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ABSTRACT 15 

Within the context of ongoing environmental changes, the life history of diadromous fish 16 

represents a real potential for exploring and colonizing new environments due to high 17 

potential dispersal abilities. The use of dynamic approaches to assess how these species 18 

will respond to climate change is a challenging issue and mechanistic models able to 19 

incorporate biological and evolutionary processes are a promising tool. To this end we 20 

developed an individual-based model, called GR3D (Global Repositioning Dynamics for 21 

Diadromous fish Distribution), combining climatic requirements and population dynamics 22 

with an explicit dispersal process to evaluate potential evolution of their distribution area 23 

in the context of climatic change. This paper describes thoroughly the model structure and 24 

presents an exploratory test case where the repositioning of a virtual allis shad (Alosa alosa 25 

L.) population between two river catchments under a scenario of temperature increase was 26 

assessed. The global sensitivity analysis showed that landscape structure and parameters 27 

related to sea lifespan and to survival at sea were crucial to determine the success of 28 

colonization. These results were consistent with the ecology of this species. The integration 29 

of climatic factors directly into the processes and the explicit dispersal process make 30 

GR3D an original and relevant tool to assess the repositioning dynamics and persistence of 31 

diadromous fish facing climate change. 32 
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1. Introduction 38 

Organisms have two ways to survive to the current major biodiversity threats such as 39 

habitat loss and fragmentation, land use changes and more recently climate change. They 40 

may adapt to new conditions on site through phenotypic plasticity or evolution, but this 41 

might not be possible within the modification ranges or the timescales imposed by climate 42 

change (Gienapp et al., 2008; Visser, 2008). Alternatively, species may shift their range, 43 

searching for new suitable habitats. Regarding this last option, many studies have now 44 

highlighted changes in distribution and community structure in various species (Thomas 45 

and Lennon, 1999; Walther et al., 2002; Parmesan and Yohe, 2003; MacKenzie et al., 46 

2007; Nicolas et al., 2011). The success of these relocations or repositioning are contingent 47 

upon the dispersal ability of the studied species and the availability of new suitable habitats 48 

(Gaston and Blackburn, 2002; Thomas et al., 2004). 49 

 Many studies using statistical approaches and species distribution models (Guisan 50 

and Zimmermann, 2000) have analysed the geographical distribution of species or 51 

community with respect to their present environment and used the results to predict 52 

expected distribution areas under climate change scenarios. This type of analysis has been 53 

carried out for many taxa such as plants (Midgley et al., 2002; Thuiller, 2003; 54 

Zimmermann et al., 2009), reptiles and amphibians (Segurado and Araújo, 2004; Araújo et 55 

al., 2006), birds (Huntley et al., 2006), mammals (Thuiller et al., 2006), insects (Heikkinen 56 

et al., 2007; Barrows et al., 2008), fish (Buisson, 2009) or diadromous fish (Lassalle, 57 

2008). However, such projections do not consider populations' abilities to adapt to 58 

changing environmental conditions (Pulliam, 2000; Guisan and Thuiller, 2005; Jackson et 59 

al., 2009). 60 

 Despite a call by the scientific community in the last decade for developing a new 61 

generation of models (Guisan and Thuiller, 2005; Keith et al., 2008; Thuiller et al., 2008; 62 
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Franklin, 2010) combining climatic suitability, population dynamics and dispersal 63 

(Huntley et al., 2010), few studies have developed mechanistic or semi-mechanistic models 64 

to deal with population dynamics and dispersal limitations of species under climate change 65 

scenarios (but see Brooker et al., (2007), Keith et al., (2008), Engler and Guisan (2009), 66 

Midgley et al., (2010), Hein et al. (2011), Fennell et al., (2012)). Mechanistic models aim 67 

to incorporate the processes by which a species disperses through an environment (Merow 68 

et al., 2011) and, unlike correlative models, allows one to compare potential and realized 69 

distributions (Franklin, 2010; Gallien et al., 2010; Merow et al., 2011). Such models would 70 

be a key point for guiding management and conservation of species in a period of rapid 71 

environmental changes (Kinnison and Hairston, 2007) especially in fragmented and 72 

heterogeneous environments. However, the development of these sorts of models is 73 

generally limited by the lack of knowledge about population dynamics and on processes 74 

involved in dispersal of the studied species. 75 

 The dispersal process is often a critical issue in modelling species movements 76 

(Travis et al., 2012). Dispersal is generally defined as (non-returning) movements of 77 

individuals away from where they are born, from where they have once reproduced to 78 

another breeding site, or between social groups with potentially impacts on gene flow 79 

(Clobert et al., 2001; Ronce, 2007; Clobert et al., 2009). It is described as a three-stage 80 

process with departure (= emigration), transience (= transfer), and settlement as elementary 81 

components (Clobert et al., 2009; Travis et al., 2012). Travis et al., (2012) recently 82 

proposed an eco-evolutionary framework for modelling dispersal. However, it is not 83 

straightforward to transpose these definitions of dispersal and to define dispersers for 84 

diadromous fish according to the diversity and complexity of their life cycles.  85 

 Diadromous fishes rely on freshwater, estuarine and marine ecosystems to complete 86 

their life cycles (McDowall, 2009; Quinn et al., 2009). Anadromous species achieve most 87 
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of their growth at sea and migrate to freshwater to reproduce either in their natal river 88 

(natal homing behavior) or in other rivers (straying) while catadromous species spend most 89 

of their life in freshwaters and migrate to sea in order to reproduce (McDowall, 1988). 90 

Diadromous life history strategies have evolved in phylogenetically diverse fish groups 91 

(McDowall, 1997). This original life history characteristic has enabled them to adjust their 92 

distribution to cope with environmental changes (McDowall, 1997; McDowall, 2009) and 93 

could allow them to do the same in future changing environments (Lassalle et al., 2009). 94 

Since diadromous species have a real potential to explore and colonize new environments 95 

with a part of their life cycle at sea, a diadromous strategy is an adaptive asset compared to 96 

a holobiotic life history strategy in a context of global change. In this paper, we will only 97 

focus on anadromous species, for which we assume that dispersers are strayed spawners 98 

(i.e. strayers) not making natal homing behavior (i.e. not returning to their natal stream for 99 

spawning). However, processes involved in the determination of strayers as well as the 100 

behavior of the strayers remain unknown for diadromous species. As dispersal is closely 101 

linked to individual behavior, individual-based-models (IBMs) appear to be a promising 102 

approach to address the question of dispersal and repositioning dynamics of diadromous 103 

fishes. IBMs also offers a flexible and easy way to simulate different behaviors. 104 

 Despite their complexity often seen to hamper interpretation of their results, the use 105 

of IBMs in ecological modelling has increased exponentially (Grimm, 1999) from the 106 

seminal works of Huston et al. (1988). Moreover, recent progresses have been made to 107 

allow complex IBMs to be better communicated and described (Grimm et al., 2006; 108 

Grimm et al., 2010). Many IBMs have already involved fish populations (Van Winkle et 109 

al., 1993; Van Winkle et al., 1998; Grimm, 1999; Charles et al., 2008) and more especially 110 

diadromous fish such as chinook salmon, Oncorhynchus tshawytscha (Jager et al., 1997), 111 

European eel, Anguilla anguilla (Lambert and Rochard, 2007) or more recently Sockeye 112 
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Salmon, Onchorhynchus nerka (Reed et al., 2011), brown trout, Salmo trutta (Frank and 113 

Baret, 2013) and Atlantic salmon, Salmo salar (Piou and Prévost, 2012, 2013). 114 

Furthermore, IBMs are powerful tools to represent biological and habitat mechanisms, 115 

individual behavior and variability (Grimm, 1999). They also allow analysing potential 116 

climate change effects on natural systems (Reed et al., 2011; Piou and Prévost, 2013) as 117 

environmental effects can be directly incorporated in processes. Although complexity is an 118 

essential feature of IBMs and can result in unforeseen emergent properties, they may 119 

appear over-parameterized if compared to much more parsimonious statistical models. 120 

