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Abstract

The purpose of this article is two-fold. In the first place, we prove that a
set is the image of a non empty closed convex subset of a real Banach space
under an onto Fredholm operator of positive index if and only if it can be
written as the union of {Dn : n ∈ N}, a non-decreasing family of non empty,
closed, convex and bounded sets such that Dn + Dn+2 ⊆ 2Dn+1 for every
n ∈ N.

The second part of this article proves that in every infinite dimensional
real Banach space there is a convex set which can be expressed as the union
of countably many closed sets, but not as the union of countably many closed
and convex sets. Accordingly, every infinite dimensional real Banach space
contains a convex Fσ set which is not the image of a closed convex set under
a Fredholm operator.

Keywords: Fredholm operator, image of a closed convex set, countable
union of closed convex sets, Fσ set
2000 MSC: 52A20, 52A41, 52B99

1. Introduction

This article deals with one of the most ubiquitous concepts in convex
analysis and optimization: the image of a closed and convex set under a
Fredholm operator. The case of an operator acting between two finite dimen-
sional Banach spaces is well understood. With virtually no modifications, the
technique used by Klee to prove [6, Theorem 6.1] (a different method may
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be retrieved from the proof given by Sang and Tam to [8, Proposition 2.2]),
provides us with the following result.

Theorem [Klee]: Let X and Y be euclidean spaces, and Π : Y → X be
an onto Fredholm operator of positive index. Then the set C is the image of
a non empty closed and convex subset of Y under Π if and only if it is a non
empty convex Fσ subset of X.

Our first result (Theorem 2.3, Section 2) is a generalization of the previous
Theorem to the setting of possibly infinite dimensional real Banach spaces.

Theorem A: Let X and Y be real Banach spaces, and Π : Y → X be
an onto Fredholm operator of positive index. Then the set C is the image
of a non empty closed and convex subset of Y under Π if and only if it is
the union of {Dn : n ∈ N}, a non-decreasing family of non empty, closed,
convex and bounded sets, with the additional property that

Dn +Dn+2 ⊆ 2Dn+1 ∀n ∈ N. (1)

The rather technical assumption of Theorem A may be justified by argu-
ing that, on one hand, any non empty closed and convex subset of a Banach
space may easily be expressed as the union a a non-decreasing family com-
posed of countably many non empty bounded closed and convex sets fulfilling
relation (1), and on the other, that the image under a Fredholm operator of
such a family is again a nondecreasing sequence of bounded closed and convex
sets satisfying relation (1). However, when X is a finite dimensional Banach
space, by combining the two above-mentioned theorems, we deduce that a
set is the union of a non-decreasing family of non empty, closed, convex and
bounded sets fulfilling relation (1) if and only if it is a non empty convex Fσ
set.

Our second result (Theorem 4.3, Section 4) addresses the interplay be-
tween the hypothesis of Theorem A, on one hand, and of the previously
mentioned Theorem by Klee, on the other, in the case of an infinite dimen-
sional real Banach space.

Theorem B: Every infinite dimensional real Banach space contains a
convex set which can be expressed as the union of countably many closed
sets, but not as the union of countable many closed and convex sets.
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In other words, the appropriate notion to describe the image of a closed
convex set under a Fredholm operator is indeed the union of an increasing
family of non empty closed, convex and bounded sets satisfying the property
(1), as stated by Theorem A.

As a first step in achieving Theorem B, we are concerned with the convex
hull of the extreme points of the unit ball in `∞. Indeed, as stated by Albiac
and Kalton at page 29 of their textbook, [1], ”[the] structure [of `∞] has been
well understood for many years. However, there can still be surprises, and
there remain intriguing open questions”. Our ”surprise” is related to the
notion of (infinite dimensional) convex polytope, as introduced by Klee ([7]):
Proposition 3.2 proves that the convex hull of the extreme points of the unit
ball in `∞ is a polytope, which, by virtue of Proposition 3.6, does not contain
any infinite dimensional closed and convex set.

This unusual polytope is an example of a convex Fσ set which cannot be
written as a countable union of closed and convex sets, and settles in this way
Theorem B when X = `∞; on this ground, Theorem 4.3 addresses the case
of a general real Banach space X by using a standard compact embedding
result.

The last section of this work addresses a question which, at the best of
our knowledge, is open: characterize all the real normed spaces containing
a convex Fσ set which cannot be written as a countable union of closed and
convex sets.

2. Theorem A

Let us consider X a real Banach space, and {Dn : n ∈ N} a non-
decreasing (meaning that Dn ⊆ Dn+1 for every n ∈ N) sequence of non
empty, closed, convex and bounded subsets of X fulfilling the property (1).
The first part of this section is devoted to the proof of the following result.

Proposition 2.1. Let m be a positive integer, and λi, i = 1,m, be non-
negative scalars whose sum amounts to 1. Then

m∑
i=1

λiDi ⊂ Dp, (2)

provided that

p ≥
m∑
i=1

i λi. (3)
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This results plays a special role in achieving Theorem A, as the index p
on the right side of the relation (2) depends only upon the coefficients λi,
i = 1,m, and not upon the sets from the sequence (Dn).

