2.2. Density of potential vertices. In this part we will estimate the proportion of poten-
tial sites from where the virus can be sent with positive probability to a vertex at distance
quite small (of order (log log n)2) and with large degree (larger than κ∗ log n).

This proportion approximates the probability that there is an infection path from the
uniformly chosen vertex u to a vertex with degree larger than κ∗ log n. To bound from
below this probability, we use the same ideas as in Lemma 3.1. Indeed, we will find a
sequence of vertices starting from a neighbor of u and ending at a large degree vertex,
satisfying the hypothesis of Lemma 2.9 for spreading the virus from u to the ending vertex
(see Lemma 4.4).

Here are just some comments on the order of magnitude above. First, if a vertex with
degree larger than κ∗ log n is infected, then w.h.p. it will infect a site in V ∗

n , and then we
can conclude with Proposition 4.2. Secondly, (log log n)2 is the distance from a potential
vertex to a large degree vertex and is much smaller than the typical distance between
two different potential vertices. Hence the propagation of the virus from these potential
vertices to their closest large degree vertex are approximately independent events.

Set

Rn =
[

(log logn)2
]

.

For w ∈ Vn, define k0(w) by w = vk0(w), and for i ≥ 1 let ki(w) be chosen arbitrarily from
the indices such that vki(w) receives an edge emanating from vki−1(w). We define also

Hn(w) = {k0(w) ≥ n/ log n} ∩ {ki+1(w) ≥ ki(w)/ log ki(w) ≥ n1/2 ∀ 0 ≤ i ≤ Rn}.
Lemma 4.3. There is a positive constant θ0, such that for all θ ≤ θ0, for all ε ∈ (0, 1/2),
and for any vertex w, we have

(i) for all i ≤ Rn

P

(

max
v∈BGn (w,i)

deg(v) ≥ θeθi(n/k0(w))
1−χ | Eε ∩ Hn(w)

)

≥ 1− e−θi,

(ii) P (Hn(w) | k0(w) ≥ n/ logn, Eε) = 1− o(1/ log log n),
with Eε as in Lemma 2.4 (ii).

Proof. We first prove (ii). It follows from the construction of Gn and Lemma 2.4 (ii) that
if ki(w)/ log ki(w) ≥ K(ε), then

P(ki+1(w) ≤ ki(w)/ log ki(w) | Eε, ki(w), (ϕt)) =
S[ki(w)/ log ki(w)]

Ski(w)−1

≤ (1 + ε)

(

1

log ki(w)

)χ

.

Hence for all i ≤ Rn,

P
(

ki+1(w) ≥ n/(log n)i+2 | Eε, ki(w) ≥ n/(logn)i+1
)

≥ P
(

ki+1(w) ≥ ki(w)/ log ki(w) | Eε, ki(w) ≥ n/(logn)i+1
)

= 1− o((logn)−χ/2).
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Therefore

P
(

ki+1(w) ≥ ki(w)/ log ki(w) ≥ n/(log n)i+2 ∀ i ≤ Rn | Eε, k0(w) ≥ n/ logn
)

= 1− o(Rn(log n)
−χ/2) = 1− o(1/ log logn).

This implies (ii), since for all i ≤ Rn

n/(logn)i+2 ≥ √n.
We now prove (i). First, we claim that there is a positive constant c0, such that for any
c < c0, there exists c′ = c′(c) > 0, such that for all i ≤ Rn

(a) P
(

k[i/2](w) ≤ e−cik0(w) | Eε ∩Hn(w)
)

≥ 1− e−c′i,

(b) P
(

∃j ∈ (i/2, i) : ψkj(w) ≥ c/kj(w) | Eε ∩ Hn(w)
)

≥ 1− e−c′i,

(c) P(deg(vk) ≥ c′(n/k)1−χ | ψk ≥ c/k, Eε) ≥ 1− exp(−c′(n/k)1−χ), for any vk ∈ Vn.

From these claims we can deduce the result. Indeed, (a) and (b) imply that with probabil-
ity larger than 1− 2 exp(−c′i) there is an integer j ∈ (i/2, i) such that kj(w) ≤ e−cik0(w)
and ψkj(w) ≥ c/kj(w). Then (c) gives that deg(vkj(w)) ≥ c′ec(1−χ)i(n/k0(w))

1−χ with

probability larger than 1− exp(−c′ec(1−χ)i). Hence (ii) follows by taking θ small enough.
To prove (a), similarly to Lemma 2.6, we consider

Xj(w) = 1({kj(w) ≤ kj−1(w)/2}) and Fj(w) = σ(kt(w) : t ≤ j) ∨ σ((ϕt)).
OnHn(w), we have K(ε) ≤ √n ≤ kj(w) for all j ≤ Rn. Then by using the same argument
as in Lemma 2.6 we obtain that on Hn(w) ∩ Eε,

E(Xj(w) | Fj−1(w)) ≥
S[kj(w)/2] − S[kj(w)/ log kj(w)]

Skj(w)−1

≥ p(49)

and

P





[i/2]
∑

j=1

Xj(w) ≥ ip/4



 ≥ 1− 2 exp(−ip2/16),(50)

for some constant p > 0. Since k[i/2](w) ≤ 2−ip/4k0(w) as soon as
∑[i/2]

j=1 Xj(w) ≥ ip/4,

the claim (a) follows from (50).
We now prove (b). Let θ be the constant as in Lemma 2.4 (v). Fix some j ∈ (i/2, i)

and set k = kj(w)− 1 and ℓ = [kj(w)/ log kj(w)]. Then we have

P
(

ψkj+1(w) ≥ θ/kj+1(w) | k, ℓ
)

= E

(

1

Sk − Sℓ

k
∑

t=ℓ+1

ϕt1(ψt ≥ θ/t) | k, ℓ
)

≥ E

(

1

Sk

k
∑

t=ℓ+1

ϕt1(ψt ≥ θ/t) | k, ℓ
)

(51)

On Hn(w) ∩ Eε, we have k ≥ kj+1(w) ≥ ℓ ≥ √n ≥ K(ε). Hence, using Lemma 2.4 (ii)
and the fact that Sn = 1, we get on Hn(w) ∩ Eε,

|Sk − (k/n)χ| ≤ ε(k/n)χ and |Sℓ − (ℓ/n)χ| ≤ ε(ℓ/n)χ.(52)
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Moreover, by Lemma 2.4 (v) for all t, we have

(53) E[ϕt1(ψt ≥ θ/t)] ≥ θ.

Now using (52) and (53), we obtain that for all n large enough

E

(

1

Sk

k
∑

t=ℓ+1

ϕt1(ψt ≥ θ/t) | k, ℓ,Hn(w) ∩ Eε
)

≥ nχ

(1 + ε)kχ
E

(

θ
k
∑

t=ℓ+1

ϕt | k, ℓ,Hn(w) ∩ Eε
)

≥ θnχ

(1 + ε)kχ
E (Sk − Sℓ | k, ℓ,Hn(w) ∩ Eε)

=
θnχ

(1 + ε)kχ
[(1− ε) (k/n)χ − (1 + ε) (ℓ/n)χ]

≥ θ/4,(54)

since ε ∈ (0, 1/2) and ℓ = [(k + 1)/ log(k + 1)]. It follows from (51) and (54) that

P
(

ψkj+1(w) ≥ θ/kj+1(w) | kj(w),Hn(w) ∩ Eε
)

≥ θ/4.(55)

Now it follows from (55) that

P
(

∄j ∈ (i/2, i) : ψkj+1(w) ≥ θ/kj+1(w) | Hn(w) ∩ Eε
)

≤ (1− θ/4)[i/2],
which implies (b). Finally, (c) can be proved as (44). �

Lemma 4.4. Let u be a uniformly chosen vertex from Vn. Then

P(M) & λϕ(λ)−1/ψ,

where

M = {∃w ∈ BGn(u,Rn) : deg(w) ≥ κ∗ log n} ∩ {(ξut ) makes w lit inside BGn(u,Rn)}.
Proof. Define k0 by vk0 = u and for i ≥ 1 let ki be chosen arbitrarily from the indices
that vki receives an edge emanating from vki−1

. Let us denote u1 = vk1 and define also

Hn := Hn(u1) = {k1 ≥ n/ logn} ∩ {ki+1 ≥ ki/ log ki ≥
√
n ∀ 1 ≤ i ≤ Rn + 1}.