Furthermore, a number of population dynamics parameters are often imprecise and poorly 121 

estimated. Hence, it is important to carry out sensitivity analyses (Saltelli, 2004) of this 122 

kind of model. Global sensitivity analysis methods are now well known to advance the 123 

comprehension and exploration of system modelled (Faivre et al., 2013). In such an 124 

analysis, parameters are varied simultaneously allowing identification of interactions by 125 

statistical analysis of the simulation results. These methods have already been used in 126 

industry (Kleijnen, 1998), ecology (Cariboni et al., 2007) or fishery science (Drouineau et 127 

al., 2006; Drouineau et al., 2008; Lehuta et al., 2010). 128 

 For diadromous species, developing a model combining climatic requirements and 129 

population dynamics with explicit dispersal processes is a real challenge and will be a 130 

major step forward for guiding management policies. If successful, it could help to 131 

determine in which catchment and for which species restoration and restocking actions will 132 

be relevant. Moreover, the development of this kind of model for diadromous fish does not 133 

appear to be limited by the knowledge of their ecology and their population dynamics 134 

which are now well documented (at least for the continental phase) for several species such 135 

as Atlantic salmon Salmo salar (Peterson et al., 1977; Bagliniere and Maisse, 1985; 136 

Fleming, 1996; Friedland, 1998; Hutchings and Jones, 1998; Forseth et al., 2001; Jonsson 137 
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and Jonsson, 2009; Buoro et al., 2010), European eel Anguilla anguilla (Gatto and Rossi, 138 

1979; Vollestad and Jonsson, 1988; De Leo and Gatto, 1995; Dekker, 2000; Lambert, 139 

2005; Lambert and Rochard, 2007; Bevacqua et al., 2011), European sturgeon Acipenser 140 

sturio (Rochard and Lambert, 2011) or allis shad Alosa alosa (Lambert et al., 2001; Acolas 141 

et al., 2006; Lassalle et al., 2008b; Mota and Antunes, 2011; Rougier et al., 2012). 142 

 In this context, we developed an exploratory simulation model (GR3D: Global 143 

Repositioning Dynamics for Diadromous fish Distribution) integrating the whole 144 

population dynamics of diadromous fish (reproduction, growth, survival, maturation, 145 

downstream and upstream migrations). The GR3D model is individual-based, stochastic 146 

and spatially explicit. To test climate change effect on population dynamics, we introduced 147 

temperature variations and their effects on demographic traits, such as growth, 148 

reproduction and survival. We introduced individual variability through growth, survival, 149 

reproduction and migration.  150 

Models of high complexity require a substantial exploration phase to avoid 151 

misinterpretation of simulation results (Grimm and Railsback, 2005). The more complex a 152 

model is, the more its calibration, and the extrapolation and analysis of its results are 153 

difficult (Levins, 1966; Caswell and John, 1992). From this consideration, testing a 154 

complex model with simple exploratory cases is a reasonable and rational approach (Faivre 155 

et al., 2013). 156 

 Here, we present the GR3D model and show how this generic model may be 157 

relevant to study the repositioning dynamics and persistence of diadromous fish in a 158 

context of climate change. To illustrate the potential of the model, we applied GR3D in a 159 

virtual exploratory study where we assess the repositioning of a virtual anadromous allis 160 

shad population between two river catchments under a scenario of temperature increase. 161 
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We run the associated sensitivity analysis in order to identify parameters influencing model 162 

outputs. 163 

 164 

2. Materials and methods 165 

2.1. Model description 166 

The GR3D model has been developed in Java using the "SimAquaLife" framework 167 

(Dumoulin, 2007) which is an individual-based, process-oriented toolkit for aquatic life 168 

simulation. 169 

 The description of the GR3D model follows the ODD protocol (Overview, Design 170 

concepts, Details) for describing individual- and agent-based models (Grimm and 171 

Railsback, 2005; Grimm et al., 2006; Grimm et al., 2010). 172 

2.1.1. Purpose 173 

The general purpose of GR3D is to evaluate diadromous fish local persistence 174 

(defined as the probability for a species to maintain a population in a specific river 175 

catchment) (Jager et al., 2013), global persistence (defined as the probability for a species 176 

to maintain a population in at least one catchment) and concomitant potential evolution of 177 

their distribution area, in the context of climatic change at a European scale combining 178 

population dynamics, repositioning behaviors through dispersal processes and climatic 179 

requirements. 180 

 181 

2.1.2. State variables and scales 182 

Temporal scales: GR3D simulates a seasonal time step with distinct processes and 183 

scheduling in each of these steps. 184 

Entities and spatial scales: Three types of entities compose the GR3D model: one for 185 

fish agents and two for environment elements. GR3D is spatially explicit with a continental 186 
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compartment and a sea compartment. The continental compartment is split up in "River 187 

Basins". Each "River Basin" (RB) is characterized by a name, a position (latitude and 188 

longitude at the mouth), a catchment area (km
2
) and seasonal mean water temperatures at 189 

the mouth (Table 1). 190 

 According to the studied species, the sea compartment is either split into "Sea 191 

Basins" (SB) associated with one of the river basins, or composed of a unique “sea basin” 192 

connected to all the river basins. Each SB is characterized by a name and seasonal mean 193 

water temperatures (Table 1). 194 

 Temperatures in compartments are updated at each time step according to a virtual 195 

scenario of water temperature increase or according to a real projection of climate change. 196 

Actually, GR3D is designed to work either with virtual environments or real environments 197 

such as the Atlantic coast. 198 

State variables of diadromous fish individuals: Each diadromous fish is described 199 

by an ID, a gender, a maturation stage (mature or immature), an age, a body length, a 200 

location (a river basin or a sea basin), a birth place and a number of reproductions. 201 

 202 

2.1.3. Process overview and scheduling 203 

GR3D is developed to cover the entire life cycle of any diadromous fish species 204 

trying to be the more generic as possible and taking into account the differences between 205 

anadromous and catadromous species. Hence, we structured the model in six submodels 206 

consistent with the life cycle events and processes of any diadromous species 207 

(reproduction, growth, survival, downstream migration, maturation, and upstream 208 

migration including dispersal). As the present test case deals with an anadromous species 209 

(see section 2.2.), we only presented the computational order of life cycle events and 210 
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processes in a conceptual diagram for an anadromous species with allis shad as an 211 

illustrative case (Fig. 1). 212 

 213 

2.1.4. Design concepts 214 

Basic principles: GR3D is a population dynamic model that explicitly includes 215 

environmental effects in processes and that incorporates an original dispersal process. 216 

During the upstream migration of anadromous fish, we distinguished two kinds of 217 

individuals: individuals having a homing behavior (i.e. returning to their natal river to 218 

spawn) or having a straying behavior (i.e. not returning to their natal stream). In the 219 

absence of information on marine dispersion behavior, we assumed that the choice of a 220 

river basin by an individual is the result of three components: 1) a propensity to adopt a 221 

homing behavior (characteristic of the species), 2) the accessibility of the river basin, and 222 

3) its attractiveness. 223 

Interactions: Indirect interactions are included in the reproduction process (see 224 

Section 2.1.7.1) through a demographic Allee effect (Allee, 1931; Stephens et al., 1999) 225 

and through a density-dependant survival of eggs and larvae. 226 

Stochasticity: Demographic stochasticity was incorporated for growth, survival, 227 

reproduction and dispersal. 228 

Observation: Graphical outputs from "SimAquaLife" interface directly show 229 

population-level variables (declared as observable in GR3D) as well as spatial distribution 230 

of the individuals. As example, the number of spawners (distinguishing those exhibiting 231 

natal homing behavior from those exhibiting straying) and juveniles at each reproduction 232 

for each river basin can be recorded as well as the year of the first non-null reproduction 233 

and the last year without reproduction. 234 

 235 
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2.1.5. Initialization 236 

