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Abstract

Given f : X → R ∪ {+∞} a convex and lower semi-continuous function

defined on a reflexive Banach space X, and L, a closed linear manifold of

X over which f takes at least a real value, the aim of this note is to prove

the following Baire category result: in the Euclidean setting, the set of affine

functions dominated by f on L for which there is no dominated extension to

X is always of first Baire category, but this set can be as large as a residual

set, provided that X is a reflexive Banach space of infinite dimension.
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1. Introduction

The dominated extension form of the Hahn-Banach theorem (”The Crown

Jewel of Functional Analysis” as it is called in [7, Section 1]) proves that,
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given X a linear vector space, L one of its linear subspaces, and p : X →

R a sublinear function (that is a convex function which is also positively

homogeneous of degree one), any linear function ` : L→ R dominated on L

by p may be extended to a linear function ` : X → R dominated by p on the

whole space X.

It is well-known1 that the the conclusion of this theorem ceases to hold

true when, instead of a sublinear, we address a hypolinear dominating func-

tion f : X → R ∪ {+∞} (that is a convex function which is positively

homogeneous of degree one, and which is allowed to take the value +∞);

this fact goes back at least to 1968, when Simons ([9, pages 113-114]) showed

that, over any vector space X of infinite dimension, there is a hypolinear

functional which dominates no linear functional.

In order to overcome this difficulty, some regularity conditions have to

be imposed on the pair formed by the hypolinear function f and the linear

subspace L. The qualification condition provided by the seminal duality

theorem by Fenchel (originally published as result number 48, at page 109

in [5]; see also [8, Theorem 31.1, §31]) is at the origin of a very fruitful

line of research, and an overview, even a concise one, of the large number

of works providing generalizations of Fenchel theorem lies outside the scope

of the present paper. The interested reader is refereed to Corollary 2.8.5

1Maybe not as widely known as it should be, judging by the unusually large number

of flawed Hahn-Banach type theorems for convex functions allowed to take the value +∞

which can be found in the mathematical literature; in the articles [1], [12], [13], and

[14], the reader can find examples and criticism of as much as ten such incorrect results

published between 1969 and 2012.

2



and Theorem 2.8.3 from [11], results which gather some of the most useful

regularity condition ensuring the validity of the Fenchel - Rockafellar duality

formula, and hence of the dominated extension property.

Our article addresses the domination form of the Hahn-Banach theorem

from a different angle. Let X be a real reflexive Banach space, f : X →

R ∪ {+∞} be a convex and lower semi-continuous function, and L be a

closed linear manifold of X over which f takes at least a real value. Let

A(f, L), and respectively A(f,X), denote the set of all the affine continuous

functions defined on L, and respectively on X, which are dominated by f ;

N (f, L) is the set of all the functions from A(f, L) which cannot be extended

to functions from A(f,X) (roughly speaking, N (f, L) is the set on which the

Hahn-Banch dominated extension theorem fails).

Our main concern is the Baire category of N (f, L) as a subset of the com-

plete metric space obtained by endowing the set A(f, L) with the standard

metric. In point of fact, it is easy to see that the convex set A(f, L)\N (f, L)

is dense in A(f, L). When X is of finite dimension, the set A(f, L) \N (f, L)

is then automatically a residual subset of A(f, L), so N (f, L) is always a

meagre, and therefore small, subset of A(f, L).

The case of a reflexive Banach space X of infinite dimension is however

less obvious, since in this setting, although there still exists convex sets which

are residual subsets of their closure, it is not a very difficult task to construct

a convex set which is of first Baire category in its closure (take for instance

the linear span of a compact set containing the origin of X), or even a convex

set which is neither residual, nor of first Baire category with respect of its

closure (this is the case of a dense hyperplane).
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Using Proposition 4.2, a functional analysis result which states that any

reflexive Banach space X with a basis contains two closed subspaces whose

Minkowski sum is both dense, and of first Baire category in X, we are able

to prove the main result of our study, as provided by Theorem 4.3: given X

a reflexive Banach space, there are always some f and L such that N (f, L)

is a residual, and thus very large, subset of A(f, L).