In this proof, we assume that ε = o(λϕ(λ)−1/ψ) as λ → 0. Similarly to Lemma 4.3 by
using that k0 is chosen uniformly from {1, . . . , n}, we have P(Hn | Eε) = 1−o(1/ log log n)
and hence P(Eε∩Hn) = 1− o(λϕ(λ)−1/ψ). We assume now that these two events happen.

We recall the claim (c) in the proof of Lemma 4.3: there is a positive constant c0, such
that for any c < c0, there exists c′ = c′(c) > 0, such that

P(deg(vk) ≥ c′(n/k)1−χ | ψk ≥ c/k) ≥ 1− exp(−c′(n/k)1−χ),(56)

for any vk ∈ Vn. Let us consider

M1 =
{

k1 ≤ n/ϕ̃(λ)
}

,

where
ϕ̃(λ) = (4ϕ(λ)/c′θ2)1/1−χ,

with θ a small enough constant (smaller than θ0 as in Lemma 2.4 and 4.3 and than c0),
and c′ = c′(θ). Define

M2 =M1 ∩
{

∀ 1 ≤ ℓ ≤ R′
n ∃wℓ : d(u1, wℓ) ≤ rℓ, deg(wℓ) ≥ ϕ(λ) exp(θrℓ)

}

,

where
rℓ = 4ℓ/θ2 for 1 ≤ ℓ ≤ R′

n := θ2Rn/8.
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By applying Lemma 4.3 for u1 we get that for any ℓ ≤ R′
n

P

(

max
v∈BGn (u1,rℓ)

deg(v) ≥ θeθrℓ(n/k1)
1−χ
)

≥ 1− e−θrℓ .

If k1 ≤ n/ϕ̃(λ), then

θ exp(θrℓ)(n/k1)
1−χ ≥ θ exp(θrℓ)ϕ̃(λ)

1−χ ≥ ϕ(λ) exp(θrℓ).

Thus

P (∃v : d(v, u1) ≤ rℓ, deg(v) ≥ ϕ(λ) exp(θrℓ) | M1) ≥ 1− e−4ℓ/θ.

Hence

P (M2 | M1) ≥ 1−
R′

n
∑

ℓ=1

exp(−4ℓ/θ) ≥ 1− 2 exp(−4/θ).(57)

Define

M3 =M1 ∩ {deg(u1) ≥ 4ϕ(λ)/θ2}.
Similarly to (54), we can show that

P (ψk1 ≥ θ/k1 | k1 ≤ n/ϕ̃(λ)) ≥ θ/4.

Using (56) and the fact that c′ϕ̃(λ)1−χ = 4ϕ(λ)/θ2, we get

P
(

deg(u1) ≥ c′(n/k1)
1−χ | k1 ≤ n/ϕ̃(λ), ψk1 ≥ θ/k1

)

≥ 1− exp(−4ϕ(λ)/θ2) ≥ 1/2.

From the last two inequalities we deduce that

P(M3 | M1) ≥ θ/8.

Combining this with (57) we obtain that

P(M2 ∩M3 | M1) ≥ θ/8− 2 exp(−4/θ) ≥ θ/16.(58)

We now bound from below P(M1). Observe that

P
(

k1 ≤ n/ϕ̃(λ)
∣

∣

∣
k0, (ϕj)

)

≥ S[n/ϕ̃(λ)]1(k0 > n/ϕ̃(λ))

Sk0−1

& ϕ̃(λ)−χ
(

k0
n

)χ

1(k0 > n/ϕ̃(λ)).

Since k0 is distributed uniformly on {1, . . . , n}, we get

E[(k0/n)
χ1(k0 > n/ϕ̃(λ))] ≍ 1.

Therefore

P (M1) & ϕ̃(λ)−χ & ϕ(λ)−1/ψ.

This and (58) give that

P (M2 ∩M3) & ϕ(λ)−1/ψ.(59)

Observe that onM2 ∩M3, we have deg(u1) ≥ ϕ(λ)r1 ≥ ϕ(λ)d(u1, w1) and

deg(wℓ) ≥ ϕ(λ) exp(θrℓ) ≥ 2ϕ(λ)rℓ+1 ≥ ϕ(λ)d(wℓ, wℓ+1)
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for all 1 ≤ ℓ ≤ R′
n. In other words, u1 and the vertices (wℓ) satisfy the condition in

Lemma 2.9, and thus applying this lemma inductively yields that

P(wR′

n
is lit inside BGn(u1, Rn) | M2 ∩M3, u1 is lit)

≥ 1−
R′

n
∑

ℓ=1

exp(−c∗λ2ϕ(λ)eθrℓ)

& 1.(60)

Similarly to (32), the probability that (ξut ) makes u1 lit is of order λ. It follows from this
and (60) that

P((ξut ) makes wR′

n
lit inside BGn(u,Rn) | M2 ∩M3) & λ.(61)

In addition, deg(wR′

n
) ≥ κ∗ logn. Therefore

M⊃M2 ∩M3 ∩ {(ξut ) makes wR′

n
lit inside BGn(u,Rn)}.

Combining this with (59) and (61) gives the result. �

4.2.3. Proof of (34). For any v ∈ Vn, we define

Yv = 1({∃w ∈ BGn(v, Rn) : deg(w) ≥ κ∗ log n} ∩ {(ξv. ) makes w lit inside BGn(v, Rn)})
and

Zv = Yv1({ξvTn 6= ∅}),
where Tn is as in Proposition 4.2. Then

(62)
∑

v∈Vn

Zv ≤
∑

v∈Vn

1({ξvTn 6= ∅}).

Lemma 4.5. The following assertions hold:

(i) P

(

1
n

∑

v∈Vn
Yv ≥ cλϕ(λ)−1/ψ

)

= 1− o(1), for some c > 0, independent of λ.

(ii) P (Zv = 1 | Yv = 1)→ 1, as n→∞ uniformly in v ∈ Vn.
Proof. For (i), let ε ∈ (0, 1/2) be given. We have to show that the probability in the
left-hand side is larger than 1− 2ε for n large enough. First, Lemma 4.4 implies that

P(Yu = 1) & λϕ(λ)−1/ψ,

or equivalently

1

n

∑

v∈Vn

P(Yv = 1) & λϕ(λ)−1/ψ.

Using Chebyshev’s inequality, the result follows from this and the following claim: on Eε
∑

v,v′∈Vn

Cov(Yv, Yv′) = o(n2).(63)

To prove it, we consider

Vn = {(vi, vj) : i, j ≥ n/ logn, d(vi, vj) ≥ 2Rn + 3}.
Since Rn + 1 ≤ b2 logn/(log logn) for n large enough, it follows from Lemma 2.6 that

∑

v,v′∈Vn

P((v, v′) 6∈ Vn) = o(n2).(64)
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On the other hand, Lemma 4.3 gives that if i ≥ n/ logn, then

P (∃w ∈ BGn(vi, Rn) : deg(w) ≥ κ∗ log n | Eε) = 1− o(1/ log logn).
Moreover, given the graph Gn, Yv and Yv′ only depend on the Poisson processes defined
on the vertices and edges on the balls BGn(v, Rn) and BGn(v

′, Rn) respectively. Hence on
Eε for all (v, v′) ∈ Vn,

Cov(Yv, Yv′) = o(1/ log log n).(65)

Now (63) follows from (64) and (65).
We now prove (ii). If Yv = 1, then there exists a vertex w such that deg(w) ≥ κ∗ log n

and w is lit at some time. Besides, on Bn the diameter of the graph is bounded by b1 log n
w.h.p. Hence similarly to Lemma 2.9, we can show that on Bn

P(w infects a vertex in V ∗
n ) ≥ 1− exp(−c∗κ∗λ2 log n).

If one of the vertices in V ∗
n is infected, it follows from Proposition 4.2 that w.h.p. the

virus survives up to time Tn. Hence we obtain (ii) by using that Bn holds w.h.p. �

It follows from (62), Lemma 4.5 and Markov’s inequality that w.h.p.

1

n

∑

v∈Vn

1({ξvTn 6= ∅}) & λϕ(λ)−1/ψ,

which proves (34). �

5. Proof of Proposition 1.2

Let us first recall a result which we will use below.