The environment, the start and the number of year of simulations, the abundance, the age 237 

and the initial distribution of the individuals are initialised according the application case. 238 

Population parameters are initialised according to the studied species (see section 2.2.). 239 

 240 

2.1.6. Input 241 

In the current version of GR3D, environmental conditions changed over time via 242 

temperature, which changed over space and season. The model is designed to integrate any 243 

kind of seasonal temperature temporal series. In a same way, to define the environment, an 244 

input file containing river basins characteristics (cf. § 2.1.2) can be used. 245 

 246 

2.1.7. Submodels 247 

GR3D contains 42 parameters, which are listed in Table 2 according to the submodel they 248 

are involved in. According to the studied species, their values are obtained either from 249 

observations (literature) or are reasonable guessed (i.e. we have only an idea of what would 250 

be a realistic value of the parameter) or are calibrated. GR3D is based on six submodels 251 

representing fundamental biological processes. 252 

 253 

2.1.7.1. Reproduction: 254 

Reproduction occurs yearly during the reproduction season (defined as a population 255 

parameter, Table 2) in each river basin when spawners are present. We assumed that 256 

numbers of recruits Rj produced by Sj spawners in a spawning basin j follows a Beverton & 257 

Holt stock-recruitment relationship of parameters j  and j  (BH S-R) (Beverton and 258 

Holt, 1957). However we modified the traditional BH S-R: 259 
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 We included an Allee effect (Eq. (1)) to take into account difficulties to settle a 260 

population with limited numbers of fish in new habitats. Depensation strength is 261 

modeled as a function of river basin watershed area through two species specific 262 

parameters:   a parameter linking the basin watershed area WAj to its carrying 263 

capacity (the higher   is, the higher the stock level to reach 95% of the asymptotic 264 

recruitment) and   which controls the Allee effect strength (a high   corresponds to a 265 

strong depensation, i.e. the stock level to produce half of the asymptotic recruitment is 266 

close to the stock level producing 95% of the asymptotic recruitment). 267 
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 269 

 By comparison to the traditional BH S-R, we considered that the non-density 270 

dependent mortality from egg to recruit (duration 
rect , Table 2) is a function of 271 

temperature, consequently parameters j  and j  depend on temperature (Eq. (2) and 272 

Eq. (3)). Egg survival is optimal ( optRepsurv ,Table 2) at Topt and there is no recruitment 273 

when temperature is out of the range Tmin - Tmax (Eq. (4), Table 2). The density 274 

dependent mortality of the BH S-R is assumed to be dependent on the basin surface 275 

(through a population parameter  , Table 2) to take into account resource limitations 276 

in small basins (Eq. (5)). 277 
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The parameter a is linked to the fecundity of the species (Table 2), 280 
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and 282 

 
j

j

c
Surf


 . (5) 283 

 284 

We introduce stochasticity in this process by drawing the value of the effective recruitment 285 

,Eff jR  in a lognormal distribution of standard deviation rep  around the stock-recruitment 286 

relationship (Table 2). 287 

After the reproduction, the population parameter spSp  (Table 2) defined the survival 288 

probability of the spawners to take into account the iteroparity of the studied species. 289 

 290 

2.1.7.2. Downstream migration. 291 

This process occurs at different life stage and season according to the studied species. The 292 

age and the season at which this migration occurs are defined as population parameters 293 

(Table 2). In this process, individuals migrate from their river location to a determined sea 294 

compartment according to the studied species. 295 

 296 

2.1.7.3. Growth. 297 

The population parameter 
iniL  determines the initial length of individuals at age 

rect  (i.e. 298 

after reproduction).We then use a von Bertalanffy growth function (von Bertalanffy, 1938) 299 

derived from Fabens (1965) for modelling of the growth process. Each season, each 300 

individual length is updated according to its previous length. In order to introduce 301 

individual variability and to avoid negative growth, we use a lognormal distribution to 302 

determine the growth increment 303 

  ,L LL LogN     , (6) 304 
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with 
L

 the mean and 
L

 the standard deviation of the variable’s natural logarithm 305 

(Table 2). So, 
L

 is expressed 306 

     
2

log 1 exp
2

t L
L tL TL  

   
      , (7) 307 

where 
tTL  is the total length of a fish at time unit t , L

 is a population parameter 308 

corresponding to the asymptotic length of fish (Table 2) and   is the growth coefficient. 309 

Since temperature is known to affect growth rate (Brown et al., 2004), Rosso’s function 310 

(Rosso et al., 1995) is used to correlate the growth coefficient to temperature and introduce 311 

seasonal variability (Mallet et al., 1999; Dion and Hughes, 2004; Kielbassa et al., 2010; 312 

Bal et al., 2011). According to this function, the growth coefficient   and temperature are 313 

linked by a bell-shaped relationship. In fact,   is equal to 0 if the temperature is lower or 314 

equal to the minimal growth temperature 
minGrowT ; it increases with temperature up to an 315 

optimum optGrow  at the optimal growth temperature optGrowT . If temperature continues to 316 

increase, the growth coefficient   rapidly decreases down to 0 at the maximal growth 317 

temperature 
maxGrowT . The relationship is expressed  318 

 319 

 
  

    
2

minGrow maxGrow

optGrow

minGrow maxGrow optGrow

T T T T

T T T T T T
 

 


   
. (8) 320 

 321 

Parameters 
minGrowT , optGrowT , 

maxGrowT  and optGrow  are population parameters (Table 2). 322 

 323 

2.1.7.4. Survival. 324 

At each time step, the survival of each individual is assessed depending on its location and 325 

stage.  326 
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For individuals at sea, the seasonal survival probability, 
seaSp , is calculated using the 327 

annual mortality coefficient at sea, 
seaZ , defined as a population parameter (Table 2) and a 328 

survival equation 329 

 exp sea seasonZ t

seaSp
 

 , (9) 330 

where 
seasont  is the duration of a season (i.e. 0.25 year

-1
). We assumed that 

seaZ  331 

incorporates all sources of individual mortality at sea. 332 

For individuals in river, the seasonal survival probability, 
rivSp , is calculated using two 333 

annual mortality coefficients 
rivM  (natural mortality coefficient) and 

rivH  (human-induced 334 

mortality coefficient) defined as population parameters (Table 2) and a survival equation 335 

  
exp riv riv seasonM H t

rivSp
  

 . (10) 336 

The natural mortality coefficient 
rivM  is assumed to be dependent on the river temperature 337 

jT  and was computed as follows 338 

 

  

    
2

ln
j minSurvRiv j maxSurvRiv

optRiv

j minSurvRiv j maxSurvRiv j optsurvRiv

riv

season

T T T T
surv

T T T T T T
M

t

  
 
    
 


, (11) 339 

where 
minSurvRivT , optSurvRivT , 

maxSurvRivT  and optRivsurv  were population parameters (Table 2). 340 

We assumed that the other mortality coefficient 
rivH  incorporates the other sources of 341 

mortality in river (fishery, pollution, dams…). 342 

 343 

2.1.7.5. Maturation. 344 

In the current version of GR3D, individual maturation is not explicit and did not involve 345 

energy allocation processes. An individual becomes mature as soon as its length reached 346 

the length at first maturity 
matL  (defined as a population parameter, Table 2) and its 347 

maturation stage changed from immature to mature. 348 

 349 
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2.1.7.6. Upstream migration. 350 