The article ends with a short section stating several open problems.

2. Definitions and notation

Throughout the paper, (X, ‖ · ‖X) will be a real reflexive Banach space,

with a topological dual denoted by X∗, and a duality pairing denoted by

〈·, ·〉X : X∗×X → R. Let us also pick f : X → R∪{+∞}, a convex and lower

semi-continuous function which is proper, meaning that dom (f) = {x ∈ X :

f(x) < +∞}, its effective domain, is a non empty set (as customary, the

class of all these functions is called Γ0(X)), together with L, a closed linear

subspace of X over which f takes at least one finite value. Our notation is

completed by setting L∗ for the topological dual, and 〈·, ·〉L : L∗×L→ R for

the duality pairing of the locally convex space obtained by endowing L with

the induced topology from X.

Our study is concerned with affine continuous functions defined on L,

that is functions α : L→ R such that relation

α(x) = 〈v∗α, x〉L − rα, ∀x ∈ L,

holds true for some v∗α ∈ L∗ and rα ∈ R. We systematically identify an affine

continuous function α defined on L with the element (v∗α, rα) from L∗ × R.
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Accordingly, the set A(f, L), of all the affine continuous functions dominated

on L by f , will be identified with the set

{(v∗, r) ∈ L∗ × R : 〈v∗, x〉L − r ≤ f(x) ∀x ∈ L}.

Similarly, the set

{(x∗, r) ∈ X∗ × R : 〈x∗, x〉X − r ≤ f(x) ∀x ∈ X}

will be identified with A(f,X), the class of all the affine continuous functions

defined on X and dominated by f .

Moreover, all the standard convex analysis notations are in order; in

particular, epi a = {(x∗, r) ∈ X∗ × R : a(x∗) ≤ r} denotes the epigraph of

a function a : X∗ → R ∪ {+∞}, while, for any closed subspaces V ⊂ X and

respectively W ⊂ X∗, the notation V ⊥ and W⊥ is used for the sets

V ⊥ = {x∗ ∈ X∗ : 〈x∗, x〉X = 0 ∀x ∈ V },

and respectively

W⊥ = {x ∈ X : 〈x∗, x〉X = 0 ∀x∗ ∈ W}.

We also use the classical conjugacy operation from convex analysis. Let

us recall from [6, §4], that relation

a∗(x∗) = sup
x∈X

(〈x∗, x〉X − a(x)) ∀x∗ ∈ X∗

defines the Legendre-Fenchel conjugate of a function a : X → R ∪ {+∞}.

Finally, a subset of a complete metric space is called of first Baire category,

or meagre, if it is included in a countable union of closed sets of empty

interior; the complement of a meagre set is called residual.
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3. A dual characterization of N (f, L)

As a first step in establishing our main result, this section is concerned

with the characterization of the set N (f, L) in terms of the Fenchel-Legendre

conjugates of f and ιL, the indicator function of L,

ιL(x) =

 0 x ∈ L

+∞ x /∈ L
∀x ∈ X.

We define the linear and continuous operator

Π : X∗ × R→ L∗ × R Π(x∗, r) = (π(x∗), r) ∀(x∗, r) ∈ X∗ × R,

where π(x∗) is the restriction of x∗ to L, or, equivalently, the only element

from L∗ satisfying the relation 〈x∗, x〉X = 〈π(x∗), x〉L for all x ∈ L. The very

simple proof of the following lemma will be skipped.

Lemma 3.1. Let f : X → R∪{+∞} be a proper function, and L be a closed

subspace of X. Then:

A(f, L) = Π(epi (f + ιL)∗), (1)

A(f, L) \ N (f, L) = Π(epi f ∗ + epi ι∗L), (2)

whence

N (f, L) = Π (epi (f + ιL)∗ \ (epi f ∗ + epi ι∗L)) . (3)

The following statement addresses standard geometrical and topological

properties of the nested pair of sets A(f, L) and N (f, L).