Proposition 5.1. [MMVY, Lemma A.1] Let (Gn) = (Vn, En) be a sequence of graphs,
such that |Gn| = n, for all n. Let (ξt)t≥0 be the contact process on Gn starting from
full occupancy and let τn be the extinction time of this process. Assume that there exist
sequences of positive numbers (an), (bn) satisfying

(i) lim
n→∞

an = lim
n→∞

bn =∞, lim
n→∞

an
bn

= 0;

(ii) lim
n→∞

sup
A⊂Vn

P(ξAan 6= ξan , ξan 6= ∅) = 0;

(iii) lim
n→∞

P(τn < bn) = 0.

Then, τn/E(τn) converges in distribution, as n → ∞, to the exponential distribution of
parameter 1.

This result for the case of finite boxes in Zd is proved by Mountford in [M]. Then
it is stated for general case as above. We will apply this result to prove the following
proposition 5.2 which implies Proposition 1.2.

Proposition 5.2. Let (Gn) be a sequence of connected graphs, such that |Gn| = n, for
all n. Let τn denote the extinction time of the contact process on Gn starting from full
occupancy. Assume that

Dn,max

dn ∨ log n
→∞,(66)

with Dn,max the maximum degree and dn the diameter of Gn. Then

τn
E(τn)

(L)−→
n→∞

E(1).
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Proof. First we set λ̄ = λ ∧ 1. Using Lemma 2.8, we get w.h.p.

τn ≥ exp(cλ̄2Dn,max),(67)

with c = c∗/2 and c∗ as Lemma 2.8.
Hence, according to Proposition 5.1, it suffices to show that there exists a sequence

(an), such that

(68) an = o(exp(cλ̄2Dn,max))

and

sup
v∈Vn

P(ξvan 6= ξan , ξ
v
an 6= ∅) = o(1),(69)

where (ξt)t≥0 denotes the process starting from full occupancy.
Using (66), we can find a sequence (kn) tending to infinity, such that

Dn,max

(log n ∨ dn)kn
→∞.(70)

Now define

bn = exp(cλ̄2(log n ∨ dn)kn) and an = 4bn + 1.(71)

Then (67) and (70) show that an satisfies (68), so it amounts now to prove (69) for this
choice of (an). To this end it is convenient to introduce the dual contact process. Given

some positive real t and A a subset of the vertex set Vn of Gn, the dual process (ξ̂A,ts )s≤t
is defined by

ξ̂A,ts = {v ∈ Vn : (v, t− s)←→ A× {t}},
for all s ≤ t. It follows from the graphical construction that for any v,

P(ξvan 6= ξan , ξ
v
an 6= ∅)

= P(∃w ∈ Vn : ξvan(w) = 0, ξvan 6= ∅, ξ̂w,anan 6= ∅)

≤
∑

w∈Vn

P
(

ξvan 6= ∅, ξ̂w,anan 6= ∅, and ξ̂w,anan−t ∩ ξvt = ∅ for all t ≤ an

)

,(72)

So let us prove now that the last sum above tends to 0 when n→∞. Set

βn = [kn(dn ∨ log n)],

and let u be a vertex with degree larger than βn. Let then S(u) be a star graph of size
βn centered at u. As in Proposition 4.2, we say that u is infested if the number of its
infected neighbors in S(u) is larger than λ̄βn/(16e). We first claim that

P(ξvbn 6= ∅, u is not infested before bn) = o(1/n).(73)

To see this, define Kn = [bn/dn] and for any 0 ≤ k ≤ Kn − 1

Ak := {ξvkdn 6= ∅},
and

Bk :=
{

ξvkdn × {kdn} ←→ (u, (k + 1)dn − 1)
}

∩ {u is infested at time (k + 1)dn}.
Note that

{ξvbn 6= ∅, u is not infested before bn} ⊂
Kn−1
⋂

k=0

Ak ∩Bc
k.(74)
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It is not difficult to see that

P ((z, t)←→ (z′, t+ dn − 1)) ≥ exp(−Cdn) for any z, z′ ∈ Vn and t ≥ 0,

for some constant C > 0. On the other hand, Lemma 2.8 (i) implies that if u is infected
at time t then it is infested at time t + 1 with probability larger than 1/3, if n is large
enough. Therefore for any k ≤ Kn − 1,

P(Bc
k | Gk)1(Ak) ≤ 1− exp(−Cdn)/3,

with Gk the sigma-field generated by the contact process up to time kdn. Iterating this,
we get

P

(

Kn−1
⋂

k=0

Ak ∩Bc
k

)

≤ (1− exp(−Cdn)/3)Kn−1 = o(1/n),

where the last equality follows from the definition of bn. Together with (74) this proves
our claim (73). Then by using Lemma 2.8 (iii) we get

P(ξvbn 6= ∅, u is not infested at time 2bn) = o(1/n).(75)

Therefore, if we define

A(v) = {ξvbn 6= ∅, u is infested at time 2bn},
we get

P(A(v)c, ξvbn 6= ∅) = o(1/n).

Likewise if

Â(w) = {ξ̂w,4bn+1
bn

6= ∅, ∃U ⊂ S(u) : |U | ≥ λ̄

16e
βn and (x, 2bn + 1)↔ (w, 4bn + 1) ∀ x ∈ U}.

then
P(Â(w)c, ξ̂w,4bn+1

bn
6= ∅) = o(1/n).

Moreover, A(v) and Â(w) are independent for all v, w. Now the result will follow if we
can show that for any A,B ⊂ S(u) with |A|, |B| larger than λ̄βn/(16e)

P(A× {2bn}
S(u)←→B × {2bn + 1}) = 1− o(1/n),(76)

where the notation

A× {2bn}
S(u)←→B × {2bn + 1}

means that there is an infection path inside S(u) from a vertex in A at time 2bn to a
vertex in B at time 2bn + 1. To prove (76), define

Ā = {x ∈ A \ {u} : Āx holds },
B̄ = {y ∈ B \ {u} : Āy holds },

where

Āx = { there is no recovery at x between 2bn and 2bn + 1}.
Observe that

P(Āx holds) = 1− e−1.

Therefore, the standard large deviations results show that |Ā| and |B̄| are larger than
(1− e−1)λ̄βn/(32e), with probability at least 1− o(1/n). Now let

E = {|Ā| ≥ (1− e−1)λ̄βn/(32e)} ∩ {|B̄| ≥ (1− e−1)λ̄βn/(32e)}.
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We set

εn =
1

(log n)
√
kn

and Jn =

[

(log n)
√
kn

2

]

,

with (kn) as in (70), and define for 0 ≤ j ≤ Jn − 1

Cj = { there is no recovery at u between 2bn + 2jεn and 2bn + (2j + 2)εn}
∩ {∃x ∈ Ā : there is an infection from x to u between 2bn + 2jεn and 2bn + (2j + 1)εn}
∩ {∃y ∈ B̄ : there is an infection from u to y between 2bn + (2j + 1)εn and 2bn + (2j + 2)εn}.

Observe that
Jn−1
⋃

j=0

Cj ⊂
{

A× {2bn}
S(u)←→B × {2bn + 1}

}

.(77)

Moreover, conditionally on Ā and B̄, the events (Cj) are independent, and

P(Cj | Ā, B̄) = e−2εnP(Bin(|Ā|, 1− e−εn) ≥ 1)× P(Bin(|B̄|, 1− e−εn) ≥ 1)

≥ 1/2,

on the event E , if n is large enough. Therefore

P

(

E ,
Jn−1
⋂

j=0

Cc
j

)

≤ 2−Jn = o(1/n).

This together with (77) imply (76), and concludes the proof of the proposition. �

Proof of Proposition 1.2. Using the same arguments for (44), we have for any sequence
(an) tending to infinity

P
(

∃ℓ ∈ [cn/an, n/an] : deg(vℓ) ≥ ca1−χn

)

= 1− o(1),

for some c > 0. By taking an =
√
n, we obtain that

(78) P(Dn,max ≥ cn(1−χ)/2) = 1− o(1).
Now Proposition 1.2 follows from Proposition 5.2, Lemma 2.5 and (78). �

6. Appendix: Proof of (19)

We closely follow the proof given in [MVY] for Galton-Watson trees. However, we have
to take care that in our situation the degrees of the vertices are not independent as in
Galton-Watson trees. This leads to some complications.