This submodel is essential in the model since we assumed that dispersal is linked to this 351 

migration. This process occurs at different life stages and seasons depending on the studied 352 

species. The age and the season at which the downstream migration occurs are defined as 353 

population parameters (Table 2). It has been designed as a three-stage process with 354 

emigration, movement and settlement phases. 355 

1. The emigration phase: in this phase, individuals have a probability to adopt a homing (356 

homp ) or a straying behavior (1 homp ) which is assumed to be a characteristic of the 357 

species. homp  is defined as a population parameter (Table 2).  358 

 359 

2. The movement phase: Individuals that do not become strayers simply migrate in their 360 

natal river (homing behavior). For strayers, the probability to migrate in each river basin is 361 

assumed to be a function of its accessibility and its attractiveness. We assumed that 362 

accessibility depends on the dispersal distance 
ij birthPlaceD 
between basin j and the birth 363 

place of an individual i, and on the total length TLi of the individual i. The basin 364 

attractiveness is assumed to be a function of its watershed area WAj as a proxy of the river 365 

flow. Then, the “weight” of each basin relative to an individual i is computed using a logit 366 

function 367 

 

 logit ij birthPlace j birthPlacej

i const dist

j birthPlace

ji
TL WA

TL WA

D D
w

WA WATL TL

 


 
 

 



 
   

 
 

  
      

   

, (12) 368 

where 
const , 

dist , 
TL  and WA  are four population parameters (Table 2). In order to have 369 

comparable parameters, we used standard cores values of each factor influencing the 370 

Author-produced version of the article published in Ecological Modelling, 2014, 283, 31-44 
The original publication is available at http://www.journals.elsevier.com/ecological-modelling 

http://dx.doi.org/10.1016/j.ecolmodel.2014.03.019 



 17 

function and we defined 
j birthPlaceD 

, j birthPlace  , TL , 
TL , WA  and WA  as population 371 

parameters (Table 2). 372 

We assumed that individuals may also not find any basin so we introduce a virtual “death 373 

basin” with a fixed weight deathBasinw . Then j

iw  are standardized so that their sum equals 1, 374 

providing probabilities to choose each river basin (including death basin). The choice is 375 

then modelled by a simple multinomial process. 376 

3. The settlement phase: Individuals enter in the selected destination, survive if conditions 377 

are suitable and reproduce if they find mating requirements. 378 

 379 

2.2. The test case 380 

2.2.1. Description of the studies species 381 

Allis shad (Alosa alosa L.) is an anadromous clupeid spawning in the higher middle 382 

watercourse of rivers. Fish migrate to sea during their first year, where they grow and 383 

return to freshwater to spawn at between 3 and 6 years (Bagliniere and Elie, 2000; 384 

Baglinière et al., 2003). Currently, populations of allis shad exist along the northeastern 385 

Atlantic coasts in some large rivers of France (Loire, Gironde-Garonne-Dordogne, and 386 

Adour) and Portugal (Minho and Lima) (Lassalle et al., 2008b) and despite some 387 

protective measures, this species appears to have been in serious decline for a number of 388 

years (Limburg and Waldman, 2009; Rougier et al., 2012). Biology and ecology of allis 389 

shad have therefore received a great deal of attention in the last 30 years (Mennesson-390 

Boisneau and Boisneau, 1990; Prouzet et al., 1994; Bagliniere and Elie, 2000; Acolas et 391 

al., 2004; Acolas et al., 2006) and several studies also dealt with its population dynamics 392 

(Martin Vandembulcke, 1999; Lambert et al., 2001; Rougier et al., 2012). 393 

 394 
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2.2.2. Environment, time and initialization 395 

An environment with two rivers basins (RB1 and RB2) and two sea basins (SB1 and SB2) 396 

highly associated to the river basins (i.e. RB1 with SB1 and RB2 with SB2) was used for 397 

the test case. Our experiment mimics a situation where temperature increase opened the 398 

opportunity for a stable allis shad population in RB1 to expand into a new suitable river 399 

RB2. Two environmental parameters were defined to determine the initial configuration of 400 

the environment: WA_RB2 corresponding to the watershed area of the uninhabited river 401 

basin RB2 and intDist describing the distance between RB1 and RB2. 402 

 Each simulation starts in summer and lasts 200 years (i.e. 800 time steps). During 403 

the first fifty years of simulation, a virtual population of allis shad was created in RB1 by 404 

introducing there 500000 juveniles at the first time step. From the year 50 to the year 150, 405 

we introduced in the two basins a linear water temperature increase of 3°C in 100 years 406 

(i.e. water temperature increase by 0.0075°C at each time step) and RB2 becomes suitable 407 

for allis shad reproduction. At the end of the temperature increase, only RB2 is suitable for 408 

allis shad for the last 50 years of simulations. Temperatures in RB1 and RB2 were 409 

initialized with the same values except for the spring temperature as we used it to control 410 

the suitability of each river during the simulation. In order to work with realistic values, we 411 

used daily estimates of Gironde estuarine water temperature (°C) provided by EDF 412 

(Electricité De France) between 1991 and 2009 to initialize the winter, summer and 413 

autumn temperatures in RB1 and RB2 as the Gironde basin is located at the center of the 414 

allis shad distribution area (Baglinière, 2000; Lassalle, 2008). Spring temperature of RB1 415 

was set to 3°C below 
maxSurvRivT  and set to minRepT  in RB2. The watershed area of RB1 was 416 

set to 40000 km
2
. The environmental parameters WA_RB2 and intDist were included in the 417 

global sensitivity analysis to assess the influence of the environment configuration on 418 

model outputs (see section 2.2.4.). 419 
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 The seasonal mean water temperatures of SB1 and SB2 were calculated as the 420 

mean between 12°C and the seasonal mean water temperatures of RB1 and RB2, 421 

respectively. 422 

 Initial length of each individual is set at 2 centimetres. The individual state 423 

variables were initialized as follows for each new individual: gender was assigned 424 

according to a sex ratio of 1:1; stage was set to “immature”, the number of reproduction 425 

was set to 0; and the birth place was set according to their birth location. 426 

 427 

2.2.3. Model parameterisation 428 

For this test case with allis shad, 20 population dynamics parameters were obtained from 429 

literature, 18 were parameterized as reasonable guesses (based upon expertise), and 4 were 430 

estimated using off-line calibration (Table 2). 431 

 For the off-line calibration, we used a previous work (Rougier et al., 2012) about 432 

the population dynamics of allis shad in the Gironde basin for the parameterization of the 433 

reproduction process (i.e. parameter  ,  , survoptRep and   of the BH S-R relationship, 434 

Table 2) and used their estimates of 
Gironde , 

Gironde  and  . We assumed that the 435 

recruitment was a number of juveniles in estuary and set 
rect  to 0.33 year (4 months) as it 436 

corresponds to the average duration of the juvenile downstream migration towards the sea 437 

(Lochet et al., 2008). 438 

 We assumed dispersal of allis shad was only dependant of the distance between the 439 

suitable habitats. Hence, 
TL  and WA  were set to 0. We set j birthPlace   to 978 km (using 440 

the EuroDiad 2.0 database of European river basins from Lassalle (2008)). We set 441 

j birthPlaceD 
 to 300 km as we assumed that this value was close to the maximal distance of 442 

dispersal for allis shad . Then we assumed a weight of 0.95 and 0.05 for a basin located at a 443 
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distance of 10 km and 300 km respectively. In consequence, 
const  and 

dist  were set to 444 

2.9  and 19.7 respectively (Table 2). 445 

 446 

2.2.4. Sensitivity analysis 447 

For these simulations, we mainly focused on the success of the colonization of RB2. 448 

Hence, we recorded the following 2 output variables: (i) fs was a qualitative variable 449 

describing the final state of RB2 using the value of the coefficient of variation (CV) of the 450 

recruitment in RB2 during the last ten years of simulations, i.e. that it took either the value 451 

0 if the CV was null , or the value 1 if the CV was higher than a threshold arbitrarily set to 452 

5%, or the value 2 if the CV was positive and lower than the threshold; (ii) mlr was the 453 

mean of the recruitment in RB2 during the last ten years of simulations.  454 

 We defined two variables using the fs output variable. fsP indicated the 455 

presence/absence of fish in RB2 (i.e. fs = 0 for absence and fs > 0 for presence). 456 