Proposition 3.2. Let f be a function from Γ0(X), and L be a closed linear

subspace of X which meets dom f . Then A(f, L) is a closed and convex

subset of L∗ × R, and A(f, L) \ N (f, L) is a convex set dense in A(f, L).
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Proof of Proposition 3.2: Both the sets A(f, L) and A(f, L)\N (f, L) are

convex, as they are the images of convex sets through a linear operator (see

relations (1) and (2)).

In order to prove that A(f, L) \ N (f, L) is dense in A(f, L), we need

the following well-known fact (for this and other properties related to the

notion of infimal convolution, see [6] and the survey [10]): given g and h two

functions from Γ0(X) such that dom g ∩ domh 6= ∅, then the set epi (h+ g)∗

amounts to epi g∗ + epih∗, the closure of the set epi g∗ + epih∗. Applied to

the functions f and ιL, the previous theorem implies that

epi f ∗ + epi ι∗L = epi (f + ιL)∗ . (4)

Moreover, the mapping Π is continuous, so the closure of the image through

Π of any set always contains the image through Π of the closure of the same

set; in particular,

Π
(
epi f ∗ + epi ι∗L

)
⊂ Π (epi f ∗ + epi ι∗L). (5)

By combining relations (1), (2), (4) and (5), we infer that

A(f, L) \ N (f, L) ⊂ A(f, L), A(f, L) ⊂ A(f, L) \ N (f, L);

thus A(f, L) \ N (f, L) is dense in A(f, L).

Finally, let us show that the set A(f, L) is closed. Since that for every

y∗ ∈ L⊥ it holds that

(f + ιL)∗(x∗ + y∗) = sup
x∈X

(〈x∗ + y∗, x〉X − (f + ιL)(x))

= sup
x∈L

(〈x∗ + y∗, x〉X − f(x))

= sup
x∈L

(〈x∗, x〉X − f(x)) = (f + ιL)∗(x∗) ∀x∗ ∈ X∗,

7



we deduce that

epi (f + ιL)∗ + L⊥ × {0} = epi (f + ιL)∗. (6)

But Ker Π = L⊥ × {0}, so relation (6) may be rephrased as

epi (f + ιL)∗ + Ker Π = epi (f + ιL)∗. (7)

The continuous linear operator Π between the Banach spaces X∗×R and

L∗×R is onto; an obvious consequence of Banach-Schauder theorem says that

Π(S) is closed for any closed subset S of X∗ × R such that S + Ker Π = S.

From relation (7) it follows that the previous theorem applies to the visibly

closed set epi (f + ιL)∗, so A(f, L) = Π (epi (f + ιL)∗) is closed.

4. Baire category results

Proposition 3.2 proves that the set A(f, L) is a closed subset of the reflex-

ive Banach space L∗×R; when endowed with the distance dL∗×R, induced by

the box norm from L∗×R, the set A(f, L) became a complete metric space.

Theorems 4.1 and 4.3 are concerned with the Baire category of the subset

N (f, L) of the complete metric space (A(f, L), dL∗×R).

Theorem 4.1. Let X an Euclidean space, f be a function from Γ0(X), and L

be a closed linear subspace of X which meets dom f . Then the subset N (f, L)

of the complete metric space (A(f, L), dL∗×R) is of first Baire category.

Proof of Theorem 4.1: As the convex set A(f, L) \ N (f, L) is dense in

A(f, L), Corollary 6.3.1 from [8] proves that A(f, L) \ N (f, L) contains the

relative interior of A(f, L).
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Accordingly, the set N (f, L) is contained in the relative boundary of

A(f, L), which is a closed subset with empty interior of the complete metric

space (A(f, L), dL∗×R). In particular, N (f, L) is of first Baire category.

The following result is a key point in achieving our main theorem.