To simplify the computation, we consider a modified version of the Pólya-point graph
defined as follows: we use the same construction except that now mv = m and γv ∼ F ′

for all vertices. Then, the new tree stochastically dominates the original tree (note that
F � F ′) and thus, it is sufficient to prove the upper bound for the contact process on this
new tree. In this appendix, we always consider this modified graph, and for simplicity,
we use the same notation as for the Pólya-point graph. Now our goal is to prove that

P(ξot 6= ∅ ∀t ≥ 0) . λ1+
2
ψ | log λ|−1

ψ ,(79)

where (ξot )t≥0 is the contact process on the modified Pólya-point graph starting from the
root o.
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To describe more precisely the distribution of the Pólya-point graph, we recall a basic
fact of Poisson processes (see for example [DV, Chapter 2]).

Claim. For any a < b, let Λ(a, b) be the set of arrivals of the Poisson process on [a, b]
with intensity f(x). Then conditional on |Λ(a, b)| = k, these k arrivals are independently

distributed on [a, b] with the same density f(x)/
∫ b

a
f(t)dt.

We observe that for any vertex v in the Pólya-point graph, conditioned on its position
xv and its number of descendants m+ k, x(v,1), . . . , x(v,m) are i.i.d. uniform random vari-
ables on [0, xv], and x(v,m+1), . . . , x(v,m+k) are arrivals of a Poisson process on [xv, 1] with

intensity γv
ψxψ−1

1−xψv
dx (conditional on having k arrivals). Therefore x(v,m+1), . . . , x(v,m+k) are

independently distributed on [xv, 1] with the same density ψxψ−1

1−xψv
dx.

On the other hand, similarly to (22), for all v with a = m+ 2mr + 1,

p(k, x) = P(number of descendants of v = m+ k | xv = x)

=
Γ(k + a)

Γ(a)k!
(1− xψ)kxaψ

≍ ka−1(1− xψ)kxaψ,(80)

since Γ(k + a)/k! ≍ ka−1. Moreover,

∑

k≤M
ka−1(1− xψ)k ≍

M∧[x−ψ]
∑

k=0

ka−1 +

∫ M

M∧x−ψ
exp(−txψ)ta−1dt

≍ (M ∧ x−ψ)a + x−aψ
∫ Mxψ

Mxψ∧1
exp(−u)ua−1du

≍ (M ∧ x−ψ)a.
Therefore

∑

k≤M
p(k, x) ≍ (M ∧ x−ψ)axaψ.(81)

Similarly,
∑

k≤M
kp(k, x) ≍ (M ∧ x−ψ)a+1xaψ,(82)

∑

k≤M
k2p(k, x) ≍ (M ∧ x−ψ)a+2xaψ,(83)

Using (82) and taking M tend to infinity, we have

(84)
∑

k≥0

kp(k, x) = O(x−ψ).

Let r > 0 and M ∈ N be given. For any vertex v, define the truncated tree starting from
v as

T vr,M = {v}∪{w descendant of v : d(v, w) ≤ r, deg(y) ≤M

for all y 6∈ {v, w} in the geodesic from v to w},
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and for 1 ≤ i ≤ r, set

T vi,r,M = {w ∈ T vr,M : d(v, w) = i}.
Svi,r,M = {w : d(v, w) = i and w is a leaf of T vr,M}.

If v = o, we simply write Tr,m, Ti,r,m, and Si,r,m. By definition, if v 6= o, then

|T v1,r,M | = deg(v)− 1,(85)

|Sv1,r,M | = |{w : w is a child of v with deg(w) > M}|,(86)

|T vi+1,r,M | =
deg(v)−1
∑

j=1

|T (v,j)
i,r,M |1(deg((v, j)) ≤M) for 1 ≤ i ≤ r − 1,(87)

|Svi+1,r,M | =
deg(v)−1
∑

j=1

|S(v,j)
i,r,M |1(deg((v, j)) ≤M) for 1 ≤ i ≤ r − 2,(88)

|Svr,r,M | = |T vr,r,M |.(89)

If v = o, we just replace deg(o)− 1 by deg(o) in these equations.
As in [MVY] (more precisely, Sections 6.1, 6.2 and 6.3), we can see that the proof of

(79) follows from the four following lemmas.

Lemma 6.1. There is a positive constant C, such that for all 1 ≤ i ≤ r and M ≥ m+1,

E(|Ti,r,M |) ≤ C i(logM)i−1.

Furthermore for all 1 ≤ i ≤ r − 1 and M ≥ m+ 1,

E(|Si,r,M |) ≤ C i(logM)i−1M−1/ψ.

In fact, the bound for E(|Ti,r,M |) plays the same role as the estimate (6.2) in [MVY],
and the bound for E(|Si,r,M |) is similar to (6.1) in [MVY].

Lemma 6.2. For all r > 0 and M ≥ m+ 1, we have

E(|S1,r,M |1(|S1,r,M | ≥ 2) | deg(o) ≤M) = O(M−1−1/ψ logM).

This result is used in the estimate in (6.7) in [MVY].

Lemma 6.3. For all r > 0 and M ′ ≥M ≥ m+ 1, we have

P(deg(o) ≤M, |S1,r,M | = 1) = O(M−1/ψ),

P(deg(o∗) ≥M ′ | deg(o) ≤M,S1,r,M = {o∗}) = O
(

(M/M ′)
1/ψ
)

.

The first estimate is used for the event B4
4 in [MVY], and the second one is an analogue

of the bound for q[M ′,∞)/q[M,∞) in Proposition 6.3 (at the first line of page 27).
For any r > 0 and M ′ ≥M ≥ m+ 1, we define the conditional probability measures

Q1(·) = P(· | deg(o) ≤M, |S1,r,M | = 1),

Q2(·) = P(· | deg(o) ≤M,S1,r,M = {o∗}, deg(o∗) =M ′).

We call T ∗ the tree T rooted at o∗. Similarly as for T , we also define T ∗
i,r,M , S∗

i,r,M .
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Lemma 6.4. There is a positive constant C, such that for all 1 ≤ i ≤ r and M ′ ≥ M ≥
m+ 1

EQ1(|Ti,r,M |) ≤ (C logM)i.

EQ2(|T ∗
i,r,M |) ≤ C i(logM)i−1M ′.

Furthermore for all 1 ≤ i ≤ r − 1 and M ≥ m+ 1,

EQ2(|S∗
i,r,M |) ≤ C i(logM)i−1M ′M−1.

The bound for EQ1(|Ti,r,M |) is used in (6.12) in [MVY], the bounds for EQ2(|T ∗
i,r,M |) and

EQ2(|S∗
i,r,M |) are used in their Section 6.3.

Assume that Lemmas 6.1–6.4 hold for a moment, we now prove the upper bound of the
survival probability of the contact process on T .

Proof of (79). Using the same notation in [MVY], we set

M =

⌈

1

8λ2

⌉

and R =

⌈

2/ψ + 5

2/ψ − 1

⌉

+ 1.

and define

B4
1 = {deg(o) > M},

B4
2 =

{

deg(o) ≤ M, (o, 0)↔
(

R
⋃

i=2

Si,R,M

)

× R+ in TR,M

}

,

B4
3 = {deg(o) ≤M, |S1,R,M | ≥ 2, (o, 0)↔ S1,R,M × R+ in TR,M} .

When S1,R,M = {o∗}, let 0 < t∗ < t∗∗ be the first two arrival times of the process D(o,o∗)

(the Poisson process of intensity λ representing the infections from o to o∗). Then, we
define

B4
4 = {deg(o) ≤M, |S1,R,M | = 1, t∗∗ < infDo}.

We say that o∗ becomes infected directly if t∗ < infDo. We say that it becomes infected
indirectly if there are infection paths from o to o∗ but all these paths must visit at least
one vertex different from o and o∗ . Define

B4
5 = {deg(o) ≤M, |S1,R,M | = 1, ∃ y ∈ TR,M , 0 < s < t : (o, 0)↔ (y, s)↔ (o, t) inside TR,M}.

Note that if o∗ becomes infected indirectly, then B4
5 must occur. Let us define

B4
6 = {deg(o) ≤M, |S1,R,M | = 1, t∗ < infDo, (o

∗, t∗)↔ B(o, R)c × [t∗,∞)}.