Considering only positive values of fs, we defined fsS as a variable describing a kind of 457 

stability of the RB2 population (i.e. relatively unstable for fs = 1 because it means that 458 

there is high variation in the recruitment values in the ten last year of simulation, and stable 459 

for fs = 2 because it means that recruitment values are stable in the ten last years of 460 

simulation). Hence, we used these two variables to analyze the influence of parameters on 461 

both the presence/absence of fish in RB2 and on the stability of the population in RB2. mlr 462 

was a metric indicating the abundance of fish in RB2. As the null values described absence 463 

of fish in RB2, we only used positive values of mlr to analyze the influence of parameters 464 

on abundance in RB2. 465 

 In order to screen non-influential and influential parameters on GR3D model 466 

outputs, we conducted a global sensitivity analyses by varying both the model and the 467 

environmental parameters. We identified 20 uncertain population dynamics parameters of 468 
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the GR3D model to incorporate in the sensitivity analysis and we added 2 environmental 469 

parameters in the analysis (WA_RB2 the watershed area of RB2 and intDist the distance 470 

between RB1 and RB2; Table 3). Considering a maximal range of variation of 20% often 471 

used in sensitivity analysis (Drouineau et al., 2006; Lehuta et al., 2010), we set a low and a 472 

high value for each population parameter based on our own expertise and knowledge of 473 

allis shad population dynamics (Table 3). Concerning environmental parameters, we 474 

considered three modalities for WA_RB2 and four for intDist (Table 3). As a complete 475 

design would have taken too much time since it would involve more than 12 million 476 

simulations without replicates (2
20

 x 3 x 4 ), we first used an experimental design to 477 

identify the most influential parameters on model outputs. Regarding the number of factors 478 

and modalities, the most appropriate experimental design are D-optimal designs 479 

(Drouineau et al., 2006; Faivre et al., 2013). In this type of design, the estimations of the 480 

effects are partially correlated (i.e. that contrary to factorial design, confusion between 481 

effects estimates may exist, but an algorithm is used to find the set of experiments), 482 

maximizing the determinant of the information matrix (XX’ with X, the matrix of the 483 

different combinations of modalities for each experiment) of the design, equivalent to 484 

maximizing the efficiency of the estimation (Droesbeke et al., 1997; Drouineau et al., 485 

2006). We use the AlgDesign R package (Wheeler, 2011) to generate our D-Optimal 486 

design and, finally, the resulting experimental design consisted of 1300 simulations that we 487 

replicated 10 times. Only main effects were estimated with this design using a logistic 488 

regression model for fsP and fsS and analysis of variance (ANOVA) for mlr. For each 489 

model output response y, first order indices (SI) of a parameter xi measuring the importance 490 

of the deviance (or variance for mlr output) of the y mean conditionally on factor xi, were 491 

considered as a sensitivity index (Saltelli, 2004; Saltelli et al., 2008; Faivre et al., 2013) 492 

and were calculated as follows 493 
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 . (18) 494 

Focusing on the ten highest SI of the 3 model outputs, we selected the most influential 495 

parameters. For computation time reasons, we were not able to select more than 13 496 

parameters. Then with the most influential selected parameters, we used a complete 497 

sampling with 10 replicates in order to estimate main effects and first order interactions 498 

effects on the sensitivity of model outputs. We used the same models as those used with 499 

the experimental design to estimate SI and global sensitivity indices (TSI). TSI, that 500 

measured the mean of the y deviance (or variance for mlr output) on the uncertain 501 

parameters different from xi (Saltelli, 2004; Saltelli et al., 2008; Faivre et al., 2013), were 502 

calculated for each parameter as follows 503 

  
 

 

| ,j

i

E Dev y x j i
TSI x

Dev y

 
  . (19) 504 

TSI corresponds also to a measure of the sum of the main effect of a parameter xi and the 505 

effects of interactions of this parameter with all the other uncertain parameters (Saltelli, 506 

2004; Saltelli et al., 2008; Faivre et al., 2013). Both indices SI and TSI are between 0 and 1 507 

but TSI is higher than SI as it includes interaction effects. Estimating the impact of first 508 

order interaction was necessary to assess the combined effect of uncertainties on two 509 

parameters, which may be different from the sum of the main effects of the two 510 

parameters. We expressed SI and TSI in percentage and we assumed the more distant from 511 

0 they were, the more impact they have on model results. 512 

 Statistical analyses of model outputs were carried out using R (R Core Team, 513 

2013). To run all our simulations of the sensitivity analysis, we used OpenMOLE which is 514 

a workflow engine specifically tailored for the distributed exploration of simulation models 515 

(Reuillon et al., 2013). 516 

 517 
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3. Results 518 

We present in Fig 2 an illustrative example of model output where we followed the 519 

dynamics over time in RB1 and RB2 of the recruitment for a same set of parameters by 520 

just varying the value of the distance between RB1 and RB2. 521 

3.1. Selection of the most influential parameters 522 

Among the 13000 simulations with the D-Optimal design, we observed failure of 523 

colonization of RB2 in 48% of simulations (i.e. fs = 0). Thirteen percent of simulations led 524 

to an unstable population (i.e. fs = 1) and 39% led to stable situations in RB2 (i.e. fs = 2). 525 

The logistic regression applied to fsP and fsS explained 78% and 70% of the null deviance 526 

respectively and the analysis of variance of mlr explained 60% of the null variance (Table 527 

4). Focusing on the ten highest SI of the three model outputs, we identified 13 different 528 

parameters meaning that model outputs are relatively sensitive to the same parameter (Fig. 529 

3). It was especially true for fsP and fsS which were very sensitive to the distance between 530 

RB1 and RB2 that explained around 50% of the deviance for these two variables (Fig. 3). 531 

These two variables were also sensitive to parameters of the growth ( optGrow ), maturation 532 

(Lmat), and survival processes (Zsea) which are highly linked to the duration of the 533 

individual life at sea (Fig. 3). So, the success of colonization and the stability of the 534 

population were, not surprisingly, negatively linked to intDist, but also to parameters that 535 

increased the duration of the life at sea. mlr was mainly sensitive to the watershed area of 536 

RB2 (Fig. 3) with a positive correlation between mlr and WA_RB2 as this parameter is 537 

involved in the reproduction process to determine the production capacity of RB2. mlr was 538 

also sensitive to the other parameters of the reproduction process (SurvoptRep,  and ToptRep) 539 

and to the environmental parameter intDist. To select the most influential parameters, we 540 

kept 12 of the 13 parameters identified in the ten highest SI of the three model outputs. 541 

Actually, as the outputs were not very sensitive to TmaxSurvRiv which was a parameter used to 542 
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control the suitability of RB1 in our test case, we did not select this parameter and rather 543 

selected the parameter deathBasinw  involved in dispersal. Among the 13 selected parameters, 544 

four concerned the reproduction process, two concerned the growth, survival and upstream 545 

migration (i.e. dispersal) processes, one concerned the maturation process and the last two 546 

were environmental parameters (Table 3). Consequently, in the second step of the 547 

sensitivity analysis, the complete sampling consisted in 24576 simulations that we 548 

replicated 10 times.  549 

3.2. Analysis of interaction effects 550 

Among the 245760 simulations, we observed 49% of unsuccessful colonization, 11% of 551 

simulations led to an unstable population in RB2 and 40% led to a stable situation. 552 

Although we considered fewer parameters than with the D-Optimal design, the explained 553 

deviance and variance of the outputs analysis increased in this second step of the 554 

sensitivity analysis because we took first order interactions effects into account. We 555 

explained 90% and 85% of the deviance for fsP and fsS respectively and 79% of the 556 

variance for mlr (Table 4). The output variables were globally sensitive to the same 557 

parameters than those observed with the D-Optimal design (Fig. 4). This sensitivity 558 

analysis confirmed that the model outputs fsP and fsS were particularly sensitive to the 559 

environmental parameter intDist and to parameters increasing the duration of the life at sea 560 