2.1. Proof of Proposition 2.1.

As a first step in establishing the desired result, let us address the follow-
ing property of non-decreasing sequences of real numbers.

Lemma 2.2. Let (xn)n∈N be a non-decreasing sequence of reals such that

xn + xn+2 ≤ 2xn+1 ∀n ∈ N. (4)

Let m be a positive integer, and λi, i = 1,m, be non-negative scalars whose
sum amounts to 1. Then

m∑
i=1

λi xi ≤ xp, (5)

provided that relation (3) holds true.

Proof of Lemma 2.2. As the case m = 1 is clear, we assume that m ≥ 2.
The proof will be done in three steps.

Step 1: We claim that

xn + xn+k+1 ≤ xn+1 + xx+k ∀n, k ∈ N. (6)

Let us prove relation (6) by induction after k. The case k = 1 is nothing
but property (4), so we may assume that k > 1 and that property (6) holds
for k − 1:

xn + xn+k ≤ xn+1 + xn+k−1 ∀n ∈ N. (7)

By combining relation (4), and relation (7) written for n+ 1, we get that

xn + xx+2 + xn+k+1 ≤ 2xn+1 + xn+k+1 (8)

= xn+1 + xn+1 + xn+k+1

≤ xn+1 + xn+2 + xn+k.

The desired relation (6) obviously follows from relation (8).

Step 2: Let us consider q, k ∈ N, and αi ≥ 0, i = q, q + k + 1. We claim
that there exists either γi ≥ 0, i = q + 1, q + k + 1, with the property that

q+k+1∑
i=q+1

γi =

q+k+1∑
i=q

αi,

q+k+1∑
i=q+1

i γi =

q+k+1∑
i=q

i αi, (9)
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such that
q+k+1∑
i=q

αi xi ≤
q+k+1∑
i=q+1

γi xi, (10)

or µi ≥ 0, i = q, q + k, satisfying the relation

q+k∑
i=q

µi =

q+k+1∑
i=q

αi,

q+k∑
i=q

i µi =

q+k+1∑
i=q

i αi, (11)

such that
q+k+1∑
i=q

αi xi ≤
q+k∑
i=q

µi xi. (12)

Indeed, if αq ≤ αq+k+1, then

q+k+1∑
i=q

αi xi = αq(xq + xq+k+1) +

q+k∑
i=q+1

αi xi + (αq+k+1 − αq)xq+k+1,

and, as from the first step of Lemma 2.2 it follows that

αq(xq + xq+k+1) ≤ αq(xq+1 + xq+k),

we deduce that

q+k+1∑
i=q

αi xi ≤ αq(xq+1 + xq+k) (13)

+

q+k∑
i=q+1

αi xi + (αq+k+1 − αq)xq+k+1.

It is easy to see that both the sum of the coefficients, and the sum of the
products between the coefficients and their indices is the same on the right
and on the left sides of formula (13):

αq + αq +

q+k∑
i=q+1

αi + (αq+k+1 − αq) = αq +

q+k+1∑
i=q

αi − αq (14)

=

q+k+1∑
i=q

αi,
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and

((q + 1) + (q + k))αq +

q+k∑
i=q+1

i αi + (q + k + 1)(αq+k+1 − αq) = (15)

(1 + (q + k))αq +

q+k+1∑
i=q

i αi − (q + k + 1)αq =

q+k+1∑
i=q

i αi.

We have thus established that, in the case αq ≤ αq+k+1, the coefficients of
the right side of relation (13) provide us with a system γi, i = q + 1, q + k + 1
of non-negative scalars which fulfills the properties (9) and (10). Obviously,
when αq ≥ αq+k+1, a similar line of reasoning proves that there are µi ≥ 0,
i = q, q + k, satisfying relations (11) and (12).

Step 3: Let us finally consider the coefficients λi ≥ 0, i = 1,m, whose
sum equals to 1, and an index p fulfilling relation (3). In order to prove that
relation (5) holds true, let us repeatedly apply the procedure given by Step 2,
with the the coefficients λi, i = 1,m, as a starting point. It yields that there
is a positive integer s = 1,m− 1, and ζs, ζs+1, two non-negative scalars, such
that

ζs + ζs+1 =
m∑
i=1

λi, sζs + (s+ 1)ζs+1 =
m∑
i=1

i λi, (16)

and
m∑
i=1

λi xi ≤ ζs xs + ζs+1 xs+1.

From relations (3) and (14) it results that

p ≥
m∑
i=1

i λi = sζs + (s+ 1)ζs+1. (17)

Let us consider two cases: ζs+1 = 0, and ζs+1 > 0. When ζs = 0, then ζs = 1,
so relation (17) becomes p ≥ s. As the sequence (xn) is non-decreasing, it
follows that xs ≤ xp, whence

m∑
i=1

λi xi ≤ ζs xs + ζs+1 xs+1 = xs ≤ xp. (18)
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In the case ζs+1 > 0, then sζs+(s+1)ζs+1 > s, so from relation (17) it yields
that

p ≥
m∑
i=1

i λi = sζs + (s+ 1)ζs+1 > s,

that is p ≥ s+ 1. Then xs ≤ xs+1 ≤ xp, so

m∑
i=1

λi xi ≤ ζs xs + ζs+1 xs+1 ≤ ζs xp + ζs+1 xp = xp. (19)

The desired relation 5 may be deduced from statements (18) and (19).