Then

(90) {(o, 0)↔ B(o, R)c × R+} ⊂
6
⋃

i=1

B4
i .
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Event B4
1 . We observe that by (80)

P(deg(o) > M | xo = x) ≍ xaψ
∑

k>M

ka−1(1− xψ)k

. yaψ
∫ ∞

M

ta−1 exp(−txψ)dt

≍
∫ ∞

Mxψ
ta−1 exp(−t)dt

. exp(−Mxψ/2).

By combining this with the fact that xo is distributed on [0, 1] with density (ψ+ 1)xψdx,
we get

P(B4
1) =

∫ 1

0

P(deg(o) > M | xo = x)(ψ + 1)xψdx

.

∫ 1

0

exp(−Mxψ/2)xψdx

. M−1−1/ψ = O(λ2+2/ψ).

Event B4
2 . As in [MVY], we have

P(B4
2) ≤

R
∑

i=2

(2λ)iE(|Si,R,M |)

≤ M−1/ψ

R−1
∑

i=2

(Cλ logM)i + (Cλ logM)R

. λ−2/ψ
R−1
∑

i=2

(λ| log λ|)i + (λ| log λ|)R

. λ3/2+2/ψ.

Here, for the first inequality we have used Lemma 6.1 and (89).

Event B4
3 . As in [MVY], we have for λ small enough

P(B4
3) ≤ (2λ)E(|S1,R,M |1(|S1,R,M | ≥ 2) | deg(o) ≤M)

= O(λM−1−1/ψ logM) = O(λ× λ2+2/ψ| log λ|)
= O(λ2+2/ψ),

where we have used Lemma 6.2 in the second line.

EventB4
4 . The number of transmissions from o to o∗ before time t has Poisson distribution

with parameter λt. Thus,

P(B4
4) = P(deg(o) ≤M, |S1,R,M | = 1)

∫ ∞

0

P(Poi(λt) ≥ 2)e−tdt

= O(λ2/ψ)
∫ ∞

0

λ2t2e−tdt

= O(λ2+2/ψ).
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Note that in the second line, we have used Lemma 6.3 to estimate the first term and the
fact that P(Poi(u) ≥ 2) ≤ u2 to bound the second one.

Event B4
5 . As in [MVY],

P(B4
5) ≤ P(deg(o) ≤M, |S1,R,M | = 1)P

(

∃ y ∈ TR,M , 0 < s < t : deg(o) ≤M,
(o, 0)↔ (y, s)↔ (o, t) inside TR,M |S1,R,M | = 1

)

.

By Lemma 6.3, the first term is O(λ2/ψ). On the other hand, by the same argument in
[MVY] the second one is bounded by

R
∑

i=1

λ2i × E(|{x ∈ TR,M : d(o, x) = i}| | deg(o) ≤ M, |S1,R,M | = 1)

=
R
∑

i=1

λ2i × EQ1(|Ti,R,M |)

≤
R
∑

i=1

(Cλ2| log λ|)i

= O(λ3/2).
Thus we have

P(B4
5) = O(λ3/2+2/ψ).

Event B4
6 . We have

P(B4
6) ≤ P(deg(o) ≤M, |S1

R,M | = 1)× P(t∗ < infDo)

×P((o∗, t∗)↔ B(o, R)c × [t∗,∞) | deg(o) ≤M, |S1
R,M | = 1, t∗ < infDo)

. λ2/ψ × λ× P((o∗, 0)↔ B(o, R)c × R+ | deg(o) ≤M, |S1
R,M | = 1).

Note that we have used Lemma 6.3 to bound the first probability. Now, it remains to
bound the third term. We observe that for any M ′ > M ,

P((o∗, 0)↔ B(o, R)c × R+ | deg(o) ≤M, |S1,R,M | = 1)

=
∞
∑

k=M+1

P((o∗, 0)↔ B(o, R)c × R+ | deg(o∗) = k, deg(o) ≤M,S1,R,M = {o∗})

×P(deg(o∗) = k | deg(o) ≤M,S1,R,M = {o∗})
≤ P((o∗, 0)↔ B(o, R)c × R+ | deg(o∗) =M ′, deg(o) ≤M,S1,R,M = {o∗})

+P(deg(o∗) ≥M ′ | deg(o) ≤M,S1,R,M = {o∗})
. Q2((o

∗, 0)↔ B(o, R)c × R+) + (M/M ′)1/ψ.

Here, we used Lemma 6.3 to bound the second term and Q2 is the conditional probability
depending on M ′ which was defined in Lemma 6.4.

As in [MVY], we take

M ′ = ⌈ε1λ−2| log λ|⌉,
with

ε1 = ε′1/64 and ε′1 = min{(2/ψ − 1), 2}/4.
Then the second term is of order

(M/M ′)1/ψ ≍ | log λ|−1/ψ.
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To bound the first term, we notice that

Q2((o
∗, 0)↔ B(o, R)c × R+) ≤ Q2((o

∗, 0)↔ B(o∗, R− 1)c × R+).

Hence, it remains to prove the following result.

Lemma 6.5. There exists δ > 0, such that

Q2((o
∗, 0)↔ B(o∗, R− 1)c × R+) < λδ.

Proof. We follow the proof and notation in [MVY], let R′ = R − 1, and L1 = ⌈λ−ǫ′1/2⌉.
Then we define

φ(T ∗) =

R′

∑

i=1

(2λ)i|S∗
i,R′,M(T )|,

ψ(T ∗) =
R′

∑

i=2

(2λ)2i|T ∗
i,R′,M |,

where T ∗ is the tree T rooted at o∗ and T ∗
i,r,M , S

∗
i,r,M are defined in Lemma 6.4. We now

define

B5
1 = {φ(T ∗) > λǫ

′

1}, B5
2 = {ψ(T ∗) > λǫ

′

1},

B5
3 = (B5

1 ∪ B5
2)
c ∩
{

{o∗} × [0, L1]↔
(

R′

⋃

i=1

S∗
i,R′,M

)

× R+

}

,

B5
4 = (B5

1 ∪ B5
2)
c ∩ {∃z : d(o∗, z) ≥ 2, {o∗} × [0, L1]↔ (z, s)↔ {o∗} × [s,∞)

inside T (z) ∩ TR′,M},
B5

5 = {B(o∗, 1)× {0} ↔ B(o∗, 1)× {L1} inside B(o∗, 1)}.
It is explained in [MVY] that

{(o∗, 0)↔ B(o∗, R′)c × R+} ⊂
5
⋃

i=1

B5
i .

Event B5
1 . Similarly to B4

1 , using Lemma 6.4, we have

EQ2(φ(T
∗)) .

R′−1
∑

i=1

(2λ)i(logM)i−1M ′M−1 + (2λ)R
′

M ′M−1(logM)R
′

. λ3/4.

Then using Markov’s inequality we get

Q2(B
5
1) = O(λ3/4−ε

′

1) = O(λ1/4),
since ε′1 ≤ 1/2.

Event B5
2 . We have

EQ2(ψ(T
∗)) . M ′

R′

∑

i=2

(2λ)2i(logM)(i−1)

. λ3/2.

Then it follows from Markov’s inequality that

Q2(B
5
2) = O(λ3/2−ε

′

1) = O(λ).
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The events B5
3 , B

5
4 , B

5
5 are exactly the same as in [MVY]. �

We now conclude the proof of (19). By (90) and the estimates of (B4
i )i≤5, we obtain

P((o, 0)↔ B(o, R)c × R+) . P(B4
6)

. λ1+2/ψ(λδ + | log λ|−1/ψ)

= O(λ1+2/ψ| log λ|−1/ψ),

which proves the desired result. �

Proof of Lemma 6.1. Since we fix r and M , we omit it in the notation. Let us define for
1 ≤ i ≤ r

fi(x) = E(|T vi |1(deg(v) ≤M) | xv = x),

where v is any vertex different from the root o. For 1 ≤ i ≤ r − 1,

fi+1(x) = E(|T vi+1|1(deg(v) ≤M) | xv = x)

=
∑

k≤M−m−1

E(|T vi+1|1(deg(v) = m+ 1 + k) | xv = x)

=
∑

k≤M−m−1

E(|T vi+1| | xv = x, deg(v) = m+ 1 + k)p(k, x)

=
∑

k≤M−m−1

m+k
∑

j=1

E(|T (v,j)
i |1(deg((v, j)) ≤M) | xv = x, deg(v) = m+ 1 + k)p(k, x),

where for the last line, we used (87).
On the event {xv = x, deg(v) = m+1+k}, x(v,1), . . . , x(v,m) are uniformly distributed on

[0, x] and x(v,m+1), . . . , x(v,m+k) are distributed on [x, 1] with density ψyψ−1

1−xψ dy. Therefore

fi+1(x) =
∑

k≤M−m−1

(

m

x

∫ x

0

fi(y)dy +
k

1− xψ
∫ 1

x

ψyψ−1fi(y)dy

)

p(k, x)

≤ m

x

∫ x

0

fi(y)dy +
F (M,x)

1− xψ
∫ 1

x

ψyψ−1fi(y)dy,(91)

where
F (M,x) =

∑

k≤M−m−1

kp(k, x).