( optGrow , Lmat, and Zsea) and that mlr was sensitive to the two environmental parameters and 561 

to parameters of the reproduction process. Additionally, we observed a great importance of 562 

the interaction effects for two parameters: the homing probability 
homp  and the parameter 563 

  of the reproduction process which is linked to the strengh of the Allee effect (Fig. 4). 564 

This was especially true for the fsS output where the main effect of the homing probability 565 

and the parameter   were very low (0.02% and 0.03% respectively) while the interaction 566 

effects of these factors with other parameters explained 6.3% and 4.9% of the null 567 
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deviance respectively (Fig. 4). Interaction effects of the homing probability were 568 

particularly high with the distance between RB1 and RB2 and the optimal growth 569 

coefficient optGrow . For the parameter  , interaction effects were high with the length at 570 

first maturity, the optimal growth coefficient and the annual mortality coefficient at sea. 571 

We also observed a high interaction between the weight of the death basin and the distance 572 

between RB1 and RB2 to explain the stability of the population in RB2. 573 

 To summarize, the success and the stability of the colonization of RB2 are very 574 

sensitive to the landscape structure represented through the distance between RB1 and RB2 575 

and to parameters related to the duration of the life at sea and the survival condition in this 576 

compartment. Interaction effects mainly highlighted that the role of the homing and the 577 

Allee effect should be considered with attention. Concerning the abundance of the 578 

recruitment in RB2, it is sensitive to parameters of the reproduction process and to the 579 

watershed area of RB2. 580 

 581 

4. Discussion 582 

We developed, implemented and tested an individual-based model combining population 583 

dynamics, dispersal and temperature requirements. GR3D has been designed to assess the 584 

persistence of diadromous fish and the evolution of their distribution area in a context of 585 

global warming. To our knowledge, this is the first attempt to incorporate dispersal 586 

abilities of diadromous fish within a dynamic approach at the scale of their distribution 587 

range. This article focuses on the individual-based model description and its exploration 588 

with a basic virtual test case. We deliberately chose to run our simulations in a simple, 589 

virtual environment in order to clearly disentangle the effect of the environment and the 590 

effect of uncertainties in population dynamics on model outputs using a global sensitivity 591 

analysis. We demonstrated the sensitivity of the outputs to some key population dynamics 592 
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parameters and to environmental parameters which were consistent with our knowledge of 593 

this species. We considered our results are satisfactory enough to address more precisely, 594 

in further studies, the issue of allis shad persistence in a context of global change at the real 595 

scale of its distribution range. GR3D has been designed as a flexible and generic model 596 

and can represent an integrative tool to study persistence of diadromous fish whose 597 

population dynamics is well documented. After discussing the innovations and the 598 

structure of the model, we come back to the understandings brought by our test case and its 599 

associated sensitivity analysis. 600 

 601 

4.1. Innovations and model structure 602 

The GR3D model incorporates an explicit dynamic model of diadromous fish dispersal 603 

process at large scale. This is particularly relevant in a context of climate change since 604 

Brooker et al. (2007) has demonstrated that dispersal ability of individuals interacts with 605 

the rate of climate change to determine range shifting dynamics. To model dispersal in 606 

GR3D, we took both landscape structure and individual dispersal abilities into account. We 607 

defined a generic accessibility model for available habitats (i.e. river basins) that depends 608 

on the dispersal distance and the size of the individuals (as it represents a proxy of their 609 

swimming capacities). Dispersal distance has already been recognized as an important 610 

factor in dispersal processes and is often represented through dispersal kernels in dispersal 611 

modelling approaches (Chesson and Lee, 2005; Slone, 2011; Bocedi et al., 2012). 612 

Moreover the individual size has been recognized as closely linked to dispersal potential of 613 

individuals with potential impacts on species’ range shifts through phenotype dependent 614 

dispersal processes (McCauley and Mabry, 2011). Furthermore, incorporating the size of 615 

individuals in a context of climate change is relevant as shifts in body size and its 616 

consequences in dispersal (and also in a lot of other life history parameters) have been 617 
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identified as the third major response to climate change (Gardner et al., 2011). In our 618 

dispersal process, we also modelled the attractiveness of the available habitats as a function 619 

of their watershed area as we assumed it was a proxy of the river flow. River flow has 620 

already been showed as being the vector of attractive factors for diadromous species such 621 

as larval pheromone by the sea lamprey (Petromyzon marinus) (Vrieze and Sorensen, 622 

2001) or natural stream odor by salmon (Barinaga, 1999). The function we used for 623 

dispersal modelling can then be parameterized and calibrated according to the studied 624 

species and the knowledge of its population dynamics. This process has been designed in 625 

order to integrate easily other effects that could potentially influence dispersal of a species. 626 

 Moreover, although our test case dealt with an anadromous species, the GR3D 627 

model could also be adapted to catadromous species assuming for these species that 628 

dispersers are strayed juveniles that do not use the same growing area (river catchment or 629 

estuary) than their parents and have to choose consequently another river basin for their 630 

freshwater life. However, the high heterogeneity of diadromous fish species life histories 631 

(McDowall, 1988; McDowall, 1997) imply that further specific and local adjustments 632 

might be required for different species. For instance, in its current version, GR3D is not 633 

able to deal with the diversity and complexity of Atlantic salmon life cycle. A large 634 

amount of literature is available for this species describing its population dynamics in 635 

many catchments (Mangel, 1994; Rivot et al., 2004; Reed et al., 2011). Recently, Piou and 636 

Prevost (2012) developed and parameterized IBASAM, a complex individual-based model 637 

to simulate population dynamics of Atlantic salmon in the Scorff River (Brittany, France). 638 

Despite the high complexity of this model, it does not incorporate all phenotypes of 639 

Atlantic salmon life histories and further developments would also be needed according to 640 

the Atlantic salmon population studies. The IBASAM model, described as a tool for the 641 

investigation of potential climate change effects on Atlantic salmon population structure, 642 
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did not consider individual dispersal and so potential modification of distribution range in 643 

response to environmental change. Consequently, the GR3D and IBASAM models might 644 

be complementary dynamic approaches in order to study Atlantic salmon response to 645 

climate change. 646 

 As GR3D is a complex model integrating numerous parameters, our study dealt 647 

also with the question of the degree of complexity that should be incorporated in modeling 648 

approach as the more the complexity is high in a model, the more the model is able to 649 

reproduce the observed reality but the more it is difficult to calibrate, to extrapolate and to 650 

analyze the model results (Levins, 1966; Caswell and John, 1992). Some authors consider 651 

that simple models are the best way to lead to generality in ecology (Holling, 1966) while 652 

other authors argue that this point of view may be an obstacle to the progress of ecological 653 

research and demonstrate that in some cases at least, complex models are desirable, 654 

general, and can be linked with simple models (Lassalle, 2008; Evans et al., 2013). In the 655 

GR3D model, several simplifications were made in the structure of the model. First, in its 656 

current version, GR3D does not deal with genetic and evolution issues although future 657 

works have already been envisaged in this aim. Second, we did not represent explicit 658 

movements of individuals within compartments (e.g. with a random walk process 659 

(O'Sullivan and Perry, 2009)) and we assumed homogeneous conditions within a 660 

compartment. Third, despite the expected impact of climate change on precipitation and 661 

therefore river discharge, we did not incorporate the effect of discharge on population 662 

dynamics processes as we were not able to link the effect of this parameter on life history 663 

traits, largely because models linking precipitation to river flow are complex and focus 664 

mostly at local scales (Milly et al., 2005; Qi et al., 2009; Beyene et al., 2010). Finally, 665 