We are now in a position to address the main technical result of this
section.

Proof of Proposition 2.1. Let us pick a continuous linear function f : X → R
(in other words f is an element of X∗, the topological dual of X), and let
us set xn := supDn

f , n ∈ N, (obviously xn is a real number, since Dn is
a bounded set, and f is linear and continuous). The sequence (xn) is non-
decreasing, as the same holds for the sequence (Dn). Moreover, as f is linear,
it holds that

xn + xn+2 = sup
Dn

f + sup
Dn+2

f = sup
Dn+Dn+2

f, (20)

and that
2xn+1 = 2 sup

Dn+1

f = sup
2Dn+1

f ; (21)

but Dn +Dn+2 ⊆ 2Dn+1, so

sup
Dn+Dn+2

f ≤ sup
2Dn+1

f. (22)

From relations (20-22) it results that the sequence (xn) satisfies the property
(4), so, by virtue of Lemma 2.2, we deduce that

m∑
i=1

λi sup
Di

f ≤ sup
Dp

f. (23)

Again as a consequence of the fact that f is linear, we observe that

m∑
i=1

λi sup
Di

f = sup∑m
i=1 λiDi

f ; (24)
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from relations (23) and (24) it yields that

sup∑m
i=1 λiDi

f ≤ sup
Dp

f ∀f ∈ X∗. (25)

Being closed and convex, the set Dp is the intersection of all the closed
half-spaces containing it; relation (2) follows thus from relation (25).

2.2. The proof of Theorem A

This subsection characterizes the image of a closed convex set under a
Fredholm operator.

Theorem 2.3. Let X and Y be real Banach spaces, and Π : Y → X be
an onto Fredholm operator of positive index. The following statements are
equivalent:
i) the set C is the union of the non-decreasing family of non empty closed
and convex sets fulfilling the property (1),
ii) the set C is the image of a non empty closed convex subset of Y under Π.

Proof of Theorem 2.3. ii)⇒ i) Let us considerK, a non empty closed convex
subset of Y . Pick x0 ∈ K, and set Kn := K ∩ (x0 + nBY ), where BY is the
closed unit ball of Y . It is an easy task to verify that Kn, n ∈ N, is a non-
decreasing sequence of non empty bounded closed and convex subsets of Y
fulfilling relation (1). As the image under a Fredholm operator of a bounded
closed convex set is always a bounded closed convex set, and as the image
under a linear mapping of a non-decreasing sequence satisfying relation (1) is
again a non-decreasing sequence satisfying relation (1), it follows that Π(K)
is the union of an non-decreasing family of non empty closed and convex sets
fulfilling the property (1).

i)⇒ ii) We consider Dn, n ∈ N, a non-decreasing sequence of non empty
bounded convex and closed subsets of X which satisfies relation (1). Let V
be the kernel of the Fredholm operator Π. As any finite dimensional subspace
of a Banach space is complemented, there exists W , a closed subspace of Y
disjoint from V , such that W + V = Y .

The restriction on W of Π, ΠW : W → X, is a bijective continuous linear
operator, so the sets En := (ΠW )−1 (Dn) form a non-decreasing sequence of
non empty bounded closed and convex subsets ofW , and thus of Y ; moreover,
the elements of this sequence satisfy formula (1).
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Let us pick a non null vector v ∈ V (such a vector always exists since the
index of Π, and thus the dimension of V , is a positive integer). We define
the sets

A := ∪i∈N (Ei + i v) ,

and
B := ∪i∈N (Ei + {s v : s ≤ i}) ,

and claim that
A ⊆ co (A) ⊆ B. (26)

The sets Hp := W+{s v : s < p}, p ∈ N, are open half-spaces of W+R v,
which is itself a closed subspace of Y . As A is a subset of W + R v, and as
Hp is open in W + R v, it results that

co(A) ∩Hp ⊆ co(A) ∩Hp. (27)

Let us pick x ∈ co(A) ∩Hp. As x ∈ co(A), there are some non-negative
scalars λi, i = 1,m, of sum equal to 1, and some elements xi ∈ Ei, i = 1,m
such that

x =

(
m∑
i=1

λi xi

)
+

(
m∑
i=1

i λi

)
w.

But x ∈ Hp, so
∑m

i=1 i λi < p; we may thus apply Proposition 2.1 to the
sequence (En), and deduce that

∑m
i=1 λi xi ⊂ Ep. In other words,

co(A) ∩Hp ⊆ Ep + {s v : s < p}. (28)

Finally, by combining relations (27) and (28) with the obvious fact that
the closure of Ep + {s v : s < p} amounts to Ep + {s v : s ≤ p}, it yields
that

co(A) ∩Hp ⊆ Ep + {s v : s ≤ p} ∀p ∈ N,

fact which clearly implies relation (26). Taking into account that

Π(A) = Π(B) = ∪i∈N Π(Ei) = ∪i∈NDi,

the proof of implication i)⇒ ii) is complete.
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3. The convex hull of the extreme points of the unit ball of `∞:
Theorem B in the case X = `∞

The aim of this section is to prove that the convex hull of the set gathering
all the extreme points of the unit ball from the Banach space `∞ is a convex
Fσ set which cannot be expressed as the union of countably many closed and
convex sets, proving in this way Theorem B in the case when X = `∞.