Proposition 4.2. Any infinite dimensional reflexive Banach space X with a

Schauder basis contains two closed subspaces such that their Minkowski sum

is both dense, and of first Baire category in X.

Proof of Proposition 4.2: The proof is done in two steps. First, we prove

that any infinite dimensional Banach space X with a Schauder basis contains

two closed subspaces whose sum is dense and proper in X. To this respect,

let the sequence (xn)n∈N ⊂ X of norm one vectors be a Schauder basis of X,

meaning that for each vector x ∈ X there exists a unique sequence (λn)n∈N

of scalars such that

x = lim
n→+∞

Σn
k=1 λk xk,

set V1 for the closed linear span of the vectors {vn = x2n−1 : n ∈ N},

while the closed linear span of the vectors
{
wn =

(
x2n−1 + x2n

8n

)
: n ∈ N

}
is

denoted by V2.

As {xn : n ∈ N} ⊂ V1 + V2, the set V1 + V2 is clearly dense in X.

Let us consider the sequence zn = Σn
k=1

x2k
2k

; for any two positive integers

m < n, it holds that

‖zn − zm‖X =
∥∥∥Σn

k=m+1

x2k
2k

∥∥∥
X
≤ Σn

k=m+1

‖x2k‖X
2k

= Σn
k=m+1

1

2k
≤ 1

2m
,
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so (zn)n is a Cauchy sequence. We claim that its limit,

z = lim
n→+∞

Σn
k=1

1

2k
x2k, (8)

does not belong to V1 + V2.

To the end of achieving a contradiction, we assume that there exists

v1 ∈ V1 and v2 ∈ V2 such that v1 + v2 = z. Hence,

v1 = lim
n→+∞

Σn
k=1λk vk, v2 = lim

n→+∞
Σn
k=1µk wk, (9)

for some sequences (λn)n∈N ⊂ R and (µn)n∈N ⊂ R. By computing the sum

v1 + v2, one obtains that

z = v1 + v2 = lim
n→+∞

Σn
k=1

(
(λk + µk)x2k−1 +

µk
8k
x2k

)
; (10)

relation

λn + µn = 0,
µn
8n

=
1

2n
∀n ∈ N (11)

easily results when comparing statements (8) and (10).

It is an immediate consequence of relation (11) that λn = −4n. Keeping

in mind that the sequence ζn = Σn
k=1 λk vk converges to v1, let us compute

its norm:

‖ζn‖X = ‖Σn
k=1 λk vk‖X =

∥∥Σn
k=1 − 4k x2k−1

∥∥
X

(12)

≥ ‖ − 4n xn‖X −
(
Σn−1
k=1‖ − 4k xk‖X

)
= 4n − Σn−1

k=1 4k > 4n − 4n − 4

3
=

22n+1 − 22

3
.

Inequality (12) implies that the norm of the convergent sequence ζn goes

to infinity, a clear contradiction. Our initial assumption is therefore false;

that is, the subspace V1 + V2 does not contain the vector z.
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In the second step of our proof, we show that, in the setting of a reflexive

Banach space X, the sum of two closed subspaces is of first Baire category in

X, provided that this sum is proper. Indeed, given any two closed subspaces

of X, say V1 and V2, it is obvious that

V1 + V2 =
⋃
n∈N

(nB + V2) , (13)

where B = {x ∈ V1 : ‖x‖X ≤ 1}.

On one hand, for any n ∈ N, the set nB+V2 is a subset of V1 +V2, which

is a proper subspace of X; therefore, the interior of nB + V2 is empty. On

the other hand, being closed and convex, the set V2 is automatically weakly

closed. For its part, the set B is a bounded closed and convex subset of a

reflexive Banach space, thus it is weakly compact. Accordingly, their sum,

B + V2, as well as any set of form nB + V2, with n ∈ N, is a weakly closed,

and, a fortiori, closed subset of X.