GR3D is a generic mono-species model and thus does not take into account potential 666 

interactions between or among species. There are thus opportunities for further 667 
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improvements of the model. However, these improvements would undoubtedly lead to a 668 

significant increase in model complexity and consequently of the computation time. In our 669 

opinion, our mechanistic representation is realistic enough to address the issue of 670 

diadromous fish dispersal and their persistence under climate change at a large scale. 671 

Consequently, GR3D appears as a great step forward in management of diadromous fish 672 

species. It could be used as an integrative tool to assess potential impact of climate change 673 

on endangered diadromous fish species. For instance, we might be able to identify for an 674 

endangered population if demographic rescue from neighboring populations will be likely 675 

or if restocking program would be relevant and necessary (Seddon et al., 2009; Loss et al., 676 

2011). The GR3D model is able to generate predictions of change in the distribution of 677 

species but also predictions of population abundances under defined climate change 678 

scenario. 679 

 680 

4.2. Model parameterization and sensitivity 681 

GR3D was parameterized to reproduce dispersal and population dynamics of a virtual allis 682 

shad population between two river catchments in a context of temperature increase. After 683 

50 years of simulations to initialise an abundant and stable population in RB1, temperature 684 

started to increase and RB2 became gradually suitable while suitability of RB1 gradually 685 

decreases. This scenario was a way to mimic a situation where a population threatened by 686 

temperature warming had an opportunity to colonize a new suitable habitat. Consequently 687 

for analyzing model results, we mainly focused on the colonization of previously 688 

uninhabited river basin RB2. With a more complex environment, it would have been 689 

difficult to clearly disentangle the effect of the environment and the effect of uncertainties 690 

in population dynamics on model outcomes. We chose therefore this simple test case.  691 
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 GR3D is a complex model incorporating a high number of parameters. 692 

Consequently, several analyses were necessary to further understand the relative role of 693 

different parameters in the model outputs. Such analyses are essential for complex models 694 

to avoid misinterpretation of simulation results (Grimm and Railsback, 2005). From this 695 

consideration, the fast computation time of the GR3D model is a real advantage. Actually, 696 

in our simple test case, the model dealt with millions of individuals but each simulation of 697 

200 years took less than one second with a mean duration of simulations around 0.3 698 

second. We tested the model with more complex virtual environment (e.g. with 25 river 699 

basins) and the duration of simulation was always below one minute. 700 

 In the test case, we assumed that dispersal depended only on the dispersal distance. 701 

We did not incorporate an effect of the individual length as we considered only one 702 

population and as the length of allis shad spawners (i.e. potential dispersers for this 703 

species) has always been observed as relatively homogeneous within a population 704 

(Bagliniere and Elie, 2000). We also ignored the effect of the watershed area in the 705 

dispersal function, as only one river was available for dispersers. 706 

 Analyzing the success of the colonization of RB2 and the stability of the population 707 

in RB2, our sensitivity analyses showed the importance of dispersal distance and of 708 

parameters related to the duration of the life at sea ( optGrow , Lmat) and the survival condition 709 

in this compartment (Zsea). These results were consistent with our expectation and 710 

reproduced the expected dynamics of the model. We populated the environment initially in 711 

order to have an abundant and stable population in RB1. Consequently, a high number of 712 

dispersers were able to colonize the uninhabited river and were only limited by the distance 713 

they have to cross. The duration of the life at sea is highly linked to the resilience of 714 

diadromous species (i.e. the more the individuals stay at sea, the more the mortality of 715 

individuals is high and the resilience of the studied species is low) and so unsurprisingly 716 
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influences dispersal and stability of population as well as the survival conditions at sea. 717 

The analysis of interactions effects showed the importance of the homing (
homp ) and of the 718 

Allee effect (parameter  ). As the probability of homing determines the number of 719 

dispersers, it was also not surprising to obtain a high interaction effect with the dispersal 720 

distance. In a same way, we introduced an Allee effect in the reproduction dynamics in 721 

order to take into account potential difficulties to establish a population in an uninhabited 722 

river basin such as mate limitation and reproductive facilitation problems or a decrease of 723 

juvenile mortality with decreasing stock size (Berec et al., 2007). It explains consequently 724 

the high effect of the interactions of this parameter. Concerning the abundance of the RB2 725 

population, the most influential parameters were, as expected, parameters linked to the 726 

success of the reproduction. Actually, parameters survoptRep,  and ToptRep defined the 727 

survival of individuals between egg and recruit stages and the watershed area of RB2 were 728 

directly linked to its production capacity. 729 

 Furthermore, model outcomes were not very sensitive to thermal parameters. This 730 

result might be explained by a high thermal tolerance of the allis shad species and by the 731 

use of the Gironde basin temperature to initialize temperature of RB1 and RB2 (except the 732 

spring temperature that we modified to control the suitability of the two rivers). The 733 

Gironde system is located in the middle of the allis shad distribution range and, although 734 

the Gironde allis shad population is endangered, this might not be because of an 735 

environmental change (Rougier et al., 2012). 736 

 The results of this test case are a good way to illustrate the dynamics included in the 737 

GR3D model. This step was necessary before applying GR3D to a more complex case 738 

study to avoid misinterpretation on the model results. Simulation results of the GR3D 739 

model might also be compared with results of a species distribution model applied to the 740 

same species by Lassalle (2008). We could quantify the divergence in prediction of future 741 
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potential distribution between static and dynamic approaches as has already be done for 742 

two virtual plant species by Engler and Guisan (2009), who showed significant differences 743 

between the two kind of approach. Recently, Estes et al. (2013) also compared mechanistic 744 

and empirical model projections for the suitability of a crop species and concluded that 745 

both approaches might be complementary. Lassalle et al. (2008a) described the 1900 746 

observed distribution of European diadromous fish species. Using this 1900 distribution in 747 

GR3D as an input defining the initial distribution of individuals, and then, simulate 748 

population dynamics from 1900 to today might be a way to validate the GR3D model. We 749 

could thus compare projected distributions of GR3D simulation results with the current 750 

distribution of European diadromous fish species to analyze whether species have 751 

responded in the way that the GR3D model suggests (Kerr and Dobrowski, 2013). 752 
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List of tables : 

 

Table1. List of agents intervening in the GR3D individual-based model, with their state 

variables and corresponding status or measure unit. 

Agent State Variable Descritpion Status/unit of measure 

Sea basin name Name ID SB and a number 

 seasonal temperature Water temperature Numeric (°C) 

River basin name Name ID RB and a number 

 longitude Longitude at the mouth Numeric (°) 

 latitude Latitude at the mouth Numeric(°) 

 watershed area 
Watershed area of the 

river basin 
Numeric (km

2
) 

 seasonal temperature Water temperature Numeric (°C) 

Diadromous fish ID Fish identification  Numeric (-) 

 gender  Sex M, F 

 stage Stage Mature, immature 

 age Age Numeric (-) 

 body-length Body length Numeric (cm) 

 location Current location Name of the compartment 

 birth place Birth place 
Name of the birth 

compartment 

 number of reproduction Number of reproduction Numeric (-) 
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Table 2. GR3D parameters description and selected nominal values for the test case with allis 

shad. 

Parameter name Description Value Reference or remarks 

Reproduction    

repSeason Season of the reproduction Spring 
(Mennesson-Boisneau et al., 

2000b) 

rect  
Assumed age of juvenile 

produced by the reproduction 

(Year) 

0.33 

As we assumed that recruitment 

were juveniles in estuary, we used 

the study from Lochet et al. 