To avoid some complicated notation, we will write a typical element of
`∞ as x := (x(n))∞n=1, and we will call xn the n-th coefficient of x. Given
S ⊂ N, let us denote be yS the element of `∞ defined by the formula

yS(n) :=

{
1 n ∈ S
−1 n /∈ S .

Obviously, every point of form yS is an extreme point of B`∞ , the unit
ball of `∞, and every extreme point of B`∞ is of the form yS:

extB`∞ = {yS : S ⊆ N}.

3.1. Basic properties of co (extB`∞)

Let us denote by

P (x) := {x(n) : n ∈ N}, x ∈ `∞,

the set containing all the coefficients of some vector x from `∞. For every
S ⊂ N, it is clear that P (yS) is a subset of {−1, 1}. More generally, the
following easy to prove statement provides a characterization of elements x
from the convex hull of extB`∞ in terms of P (x).

Lemma 3.1. A vector x ∈ X belongs to the convex hull of extB`∞ if and
only if P (x) is a finite subset of the closed interval [−1, 1].

Proof of Lemma 3.1. As the ”only if” part is obvious, let us address the ”if”
part, and consider x ∈ X such that P (x) is a finite subset of [−1, 1]. Let
αk, k = 0, p, be the elements of the set P (x)∪ {−1, 1} written in increasing
order; in particular, α0 = −1, and αp = 1. For every k = 1, p we define

λk :=
αk − αk−1

2
and Sk := {n ∈ N : x(n) ≥ αk}. (29)
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Obviously, all the numbers λk, k = 1, p are positive, and their sum amounts
to αp−α0

2
= 1. We claim that

x =

p∑
k=1

λk ySk
. (30)

In order to prove our claim, let us pick n ∈ N; then x(n) = αs for some
s = 0, p. We shall distinguish two cases: s = 0 and s ≥ 1.

Case s = 0: Since x(n) = α0 = −1, it results that n does not belong to
any of the sets Sk, k = 1, p. Accordingly,

{k = 1, p : ySk
(n) = 1} = ∅,

so ∑
{k=1,p: ySk

(n)=1}

λk = 0 =
α0 − α0

2
. (31)

Case s ≥ 1: With k = 1, p, the following line of equivalent relations is
easily seen:

k = 1, s⇔ αk ≤ αs ⇔ αk ≤ x(n)⇔ n ∈ Sk ⇔ ySk
(n) = 1. (32)

Relation (32) proves that {k = 1, p : ySk
(n) = 1} = {1, . . . , s}, hence

∑
{k=1,p: ySk

(n)=1}

λk =
s∑

k=1

λk =
αs − α0

2
. (33)

By putting together relations (31) and (33), we infer that

[x(n) = αs]⇒

 ∑
{k=1,p: ySk

(n)=1}

λk =
αs − α0

2

 ,
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fact which allows us to compute the value of (
∑p

k=1 λk ySk
) (n):(

p∑
k=1

λk ySk

)
(n) =

p∑
k=1

λk (ySk
(n))

=
∑

{k=1,p: ySk
(n)=1}

λk −
∑

{k=1,p: ySk
(n)=−1}

λk

= 2

 ∑
{k=1,p: ySk

(n)=1}

λk

− 1 = 2
αs − α0

2
− 1

= αs = x(n) ∀n ∈ N.

We have thus proved our claim, together with the ”if” part of Lemma
3.1.

We are now in a position to prove that co (extB`∞) is a Fσ polytope in
the sense of Klee: each and every one of its affine finite-dimensional sections
is the convex hull of a finite set of points.

Proposition 3.2. The following two statements hold true.
i) the convex hull of the extreme points of the unit ball of `∞ is a Fσ set,
ii) co (extB`∞)∩L is the convex hull of a finite set, provided that L ⊂ `∞ is
a linear manifold of finite dimension.

Proof of Proposition 3.2. i) Pick p ∈ N, and let Tp be the set of all the vectors
x from `∞ for which the set P (x) is a subset of [−1, 1] containing at most p
elements.

Let us also consider a vector y such that y /∈ Sp. There are two possi-
bilities: |y(n)| > 1 for some n ∈ N, or P (y) ∩ [−1, 1] contains at least p+ 1
different scalars, say {µk : k = 1, p+ 1}.

When it holds that |y(n)| > 1, let us set

ε :=
|y(n)| − 1

2
,

and remark that |z(n)| > 1 for every z ∈ y + εB`∞ , so

(y + εB`∞) ∩ Tp = ∅.
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When P (y) ∩ [−1, 1] contains the scalars {µk : k = 1, k + 1}, we set

ε := min

{
|µi − µj|

3
: i 6= j, i, j = 1, p+ 1

}
.

Clearly, the set P (z) ∩ [−1, 1] contains at least p + 1 elements, for every
z ∈ y + εB`∞ , so again

(y + εB`∞) ∩ Tp = ∅.