Moreover, it follows from (85) that

f1(x) = E((deg(v)− 1)1(deg(v) ≤M) | xv = x) = m+ F (M,x).(92)

Hence by (82),

f1(x) . F ∗(M,x) := (M ∧ x−ψ)a+1xaψ + 1.(93)

After some simple computations, we have

1

x

∫ x

0

F ∗(M, y)dy . F ∗(M,x) logM.(94)

and

1

1− xψ
∫ 1

x

ψyψ−1F ∗(M, y)dy . logM.(95)
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From (91), (92), (93), (94) and (95), we can prove by induction that for 1 ≤ i ≤ r,

fi(x) ≤ C i(logM)i−1F ∗(M,x).(96)

for some constant C > 0. Similarly to (91), we also have

E(|Ti| | xo = x) ≤ m

x

∫ x

0

fi−1(y)dy +
∑

k≥0

kp(k, x)

1− xψ
∫ 1

x

ψyψ−1fi−1(y)dy.

It follows from this estimate, (84) and (96) that

E(|Ti| | xo = x) ≤ C i(logM)i−1(F ∗(M,x) + x−ψ).

Hence using that xo ∼ U([0, 1])χ with χ = 1/(ψ + 1), we get that for i ≤ r

E(|Ti|) = (ψ + 1)

∫ 1

0

E(|Ti| | xo = x)xψdx

≤ C i(logM)i−1.

Now, to estimate E(|Si|), we define for 1 ≤ i ≤ r − 1

gi(x) = E(|Svi |1(deg(v) ≤M) | xv = x).

As for fi(x), we also have for 1 ≤ i ≤ r − 2,

gi+1(x) ≤
m

x

∫ x

0

gi(y)dy +
F (M,x)

1− xψ
∫ 1

x

ψyψ−1gi(y)dy,(97)

and by (86),

g1(x) = E(|{w : w is a child of v with deg(w) > M}|1(deg(v) ≤M) | xv = x)

≤ m

x

∫ x

0

g0(y)dy +
F (M,x)

1− xψ
∫ 1

x

ψyψ−1g0(y)dy,(98)

where
g0(y) = P(deg(w) > M | xw = y).

It follows from (80) that

g0(y) ≍ yaψ
∑

k>M

ka−1(1− yψ)k

. yaψ
∫ ∞

M

ta−1 exp(−tyψ)dt

≍
∫ ∞

Myψ
ta−1 exp(−t)dt

. exp(−Myψ/2).

On the other hand, if 1 > Myψ > 1/2 then

g0(y) & yaψ
2M
∑

k=M+1

ka−1(1− yψ)k

& 1.

Therefore

1(1/2 < Myψ < 1) . g0(y) . exp(−Myψ/2).(99)
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Let us define for M ≥ 2

α = pL,M(x) = P(deg((v, 1)) > M | xv = x) =
1

x

∫ x

0

g0(y)dy(100)

β = pR,M(x) = P(deg((v,m+ 1)) > M | xv = x) =
1

1− xψ
∫ 1

x

ψyψ−1g0(y)dy.(101)

Then using (99) we obtain that

(Mxψ)−1/ψ1(Mxψ ≥ 1) . α . 1(Mxψ < 1) + (Mxψ)−1/ψ1(Mxψ ≥ 1)(102)

β .M−1 exp(−Mxψ/2).(103)

Define
G∗(M,x) = 1(Mxψ < 1) + (Mxψ)−1/ψ1(Mxψ ≥ 1).

Then
βF (M,x) = O(G∗(M,x)).

Therefore using this, (98), (102) and (103) we get

g1(x) = O(G∗(M,x)).(104)

Furthermore,

1

x

∫ x

0

G∗(M, y)dy = O((logM)G∗(M,x)),(105)

1

1− xψ
∫ 1

x

ψyψ−1G∗(M, y)dy = O(M−11(Mxψ < 1) +M−1/ψ1(Mxψ ≥ 1)).(106)

Hence

m

x

∫ x

0

G∗(M, y)dy +
F (M,x)

1− x

∫ 1

x

G∗(M, y)dy = O((logM)G∗(M,x)).

From this estimate, (97) and (104), we can prove by induction that for 1 ≤ i ≤ r − 1

gi(x) = O((logM)i−1G∗(M,x)).(107)

We now have

E(|Si| | xo) ≤
m

xo

∫ xo

0

gi−1(y)dy +
∑

k≥0

kp(k, xo)

1− xψo

∫ 1

xo

ψyψ−1gi−1(y)dy.

= O
(

1

xo

∫ xo

0

gi−1(y)dy +
x−ψo

(1− xψo )

∫ 1

xo

ψyψ−1gi−1(y)dy

)

= O
(

(logM)i−1[G∗(M,xo) + x−ψo (M−11(Mxψ < 1) +M−1/ψ1(Mxψ ≥ 1))]
)

.

Finally,

E[G∗(M,xo) + x−ψo (M−11(Mxψ < 1) +M−1/ψ1(Mxψ ≥ 1))] = O(M−1/ψ).

Then the result follows from the last two estimates. �

Proof of Lemma 6.2. We also omit here r and M in the notation. Then

E(|S1|1(|S1| ≥ 2) | deg(o) ≤M,xo = x)

≤
∑

k≤M
E(|S1|1(|S1| ≥ 2) | xo = x, deg(o) = m+ k)p(k, x).
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Conditionally on the event {xo = x, deg(o) = m+ k}, |S1| has the same distribution as

X = X1 + . . .+Xm + Y1 + . . .+ Yk,

where (Xi) and (Yj) are independent Bernoulli random variables with mean α = pL,M(x)
and β = pR,M(x) respectively, as defined in (100) and (101). Then

E(X1(X ≥ 2)) = E(X)− P(X = 1)

= mα + kβ −mα(1− α)m−1(1− β)k − kβ(1− α)m(1− β)k−1

≤ (mα + kβ)2

≤ 2(m2α2 + k2β2).

Therefore

E(|S1|1(|S1| ≥ 2) | deg(o) ≤M,xo = x) ≤
∑

k≤M
(2m2α2 + 2k2β2)p(k, x)

≤ 2m2α2 + 2β2
∑

k≤M
k2p(k, x).

We now take the expectation with respect to xo. Since it has density (ψ + 1)xψdx on
[0, 1], the expectation of the first term is of order

∫ 1

0

α2xψdx .

∫ 1

0

[1(Mxψ < 1) + (Mxψ)−2/ψ1(Mxψ ≥ 1)]xψdx

.

∫ M−1/ψ

0

xψdx+M−2/ψ

∫ 1

M−1/ψ

xψ−2dx

= O(M−1−1/ψ logM).