(2008) 


 

Parameter to relate 95, jS  and 

the surface of a spawning 

place (Ind/km²) 

2.4 
Offline calibration using the study 

from Rougier et al. (2012)  

  

Ratio between 95, jS  and 

50, jS  in each spawning place 
1.9 

Offline calibration using the study 

from Rougier et al. (2012) 

a 

Parameter of the S-R 

relationship linked to the 

fecundity of the studied 

species (Eggs/individual) 

135000 
(Cassou-Leins et al., 2000; 

LANUV, 2010) 

optRepsurv  

Optimal survival rate of an 

individual from eggs to the 

age 
rect  

1.7*10
-3

 
Offline calibration using the study 

from Rougier et al. (2012) 

, ,minRep optRep maxRepT T T  

 

Water temperature (°C) 

regulating survival of an 

individual from eggs to the 

age 
rect  

14, 20, 26 
(Cassou-Leins et al., 2000; 

Kottelat and Freyhof, 2007) 

  
Parameter to relate jc  and the 

surface of a spawning place 
4.1*10

-4
 

Offline calibration using the study 

from Rougier et al. (2012) 

rep  
Standard deviation of log-

normal distribution of the 

recruitment 

0.2 Reasonable guessed 

spSp  
Survival probability of 

spawners after reproduction 

(i.e. iteroparous rate) 

0.1 
(Mennesson-Boisneau et al., 

2000b) 

Downstream migration    

downMigAge 
Age of individual when it runs 

toward the sea (Year) 
0.33 

(Lochet et al., 2008); 

In the test case, this migration 

concerns also spawners which 

survive after reproduction but, as 

mature individuals, they migrate 

automatically at sea the season 

following the reproduction 

downMigSeason 
Season of the run of 

individuals toward the sea 
summer 

In the test case, both juveniles and 

spawners which survive after 

reproduction migrate in summer 

(Cassou-Leins et al., 2000) 

Growth    

iniL
 

Initial length of juvenile in 

estuary (cm)  
2 

As we considered juveniles in 

estuary, we used the study from 

Lochet et al. (2008) 

L  
Standard deviation of log-

normal distribution of the 
0.2 Reasonable guessed 
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growth increment 

L  
Asymptotic length of the 

individual (cm) 
60 

(Mennesson-Boisneau et al., 

2000a) 

minGrowT , optGrowT , 

maxGrowT  

Water temperature (°C) 

regulating the growth 
3, 17, 26 Reasonable guessed 

optGrow  
Optimal growth coefficient 

(cm/season) 
0.3 

(Bagliniere and Elie, 2000; 

Aprahamian et al., 2002) 

Survival    

seaZ  
Annual mortality coefficient at 

sea (Year
-1

) 
0.4 

Reasonable guessed based upon 

Rougier et al. (2012) 

rivH  
Annual mortality (different 

from natural) coefficient in 

river (Year
-1

) 

0 
Reasonable guessed to 0 to limit 

the complexity of the test case 

minSurvRivT , optSurvRivT , 

maxSurvRivT  

Water temperature (°C) 

regulating survival of 

individual in river  

10, 20, 23 

In the test case, it concerns only 

spawners during the reproduction 

run and this phase has been 

shown highly dependent of water 

temperature (Cassou-Leins et al., 

2000; Kottelat and Freyhof, 2007) 

optRivsurv  
Optimal natural survival rate 

of individuals in river (Year
-1

) 
1 

Natural mortality was assumed to 

be negligible at optimal 

conditions during the 

reproduction run as it concerns a 

short period of 3 months (Cassou-

Leins et al., 2000) 

Maturation    

matL
 

Length at first maturity (cm) 40 
(Cassou-Leins et al., 2000; 

Lassalle et al., 2008b) 

Upstream migration    

upMigAge 
Age of individual when it runs 

toward the river (Year) 
- 

In the test case, this migration 

concerns only mature individuals 

and is not age-specific 

consequently 

upMigSeason 
Season of the return of 

spawners in river for spawning 
spring 

All mature individuals at sea 

migrate in river at this season 

homp  
Probability to do natal homing 

behavior 
0.75 (Tomas et al., 2005) 

const , 
dist , 

TL , 

WA  

Parameters of the logit 

function used to determine the 

weight of each accessible 

basin for dispersers 

-2.9, 19.7, 0, 0 

Reasonable guessed assuming a 

weight of 0.95 and 0.05 for a 

basin located at a distance of 

10km and 300km respectively and 

assuming no effect of individual 

size and surface of basins on 

dispersal 

j birthPlaceD 
, 

j birthPlace  , TL , 
TL , 

WA , WA  

Mean and standard deviation 

used for standard core values 

in the logit function 

300, 978,-,-,-,-  

Reasonable guessed assuming that 

300 km was close to the maximal 

distance of allis shad dispersal 

and from EuroDiad 2.0 database 

(Lassalle, 2008). Parameters 

linked to fish length and surface 

basin were not relevant in the test 

case. 

deathBasinw  

Weigth of the death basin used 

to introduced a mortality of 

dispersers 

0.4 Reasonable guessed 
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Table 3. Uncertain population dynamics parameters of the GR3D model and environmental 

parameters tested in the sensitivity analysis of the test case. 

Parameter name Tested values 
Selected for complete 

sampling (Yes or No) 

Reproduction SM1   


 [2.2; 2.6] N 

  [1.8; 2] Y 

optRepsurv  [1*10
-3

; 2*10
-3

] Y 

minRepT  

 
[13.3; 14.6] N 

optRepT  [19.3; 20.6] Y 

maxRepT  [25.3; 26.6] N 

  [3*10
-4

; 5*10
-4

] Y 

rep  [0.1; 0.3] N 

Growth SM2   

L  
[0.1; 0.3] N 

minGrowT  [2.3; 3.6] N 

optGrowT  [16.3; 17.6] Y 

maxGrowT  [25.3; 26.6] N 

optGrow  [0.2; 0.4] Y 

Survival SM3   

seaZ  [0.3; 0.5] Y 

minSurvRivT   [9.3; 10.6] N 

optSurvRivT  [19.3; 20.6] Y 

maxSurvRivT  [22.3; 23.6] N 

Maturation SM5   

matL
 

[36; 44] Y 

Anadromous migration SM6   

homp  [0.6; 0.9] Y 

deathBasinw  [0.2; 0.6] N 

Environmental parameters   

WA_RB2 [20000; 40000; 80000] Y 

intDist [100; 300; 600; 900] Y 
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Table 4. Percentage of explained deviance (for fsP and fsS) and explained variance (for mlr) 

by the model applied to outputs variables according to the experimental. 

 Output variable 

Design fsP fsS mlr 

D-Optimal design 78% 70% 60% 

Complete sampling    

Without interaction effects 81% 69% 54% 

With interaction effects 90% 85% 79% 
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List of figures : 

 

Fig. 1. Conceptual diagram of the life cycle of anadromous species (adapted for allis shad) 

represented in the GR3D individual-based model. 
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Fig. 2. Illustrative example of simulation results over 200 years showing the dynamics 

over time of the recruitment in RB1 and RB2 using the nominal values of the model 

parameters and with (A) a distance of 300 km between RB1 and RB2 and a success of the 

colonization of RB2 (fs = 2), (B) a distance of 600 km between RB1 and RB2 and very 

low recruitments in RB2 at the end of simulation (fs = 1), and (C) a distance of 900 km 

between RB1 and RB2 and no colonization of RB2 (fs = 0).  
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Fig. 3. Ten highest SI values (in %; the higher the percentage, the more sensitive the model 

is to the considered parameter) for the fsP (A), .fsS (B) and mlr (C) output variables 

calculated from logistic regression for fsP and fsS and ANOVA for mlr with the D-Optimal 

experimental design (theta and lambda correspond to the parameters   and   of the 

reproduction process respectively). 
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Fig. 4. TSI values (in %; the higher the percentage, the more sensitive the model is to the 

considered parameter) for the fsP (A), .fsS (B) and mlr (C) output variables calculated from 

logistic regression on fsP and fsS and ANOVA on mlr with the complete sampling design 

(theta, lambda, weightDB correspond to the parameters  ,   and deathBasinw  respectively). 
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