Consequently, the set Tp is closed for any p ∈ N; moreover, an obvious
consequence of Lemma 3.1 reads that co (extB`∞) = ∪k∈N Tk, so the convex
hull of the extreme points of the unit ball of `∞ is a Fσ set.

ii) Given L ⊂ `∞, a linear manifold of finite dimension, we denote by p
the dimension of the set C := co (extB`∞)∩L; then C contains p+1 vectors,
say xk, k = 0, p, such that C = co (extB`∞) ∩ L′, where

L′ :=

{
x0 +

p∑
k=1

γk (xk − x0) : (γk)k=1,p ∈ Rp

}

is the linear manifold spanned by the set {xk : k = 0, p}.
By virtue of Lemma 3.1, it holds that C may be seen as the set of all the

elements x from L′ such that P (x) is a finite subset of [−1, 1]. But the set
P (x) is finite for any x ∈ L′. Indeed, given n ∈ N, we define the following
vector from Rp:

wn := (xk(n)− x0(n))k∈1,p;

as for every k = 0, p, P (xk) is a finite subset of [−1, 1], it easily yields that
the set W := {wn : n ∈ N} is a finite subset of the p-dimensional cube
[−2, 2]p. Given x ∈ L′, there exists γ := (γk)k∈1,p ∈ Rp such that

x = x0 +

p∑
k=1

γk (xk − x0);

thus

x(n) = x0(n) +

p∑
k=1

γk (xk(n)− x0(n)) = x0(n) + 〈γ, wn〉

where 〈·, ·〉 : Rp × Rp → R is the standard dot product in Rp. As the vector
x0 has only a finite number of different coefficients, and since wn, n ∈ N,
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runs through the finite set W , it results that the vector x has also a finite
number of different coefficients.

Consequently, the set C = co (extB`∞) ∩ L may be seen as the set of all
the elements x from L′ such that P (x) ⊂ [−1, 1]:

C =

{
x0 +

p∑
k=1

γk (xk − x0) : γ ∈M

}
,

where
M := {γ ∈ Rp : −1 ≤ x0(n) + 〈γ, wn〉 ≤ 1 ∀n ∈ N}.

As already observed, both the sets W and P (x0) are finite, so the set
M is the intersection of finitely many closed half-spaces of Rp. Hence C, a
bounded subset of L′, is the intersection of finitely many closed half-spaces
of L′, and an application of Weyl-Minkowsky’s theorem concludes the proof
of point ii).

Remark 3.3. It worth noticing that the polytope co (extB`∞) has two un-
usual properties. First, when the finite dimensional linear manifold L runs
through the class of all the linear manifolds of a given dimension, the number
of vertices of the bounded convex polytope co (extB`∞) ∩ L is not bounded
from above. More precisely, given n ∈ N, it is easy to find a two-dimensional
linear manifold L such that the convex polygon co (extB`∞)∩L has at least
n vertices.

Secondly, its closure, that is the unit ball in `∞, is not a polytope.

3.2. Infinite dimensional subsets of co (extB`∞)

A key step in achieving the main result of this section is to characterize the
infinite dimensional subsets of the convex hull of extB`∞ . To this purpose,
we denote by

R(µ, x) := {n ∈ N : x(n) = µ} x ∈ `∞, µ ∈ P (x),

the set of all indices n ∈ N at which the n-th coefficient of x takes the value
µ, and, given A ⊂ `∞, we set

R(A) := {R(µ, x) : x ∈ A, µ ∈ P (x)}.
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Proposition 3.4. Let A be a subset of the convex hull of extB`∞. The
following sentences are equivalent:

i) the dimension of A is infinite,
ii) the set R(A) is infinite,
iii) it exists a sequence (xn)n∈N ⊂ A, and, for any n ∈ N, a scalar

µn ∈ P (xn), such that the sets

Kn := ∩ni=1R(µi, xi) (34)

form a decreasing sequence.

Proof of Proposition 3.4. As obviously iii) ⇒ ii), all what we have to show
is that i)⇒ ii), ii)⇒ i), and that ii)⇒ iii).

i)⇒ ii): Let us consider A ⊂ co (extB`∞) such that R(A) is a finite set.
Thus, R, the ring of sets spanned by {∅} ∪ R(A) (we use here the notion
of ring of sets in Birkhoff’s sense, meaning a family of sets closed under
the operations of set unions and set intersections) is itself finite. We set
YA := {yS : S ∈ R}, and we claim that A ⊂ co (YA).

Indeed, let us pick x ∈ A; as already seen (relations (29) and (30)), x lies
within the convex hull of the set

{
ySk

: k = 1, p
}

, where p+ 1 is the number
of elements from the set P (x) ∪ {−1, 1}, the scalars αk, k = 0, p, are the
elements of P (x) ∪ {−1, 1} written in increasing order, and Sk = {n ∈ N :
x(n) ≥ αk}.

It remains to prove that the sets Sk, k = 1, p are elements of the ring R.
Of course, αk ∈ P (x) for every k = 1, p− 1, so

Sk =
(
∪p−1i=kR(αk, x)

)
∪ Sp, ∀k = 1, p− 1.