By (83) and (103), the expectation of the second term is equivalent to
∫ 1

0

β2(M ∧ x−ψ)a+2x(a+1)ψdx .M−2

∫ 1

0

exp(−Mxψ)(M ∧ x−ψ)a+2x(a+1)ψdx

.M−2

∫ M−1/ψ

0

Ma+2x(a+1)ψdx+M−2

∫ 1

M−1/ψ

exp(−Mxψ)x−ψdx

.M−1−1/ψ +M−2

∫ M

1

e−u
(

M

u

)

M−1/ψu−1+1/ψdu

= O(M−1−1/ψ),

where for the third line we used the change of variables u = Mxψ. Combining these last
two estimates, we get the lemma. �

Proof of Lemma 6.3. With the same α and β as in the previous lemma, we have

P(deg(o) ≤M, |S1| = 1 | xo = x)

=
∑

k≤M−m

[

mα(1− α)m−1(1− β)k + kβ(1− α)m(1− β)k−1
]

p(k, x)

≤
∑

k≤M
[mα + kβ] p(k, x)

. α + β(M ∧ x−ψ)a+1xaψ.
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Then we take expectation in xo and get

P(deg(o) ≤M, |S1| = 1) = O(M−1/ψ),

which proves the first estimate. For the second one, we note that (1 − β)k ≍ 1 for
1 ≤ k ≤M since β = O(M−1). Hence using (81), we get

P(deg(o) ≤M, |S1| = 1 | xo = x) & α(1− α)m−1(M ∧ x−ψ)axaψ.
It follows from (102) and the fact that α ≤ 1 that there is a positive constant C indepen-
dent of x, such that

α ≤ 1(Mxψ < 1) + (C(Mxψ)−1/ψ ∧ 1)1(Mxψ ≥ 1)

Hence, there is a positive constant c = c(C), such that

(1− α)m−1 ≥ c1(Mxψ ≥ 1/c).(108)

Therefore

P(deg(o) ≤M, |S1| = 1) = (ψ + 1)

∫ 1

0

P(deg(o) ≤M, |S1| = 1 | xo = x)xψdx

&

∫ 1

0

α(1− α)m−1(M ∧ x−ψ)axaψxψdx

&

∫ 1

(cM)−1/ψ

(Mxψ)−1/ψxψdx

&M−1/ψ.(109)

On the other hand,

P(deg(o) ≤M,S1 = {o∗}, deg(o∗) ≥ M ′ | xo = x) ≤
∑

k≤M−m
[mα′ + kβ ′] p(k, x).

≤ mα′ + β ′F (M,x),

with
α′ = pL,M ′(x) and β ′ = pR,M ′(x).

Similarly to the calculus for α and β, we get
∫ 1

0

α′xψdx = O((M ′)−1/ψ),

and
∫ 1

0

β ′F (M,x)xψ .
1

M ′

∫ 1

0

e−M
′xψ/2(M ∧ x−ψ)a+1x(a+1)ψdx

. (M ′)−1−1/ψ.

Hence

P(deg(o) ≤M,S1 = {o∗}, deg(o∗) ≥M ′) = O
(∫ 1

0

(mα′ + β ′F (M,x))xψdx

)

= O
(

(M ′)−1/ψ
)

.(110)

The result now follows from (109) and (110). �

Proof of Lemma 6.4. We start with the estimate for |T ∗
i,r,M |. Let us define

A = {deg(o) ≤M} and B = {S1,r,M = {o∗}, deg(o∗) =M ′}.
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Similarly to the previous lemma,

P(deg(o) ≤ M,S1,r,M = {o∗}, deg(o∗) =M ′ | xo = x)

=
∑

k≤M−m

[

mα′′(1− α)m−1(1− β)k + kβ ′′(1− α)m(1− β)k−1
]

p(k, x)(111)

& α′′(1− α)m−1(M ∧ x−ψ)axaψ,(112)

where

α′′ := P(deg((0, 1)) =M ′ | xo = x) =
1

x

∫ x

0

p(M ′, y)dy

and

β ′′ := P(deg((0, m+ 1)) =M ′ | xo = x) =
1

1− xψ
∫ 1

x

p(M ′, y)ψyψ−1dy.

Similarly to the calculus for α and β, we have

(M ′)−1−1/ψx−11(M ′xψ ≥ 1) . α′′ .xψ(M ′xψ)a−11(M ′xψ < 1)(113)

+ (M ′)−1−1/ψx−11(M ′xψ ≥ 1),

β ′′ .(M ′)−2e−M
′xψ/2.(114)

Hence, it follows from (108), (112) and (113) that

P(A ∩ B | xo = x) & (M ′)−1−1/ψx−11(Mxψ ≥ 1/c).

Therefore

P(A ∩ B) & (M ′)−1−1/ψ.(115)

We now prove that

E(|T ∗
i,r,M |1(A)1(B)) ≤ C i(logM)i−1M ′(M ′)−1−1/ψ.

For i = 1, observe that on A ∩ B, |T ∗
1,r,,M | = deg(o∗) =M ′. It follows from (111) that

P(A ∩B | xo = x) ≤ mα′′ + β ′′F (M,x).

Then using that
∫ 1

0

α′′xψdx = O((M ′)−1−1/ψ)

∫ 1

0

β ′′F (M,x)xψdx = O((M ′)−2−1/ψ),

we obtain

P(A ∩ B) = O((M ′)−1−1/ψ).(116)

Therefore

E(|T ∗
1,r,M |1(A)1(B)) = O(M ′(M ′)−1−1/ψ).

For i ≥ 2, we notice that

|T ∗
i,r,M | = |T o

∗

i,r,M |+
∑

(0,j)6=o∗
|T (0,j)
i−2,r−2,M |,(117)
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with the convention |T0| = 1. We see that for any 1 ≤ i ≤ r

h1,i(x) = E





∑

(0,j)6=o∗
|T (0,j)
i,r,M |1(A)1(B) | xo = x





=
M−m
∑

k=0

E





∑

(0,j)6=o∗
|T (0,j)
i,r,M |1(B) | xo = x, deg(o) = m+ k



 p(k, x)

=

M−m
∑

k=0

E

(

∑

1≤j 6=s≤m+k

|T (0,j)
i,r,M |1(Bs,k) | xo = x, deg(o) = m+ k

)

p(k, x),(118)

where

Bs,k = {deg(o) = m+ k} ∩ {deg((0, s)) =M ′, deg((0, j)) ≤M ∀ j 6= s}.
If j 6= s, then

E
(

|T (0,j)
i,r,M |1(Bs,k) | x(0,1), . . . , x(0,m+k)

)

≤ E
(

|T (0,j)
i,r,M |1(deg((0, j)) ≤M) | x(0,j)

)

P(deg((0, s)) =M ′ | x(0,s))
= fi(x(0,j))p(M

′, x(0,s)).(119)

Now using this estimate and the fact that x(0,1), . . . , x(0,m) are uniformly distributed in

[0, xo] and that x(0,m+1), . . . , x(0,m+k) are distributed in [xo, 1] with density ψyψ−1dy

1−xψo
, we

deduce from (118) and (119) that

h1,i(x) ≤
(

1

x

∫ x

0

fi(y)dy

)

α′′
M−m
∑

k=0

m2p(k, x)

(120)

+

(

1

1− xψ
∫ 1

x

ψyψ−1fi(y)dy

)

β ′′
M−m
∑

k=0

k2p(k, x)

+

[(

1

x

∫ x

0

fi(y)dy

)

β ′′ +

(

1

1− xψ
∫ 1

x

ψyψ−1fi(y)dy

)

α′′
]M−m
∑

k=0

(mk)p(k, x).

Then using these estimates, (94), (95), (96), we obtain

h1,i(x) . (logM)i

(

α′′F ∗(M,x)
∑

k≤M
p(k, x) + β ′′

∑

k≤M
k2p(k, x) + (β ′′F ∗(M,x) + α′′)

)

= (logM)i(H1(x) +H2(x) +H3(x)).

After some computation, we get
∫ 1

0

(H1(x) +H2(x) +H3(x))x
ψdx = O((M ′)−1−1/ψ logM)

Hence
∫ 1

0

h1,i(x)x
ψdx ≤ (C logM)i+1(M ′)−1−1/ψ.
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Note that in (117), we need an estimate for h1,i−2(x):
∫ 1

0

h1,i−2(x)x
ψdx ≤ (C logM)i−1(M ′)−1−1/ψ.(121)

If j = s, then

E
(

|T (0,j)
i,r,M |1(Bj,k) | x(0,1), . . . , x(0,m+k)

)

≤ E
(

|T (0,j)
i,r,M |1(deg((v, j)) =M ′) | x(0,j)

)

≤
(

m

x(0,j)

∫ x(0,j)

0

fi−1(y)dy +
M ′ −m
1− xψ(0,j)

∫ 1

x(0,j)

ψxψ−1fi−1(y)dy

)

p(M ′, x(0,j))

≤ C i(logM)i−1M ′p(M ′, x(0,j)).