Relation (13) reads now that V1 + V2 is the union of a countable family

of closed sets, each one of them having an empty interior.

We are now in a position to prove the main result of this article.

Theorem 4.3. Let X be an infinite dimensional reflexive Banach space.

Then there exists f , a function from Γ0(X), and L, a closed linear subspace of

X which meets dom f , such that N (f, L) is a residual subset of the complete

metric space A(f, L).

Proof of Theorem 4.3: A well-known theorem (originally stated by Banach

without any proof at page 238 of his foundational treatise [2], this result was

proved in [3, Corollary 3, page 157]; the reader may found a complete account
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of this topic in the chapter V of the textbook [4]), says that any infinite

dimensional Banach space contains an infinite dimensional closed subspace

with a Schauder basis.

In particular, this means that there exists V , an infinite dimensional

closed subspace of X∗, which possess such a basis. Being a closed subspace

of a reflexive space, V is itself a reflexive Banach space, so Proposition 4.2

applies to V : there are two closed subspaces of V , say V1 et V2, such that

the set V1 + V2 is both dense, and of first Baire category in V .

Let us set f(x) = ιV ⊥1 , and L = V ⊥2 ; we claim that N (f, L) is a residual

subset of the complete metric space A(f, L). Since X is a reflexive Banach

space, it is easy to see that epi f ∗ = V1 × R+, and epi ι∗L = V2 × R+, so

epi f ∗ + epi ι∗L = (V1 + V2)× R+, (14)

and from relations (2) and (14) it follows that

A(f, L) \ N (f, L) = Π ((V1 + V2)× R+) .

Moreover, the closure of the set V1 + V2 is V . Hence

epi f ∗ + epi ι∗L = V × R+, (15)

and combining relations (1) and (15) we infer that

A(f, L) = Π (V × R+) = π(V )× R+.

In order to prove that Π ((V1 + V2)× R+) is of first Baire category in

π(V )× R+, let us notice the following obvious fact.
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Remark 4.4. Let Y be a Banach space, A be a subset of X, and B be a

subset of X × R+. Then:

i) A×R+ is of first Baire category in X×R+ if and only if A is of first Baire

category in X, and

ii) B is of first Baire category in X × R+ if and only if B is of first Baire

category in X × R.

Thus (V1 + V2)×R+ is of first Baire category in its closure V ×R (apply

point i) in the previous statement for V = Y and V1 + V2 = A, followed by

point ii) of the same statement for V = Y and B = (V1 + V2)× R+).

A standard application of the Banach-Schauder theorem for the surjec-

tive continuous linear operator Π says that the set Π(S) is meagre in Π(S)

provided that S is itself meagre in S, and S + ker Π = S. In particular, this

means that the set Π ((V1 + V2)× R+) if of first Baire category in π(V )×R.

It remains to apply point ii) from Remark 4.4 for π(V ) × R = Y and

Π ((V1 + V2)× R+) = B, to deduce that Π ((V1 + V2)× R+) is meagre in

Π (V × R+), completing in this way the proof of Theorem 4.3.

5. Open problems

A natural question raised by our study concerns the validity of Propo-

sition 4.2 and respectively Theorem 4.3 when the underlying space X is a

Banach space, and respectively a real normed space. Another direction in

which the result of Theorem 4.3 may be generalized is by addressing the

more versatile sandwich theorem form of the Hahn-Banach theorem. In this

setting, the main issue is the existence of functions f ∈ Γ0(X) such that the
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set

N (f) = {g ∈ A(f) : L(f, g) = ∅}

is a residual subset of the completed metrizable space obtained when endow-

ing the set

A(f) = {g ∈ Γ0(X) : −g ≤ f}

with the Attouch-Wets topology; here

L(f, g) = {(x∗; a) ∈ X∗ × R : −g ≤ x∗ − a ≤ f}

denotes the set of all the continuous affine functions sandwiched between the

concave function −g an the convex function f .
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the University of Warsaw, Warsaw, 1932.
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