As moreover

Sp =

{
∅ 1 /∈ P (x)

R(1, x) 1 ∈ P (x)
∀p ∈ N,

we may conclude that, for any k = 1, p, the set Sk is either the empty set,
or the union of finitely many sets of form R(µ, x), with µ ∈ P (x); in both
cases, Sk ∈ R.

Accordingly,
{
ySk

: k = 1, p
}
⊂ YA, fact which proves our claim, and

consequently the fact that the set A is finite, provided that R(A) is a finite
set. The i)⇒ ii) part of Proposition 3.4 is established.

ii) ⇒ i): Let us pick A, a finite dimensional subset of co (extB`∞). By
virtue of Proposition 3.2, it follows that A is contained in the convex hull of
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a finite subset of co (extB`∞): in other words, there exists a positive integer
p ∈ N, and {xk : k = 1, p} ⊂ co (extB`∞) such that A ⊂ co {xk : k = 1, p}.

Clearly, both the set R
(
{xk : k = 1, p}

)
, and R, the ring of sets spanned

by R
(
{xk : k = 1, p}

)
, are finite. Let us pick

µ := (µk)k∈1,p ∈ Πp
k=1 P (xk);

the set
Bµ := ∩pk=1R(µk, xk),

besides providing an obvious example of an element of R, has the following
property:

xk(n) = xk(m) ∀k = 1, p, ∀n,m ∈ Bµ. (35)

As every element x from A may be expressed as a convex combination of the
vectors xk, k = 1, p, from relation (35) it yields that

x(n) = x(m) ∀x ∈ A, ∀ n,m ∈ Bµ;

consequently, every set of form R(µ, x) with x ∈ A and µ ∈ P (x) is neces-
sarily the union of a family of sets of form Bµ, with µ ∈ Πp

k=1 P (xk).
We have thus proved that

R(µ, x) ∈ R ∀x ∈ A, ∀µ ∈ P (x),

relation which entails that R(A) is a subset of R, hence a finite set, for every
finite dimensional set A.

ii)⇒ iii): To the purpose of establishing this implication, we will repeat-
edly use the following result, whose obvious proof will be omitted.

Lemma 3.5. Let J be an infinite subset of N, and L ⊂ 2J be an infinite set
of subsets of J . Given J = ∪pi=1 Ji a finite partition of J , there is at least
one index k = 1, p such that the set {D ∩ Jk : D ∈ L} is an infinite set of
subsets of Jk.

Let us consider A, a subset of co (extB`∞) such that the set R(A) is
infinite. We will inductively define a sequence (xn)n∈N of vectors from A,
and, for every n ∈ N, a scalar µn ∈ P (xn), such that the two following
relations hold true:
α): the sets Ki, i = 1, n, given by formula (34), are all different,
β) the set {D ∩Kn : D ∈ R(A)} is infinite.
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Case n = 1: Let us pick x1 ∈ A. As relation α) obviously holds true
when n = 1, we only need to define µ1 ∈ P (x1) such that the set {D ∩K1 :
D ∈ R(A)} is finite.

To this respect, we apply Lemma 3.5 for J := N, L := R(A), and the
finite partition

N = ∪µ∈P (x1)R(µ, x1)

of N, and we deduce that it is always possible to pick µ1 ∈ P (x1) such that
the set

{D ∩R(µ1, x1) : D ∈ R(A)} = {D ∩K1 : D ∈ R(A)}

is infinite.
Case n > 1: Having defined xi and µi, i = 1, n− 1, let us remark that all

what it is needed in order to fulfill relation α), is to pick the vector xn ∈ A
in such a way that the set {Kn−1 ∩R(µ, xn) : µ ∈ P (xn)} possesses at least
two elements. Or, it is always possible to pick such a vector xn from A;
indeed, by assuming, to the end of achieving a contradiction, that for every
x ∈ A it holds that Kn−1 ⊂ R(µ, x) for some µ ∈ P (x), then it results that

{D ∩Kn−1 : D ∈ R(A)} = {Kn−1}.

But relation β) is valid for n − 1, so the set {D ∩ Kn−1 : D ∈ R(A)} is
infinite, and cannot contain only one element; our assumption is accordingly
false.

It remains to chose the scalar µn ∈ P (xn) such that relation β) is satisfied;
to this respect, let us apply once again Lemma 3.5, this time for J := Kn−1,
L := {D ∩Kn−1 : D ∈ R(A)} and for the finite partition

Kn−1 = ∪µ∈P (xn) (Kn−1 ∩R(µ, xn)) .

It follows that there is an element, say µn, in P (xn) such that the set

{D ∩ (Kn−1 ∩R(µn, xn)) : D ∈ L} = {D ∩Kn : D ∈ R(A)}

is infinite, and the second case is completed. Sequences (xn) and (µn) obvi-
ously prove implication ii)⇒ iii).

On the ground of Proposition 3.4, we establish the following result, pro-
viding a key property of the convex hull of ext(B`∞).
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Proposition 3.6. The convex hull of the extreme points of the unit ball of
`∞ does not contain any infinite dimensional closed convex set.