Hence

h2,i(x) = E
(

|T o∗i,r,M | | xo = x
)

=
M−m
∑

k=0

E

(

m+k
∑

j=1

|T (0,j)
i,r,M |1(Bj,k) | xo = x, deg(o) = m+ k

)

p(k, x)

≤ C i(logM)i−1M ′
M−m
∑

k=0

(mα′′ + kβ ′′) p(k, x).

Therefore using the same estimate as (116), we get
∫ 1

0

h2,i(x)x
ψdx ≤ C i(logM)i−1M ′(M ′)−1−1/ψ.(122)

From (115), (117), (121) and (122) we deduce that

EQ2(|T ∗
i,r,M |) ≤ C i(logM)i−1M ′.

We estimate |S∗
i,r,M | by the same way. First, as for h1,i(x), we have

l1,i(x) = E





∑

(0,j)6=o∗
|S(0,j)
i,r,M |1(A)1(B) | xo = x





≤
(

1

x

∫ x

0

gi(y)dy

)

α′′
M−m
∑

k=0

m2p(k, x)

+

(

1

1− xψ
∫ 1

x

ψyψ−1gi(y)dy

)

β ′′
M−m
∑

k=0

k2p(k, x)

+

[(

1

x

∫ x

0

gi(y)dy

)

β ′′ +

(

1

1− xψ
∫ 1

x

ψyψ−1gi(y)dy

)

α′′
]M−m
∑

k=0

(mk)p(k, x).

Then using (105), (106), (107) and some computations, we get
∫ 1

0

l1,i−2(x)x
ψdx = O((logM)i−1M ′M−1(M ′)−1−1/ψ).
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We now consider

l2,i(x) = E
(

|So∗i,r,M | | xo = x
)

=
M−m
∑

k=0

E

(

m+k
∑

j=1

|S(0,j)
i,r,M |1(Bj,k) | xo = x, deg(o) = m+ k

)

p(k, x).

On the other hand,

E
(

|S(0,j)
i,r,M |1(Bj,k) | x(0,1), . . . , x(0,m+k)

)

≤
(

m

x(0,j)

∫ x(0,j)

0

gi−1(y)dy +
M ′ −m
1− xψ(0,j)

∫ 1

x(0,j)

gi−1(y)ψy
ψ−1dy

)

p(M ′, x(0,j))

= O((logM)i−1M ′M−1p(M ′, x(0,j))).

Here, we used (106) to estimate the second term. Therefore
∫ 1

0

l2,i(x)x
ψdx = O((logM)i−1M ′M−1(M ′)−1−1/ψ).

We then conclude that

E(|S∗
i,r,M |1(A ∩ B)) =

∫ 1

0

(l1,i−2(x) + l2,i(x))x
ψdx

= O((logM)i−1M ′M−1(M ′)−1−1/ψ).

Therefore, by (115)

EQ2(|S∗
i,r,M |) = O((logM)i−1M ′M−1).

To estimate EQ1(|Ti,r,M |), we use (109) and the same argument as for EQ2(|T ∗
i,r,M |). More

precisely, we replace B by B̃ = {|S1,r,M | = 1}, replace Bs,k by

B̃s,k = {deg(o) = m+ k} ∩ {deg((0, s)) > M, deg((0, j)) ≤M ∀ j 6= s},
replace α′′ and β ′′ by α and β respectively. We now have

E(|Ti,r,M |1(A)1(B̃) | xo = x)

= E





deg(o)
∑

j=1

|T (0,j)
i−1,r−1,M |1(A)1(B̃)1(deg((0, j)) ≤M) | xo = x





=

M−m
∑

k=0

E

(

∑

1≤j 6=s≤m+k

|T (0,j)
i−1,r−1,M |1(B̃s,k) | xo = x, deg(o) = m+ k

)

p(k, x)

:= h̃i−1(x).

We estimate
∫ 1

0
h̃i−1(x)x

ψdx by the same way as for h1,i−2(x), and get the desired result.
�

Acknowledgments. I am grateful to my advisor Bruno Schapira for his help and many
suggestions during the preparation of this work. I wish to thank also Daniel Valesin for
showing me a gap in a previous version, and the anonymous referee for carefully reading
our manuscript and many valuable comments.



CONTACT PROCESS ON THE PREFERENTIAL ATTACHMENT GRAPH 45

References

[BBCS1] N. Berger, C. Borgs, J.T. Chayes, A. Saberi. On the spread of viruses on the internet. Proceed-
ings of the sixteenth annual ACM-SIAM symposium on discrete algorithms, 301–310, (2005).

[BBCS2] N. Berger, C. Borgs, J.T. Chayes, A. Saberi. Asymptotic behavior and distributional limits of

preferential attachment graphs, Ann. Probab. 42, 1–40 (2014).
[BH] A. Bovier, F. Hollander. Metastability, a potential-theoretic approach. Grundlehren de Mathematis-

chen Wissenschaften 351, Springer (2015).
[BMR] S. Bubeck, E. Mossel, M.Z. Rácz. On the influence of the seed graph in the preferential attachment

model, arXiv:1401.4849v3.
[CD] S. Chatterjee, R. Durrett. Contact process on random graphs with degree power law distribution has

critical value zero, Ann. Probab. 37, 2332–2356 (2009).
[CGOV] M. Cassandro, A. Galves, E. Oliveri, M. Vares. Metastable behaviour of stochastic dynamics: a

pathwise approach, J. Stat. Phys. 35, 603–634 (1984).
[CL] F. Chung, L. Lu. Concentration inequalities and martingale inequalities: a survey, Internet Math.

3, 79–127 (2006).
[CMMV] M. Cranston, T. Mountford, J.-C. Mourrat, D. Valesin. The contact process on finite homoge-

neous trees revisited, ALEA Lat. Am. J. Probab. Math. Stat. 11, 385–408, (2014).
[C] V. H. Can. Super-exponential extinction time of the contact process on random geometric graphs,

arXiv:1506.02373.
[CS] V.H. Can, B. Schapira. Metastability for the contact process on the configuration model with infinite

mean degree, Electron. J. Probab. 20 (2015), no. 26, 1–22.
[D] R. Durrett. Random Graph Dyamics. Cambridge Univ. Press, Cambridge (2007).
[DJ] R. Durrett, P. Jung. Two phase transitions for the contact process on small worlds, Stoch. Proc.

Appl. 117, 1910–1927 (2007).
[DV] D. J. Daley, D. Verre-Jones. An introduction to the theory of point processes, Vol I. Probability and

Applications, Springer (2003).
[DVH] S. Dommers, R. Van der Hofstad, G. Hooghiemstra. Diameters in preferential attachment models,

J. Stat. Phys. 139, 72–107 (2010).
[H] R. Van der Hofstad. Random graphs and complex networks. Vol II. Available at

http://www.win.tue.nl/ rhofstad.
[L] T.M. Liggett. Stochastic Interacting Systems: Contact, Voter and Exclusion Processes. Grundlehren

de Mathematischen Wissenschaften 324, Springer (1999).
[LS] S. Laley, W. Su. Contact processes on random regular graphs, arXiv:1502.07421.
[M] T. Mountford. A metastable result for the finite multidimensional contact process, Canad. Math.

Bull. 36 (2), 216–226 (1993).
[MMVY] T. Mountford, J.-C. Mourrat, D. Valesin, Q. Yao. Exponential extinction time of the contact

process on finite graphs, Stochastic Process. Appl. 126 (7), 1974–2013 (2016).
[MVY] T. Mountford, D. Valesin, Q. Yao. Metastable densities for contact processes on random graphs,

Electron. J. Probab. 18 (2013), no. 103, 1–36.
[MV] J.-C. Mourrat, D. Valesin. Phase transition of the contact process on random regular graphs, Elec-

tron. J. Probab. 21 (2016), no. 31, 1–17.
[OV] E. Olivieri, M. E. Vares. Large Deviations and Metastability. Cambridge University Press (2005).
[P] R. Pemantle. The contact process on trees, Ann. Probab. 20 (1992), no. 4, 2089–2116.

Aix Marseille Université, CNRS, Centrale Marseille, I2M, UMR 7373, 13453 Mar-

seille, France

Institute of Mathematics, Vietnam Academy of Science and Technology, 18 Hoang

Quoc Viet, 10307 Ha Noi, Viet Nam

E-mail address : cvhao89@gmail.com