Proof of Proposition 3.6. Let us consider A, an infinite dimensional subset of
co (extB`∞). By virtue of implication i) ⇒ iii) from Proposition 3.4, there
is (xn), a sequence of elements from A, and (µn), µn ∈ P (xn), a sequence of
scalars, such that (Kn), the sequence defined by formula (34), is decreasing.
Our objective is to define a sequence of positive real numbers λn, n ∈ N,
of sum equal to 1, such that the vector x :=

∑
n∈N λn xn possesses infinite

many different coefficients.

As the sequence (Kn) is decreasing, it is always possible to pick, for every
n ∈ N, an index an which lies in Kn, but outside Kn+1; accordingly,

xn(ak) = xn(ap) ∀n, k, p ∈ N with n ≤ k < p, (36)

and
xn+1(an) 6= xn+1(ak) ∀n, k ∈ N with n < k. (37)

It is an easy task to recursively construct the sequence of positive scalars
τn, n ∈ N, such that τ1 := 1, τ2 := 1, and that

τn ≤
τq+1

2n
|xq+1(aq)− xq+1(aq+1)|, ∀q, n ∈ N with q + 1 < n. (38)

Indeed, let n ≥ 3 be a positive integer, and assume that the numbers τi > 0,
i = 1, n− 1 have already been chosen. As a consequence of relation (37) we
deduce that

τq+1

2n
|xq+1(aq)− xq+1(aq+1)| > 0, ∀q ∈ 1, n− 2;

it is thus always possible to pick a positive scalar τn fulfilling all the n − 2
inequalities implied by relation (38).

All the coefficients of all the elements xn, n ∈ N, lay between −1 and
1; in particular, |x2(a1) − x2(a2)| ≤ 2. By applying relation (38) for q = 1,
n ≥ 3, one deduces that

τn ≤
τ2
2n
|x2(a1)− x2(a2)| ≤

1

2n−1
∀n ∈ N, n ≥ 3,

so the series
(∑

n∈N τn
)

is convergent. We define λn := τn∑
n∈N τn

, a sequence

of positive real numbers whose sum is equal to 1. The following well-known
and easy to prove fact is provided here without a proof.
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Lemma 3.7. Let X be a real Banach space, (xn)n∈N ⊂ X be a bounded
sequence, and (λn)n∈N ⊂ R+ be a sequence of non-negative real numbers

whose sum is equal to 1. Then the series
(∑+∞

k=1 λk xk
)

is convergent, and
its sum belongs to the closed convex hull of the set {xn : n ∈ N}.

The series
(∑

n∈N λn xn
)

is thus convergent; let x denote its sum. We
claim that the coefficients x(an), n ∈ N, are all different.

To prove our claim, let us consider two positive integers q and k such that
q < k. By denoting the sum of the series

(∑
i∈N τi

)
by s, we have

sx(aq) =
∑
n∈N

τi xi(aq) (39)

=

q∑
n=1

τi xi(aq) + τq+1 xq+1(aq) +
∞∑

n=q+2

τi xi(aq),

and

sx(ak) =
∑
n∈N

τi xi(ak) (40)

=

q∑
n=1

τi xi(ak) + τq+1 xq+1(ak) +
∞∑

n=q+2

τi xi(ak).

From relation (36) it results that

q∑
n=1

τi xi(aq) =

q∑
n=1

τi xi(ak), (41)

and that
xq+1(ak) = xq+1(aq+1). (42)

Putting together relations (39-42) we obtain that

s (x(aq)− x(ak)) = τq+1 (xq+1(aq)− xq+1(aq+1)) (43)

+
∞∑

n=q+2

τi xi(aq)−
∞∑

n=q+2

τi xi(ak),

so, by taking the absolute value in relation (43) we infer that

|s (x(aq)− x(ak))| ≥ |τq+1 (xq+1(aq)− xq+1(aq+1))| (44)

−

∣∣∣∣∣
∞∑

n=q+2

τi xi(aq)−
∞∑

n=q+2

τi xi(ak)

∣∣∣∣∣ .
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Let us estimate the two absolute values from the right side of relation (44).
As the coefficients of the vectors xn are contained between −1 and 1, and
since the numbers λn are positive, we may conclude that∣∣∣∣∣

∞∑
n=q+2

τi xi(aq)−
∞∑

n=q+2

τi xi(ak)

∣∣∣∣∣ ≤ 2
∞∑

n=q+2

τi. (45)

on the other hand, by summing up after n ≥ q + 2 relation (38), one gets

∞∑
n=q+2

τi ≤

(
∞∑

n=q+2

1

2n

)
τq+1 |xq+1(aq)− xq+1(aq+1)| (46)

=
τq+1 |xq+1(aq)− xq+1(aq+1)|

2q+1

<
|τn+1 (xn+1(an)− xn+1(an+1))|

2
.

Taking into account relations (45) and (46), it yields that∣∣∣∣∣
∞∑

n=q+2

τi xi(an)−
∞∑

n=q+2

τi xi(ak)

∣∣∣∣∣ (47)

< |τq+1 (xq+1(aq)− xq+1(aq+1))| ;

finally, relations (44) and (47) combine to prove our claim.

The vector x has accordingly an infinite number of different coefficients.
Lemma 3.1 proves that x does not belong to the convex hull of the extreme
points of the unit ball of `∞, while Lemma 3.7 shows that x is an element
of the closed convex hull of the set A: consequently, the convex hull of the
extreme points of B`∞ does not contain any infinite dimensional closed convex
set.

Remark 3.8. A different light may be thrown on the previous result by
recalling the well-known theorem by Fonf and Lindenstrauss ([5, Theorem
3.3]) which proves that the norm interior of any symmetric closed polytope is
non empty, provided that the polytope does not lay in any closed hyperplane
in X.

Or Proposition 3.6 proves that the convex hull of the extreme points of
the unit ball in `∞, a set which, by virtue of Proposition 3.2, is a symmetric
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polytope, and visibly does not lay in any closed hyperplane in `∞, behaves in
a strikingly different manner. Indeed, not only the norm interior of this set
is empty, but co (extB`∞) does not contain any infinite dimensional closed
and convex set; in particular, the norm interior of every one of its infinite-
dimensional sections is empty.

3.3. Theorem B for the case x = `∞
The conclusions of Proposition 3.6 allow us to prove that Theorem B

holds true in `∞.

Theorem 3.9. The convex hull of the extreme points of the unit ball of `∞
cannot be expressed as a countable union of closed and convex sets.

Proof of Theorem 3.9. To the end of achieving a contradiction, let us assume
that

co (extB`∞) = ∪n∈NCn,
where Cn, n ∈ N are closed and convex subsets of `∞.

The set {yS : S ⊆ N} of all the extreme points of the unit ball of `∞
is infinite and uncountable; accordingly, there is at least one of the sets Cn,
n ∈ N, say Cn0 , which contains infinitely many vectors of form yS, S ⊆ N.

Consequently, the set R(Cn0) is infinite, and implication ii) ⇒ i) from
Proposition 3.4 proves that the set Cn0 is infinite dimensional. We have thus
found a closed and convex subset of co (extB`∞) whose dimension is infinite,
fact which contradicts the conclusions of Proposition 3.6, proving in this way
that our initial assumption is false.

4. Theorem B

This section addresses Theorem B in the general setting of real Banach
spaces. In order to construct, in any given real Banach space X, a convex
Fσ set which cannot be written as the union of countably many closed and
convex sets, we use the well-known theorem by Mazur 1 which says that any
infinite dimensional Banach space contains a basic sequence.

1Originally stated by Banach without any proof at page 238 of his foundational treatise
[2], this result was proved in [3, Corollary 3, page 157]; the reader may found a complete
account of this topic in the chapter V of the textbook [4]
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The proofs of the following two easy exercises will be omitted.

Lemma 4.1. Let X be an infinite dimensional real Banach space, and xn,
n ∈ N, be a basic sequence in X. The operator K : `∞ → X defined by the
formula:

K(y) =
∑
n∈N

y(n)

2n
xn ∀y ∈ `∞

is one-to-one an compact.

Lemma 4.2. Let Y and X be two real Banach spaces, and K : Y → X be
a one-to-one compact operator. If A ⊂ Y is a convex Fσ set which cannot
be expressed as the union of countably many closed and convex sets, then the
same holds true for K(A) ⊂ X.

Theorem 4.3. In any infinite dimensional real Banach space, there is a
convex Fσ set which cannot be expressed as a countable union of closed and
convex sets.

Proof of Theorem 4.3. The desired conclusion easily follows by combining
the conclusions of Lemmata 4.1 and 4.2, and of Theorem 3.9.

5. Concluding remarks

Theorems A and B provide us with a good understanding of the prop-
erties of the image of a closed convex subset of a real Banach space under
a Fredholm operator. These results may accordingly be seen as a general-
ization of the analysis done by Klee in [6, Theorem 6.1] for the Euclidean
case.

The study of Theorem B naturally rises the following question: does any
infinite dimensional real normed space contains a convex Fσ set which cannot
be expressed as the union of countably many closed and convex sets? The
answer, as proved by the following result, is negative.

Proposition 5.1. Let X be a real normed space, and assume that X =
∪n∈NXn, where Xn are finite dimensional subspaces of X. Then every convex
Fσ set may be expressed as the union of countably many closed and convex
sets.
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Proof of Proposition 5.1. Let C ⊆ X be a convex set such that C = ∪n∈N Fn,
where Fn, n ∈ N, are closed sets, and let us pick x0 ∈ C.

Let us set Dn := (∪ni=1 Fi)∩ (x0 +Xn)∩ (x0 + nBX); each of the sets Dn

is a no empty finite dimensional compact set, so its convex hull is closed. As
moreover C = ∪n∈NDn and C is convex, it follows that C = ∪n∈N coDn.

We are thus lead to address the following question, which, at the best of
our knowledge is open: which are the real normed spaces containing a convex
Fσ set which cannot be expressed as the union of countably many closed and
convex sets? In view of Theorem B and Proposition 5.1, the answer must
include the infinite dimensional Banach spaces, but must exclude the normed
spaces which can be written as the union of countably many of their finite
dimensional subspaces.

[1] F. Albiac, N.J. Kalton, Topics in Banach space theory, Graduate Texts
in Mathematics 233, Springer-Verlag, Berlin, 2006.
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