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APPROXIMATE CONTROLLABILITY OF SECOND GRADE FLUIDS

VAN-SANG NGO

ABSTRACT. This paper deals with the controllability of the second grade fluids, a class of
non-Newtonian of differentiel type, on a two-dimensional torus. Using the method of Agrachev-
Sarychev [1], [2] and of Sirikyan [25], we prove that the system of second grade fluids is approx-
imately controllable by a finite-dimensional control force.

1. INTRODUCTION

The goal of this paper is to study the approximate controllability of the system of fluids of
second grade, using low-mode (finite-dimensional) control forces. More precisely, we consider
the following system

O (u — aAu) — vAu +rot (u — alAu) x u+Vp= f+n
(1.1) divu =0

u(0) = uo,
on the domain T2, which is the two-dimensional torus |0, 271 [x]0, 27gs[, with ¢; > 0 and g2 > 0.
Here u = (uq (¢, x),us(t,x)) and p = p(t, z) are unknown and represent the velocity vector field

and the pressure function; f = f(t, ) is the extenal force field; and the control force n = n(t, x)
is supposed to belong to a finite-dimensional space which will be precised later.

Fluids of second grade belong to a particular class of non-Newtonian Rivlin-Ericksen fluids
of differential type [24], which usually arise in petroleum industry, in polymer technology or in
liquid crystal suspension problems. For these fluids, the Cauchy stress tensor o is not linearly
proportional to the local strain rate but given by

(1.2) oc=—pl +2vA; + a1As + agA%,

where v stands for the kinematic viscosity, p is the pressure and A;, As represent the first two
Rivlin-Ericksen tensors, which are

Ai(u) = % (Vu+ VuT) ,

corresponding to the local strain tensor and
DAy

Ag(u) = ﬁ (VU)T Al + Ay (VU) ,
where b

is the material derivative. In [7], Dunn and Fosdick used the compatibility of (1.2) with ther-
modynamics to prove that
ar+as=0; a >0.
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Setting o = 1 and writing the equation
D
FQZ =0+ u-Vu=divo + f,

one obtain the equations of second grade fluids of the following form
O (u — alAu) — vAu +rot (u — aAu) x u+Vp=f in Ry x T?
(1.3) divu =0 in Ry x T?
u(0) = ug in T2,

The local existence in time and uniqueness of a strong solution to (1.3) have been proven by
Cioranescu and Ouazar in [6] in the case of two-dimensional or three-dimensional domains with
non-slip boundary conditions. Moreover, the solution is global in time in the two-dimensional
case. Second grade fluids in these domains was also studied by Moise, Rosa and Wang in [20],
where the authors proved the existence of a compact global attractor in the two-dimensional
case. The existence, the uniqueness of a strong solution and the dynamics of second grade fluids
in the torus T? was studied in [23] by Paicu, Raugel and Rekalo, and in [22] by the first two
authors, using the Lagrangian approach. For further results concerning the system (1.3), we
refer the readers to [3], [4], [5], [13], [14], [15], [16], [17], [18], [19], ...

In this paper, in order to study the approximate controllability of the second grade fluid
system (1.1) by a low-mode control 7, we use the method introduced by Agrachev and Sarychev
in [1] and [2] for Navier-Stokes and Euler systems in the two-dimensional torus T2. This method
was extended later for the three-dimensional Navier-Stokes system by Shirikyan in [25] and [26]
and for the three-dimensional Euler system by Nersisyan in [21]. The main idea consists in
proving that, if the (finite-dimensional) space of controls F contains sufficiently many Fourier
modes then, for any 7" > 0, the system (1.1) is approximately controllable in time 7" by an
FE-valued control 7.

Before stating the main results and the main ideas of this paper, we will introduce the needed
notations and function spaces. Let H™(T?)? be the classical Sobolev space of two-dimensional
vector fields, whose components belong to H™(T?). For m = 0, we simply have H°(T?)? =
L*(T?)2. As in [23], for any m € N, we denote V™ (T?)? the closure of the space

{u € C*(T?)? | u is periodic , divu = O,/ udxr = 0}
T2

in H™(T?)2. Then V™(T?)? is a Banach space, endowed with the classical norm of H™(T?)2.
We also use H™,.(T?)? to denote the space of vector fields u € H™(T?)2, which are periodic and

per
whose mean value is zero.

In what follows, we recall the definition of a strong solution of the system (1.3).

Definition 1.1. Let T > 0. For any f € L* (0,T,H.,.(T?)?) and uy € V3(T?)?, the vector

per

field u(t,x) is said to be a strong solution of the system (1.3), with data (f,ug), on the time
interval [0,T] if u € C(0,T,V3(T?)?), dyu € L>®(0,T,V%(T?)?), w(0) = ug, and for any
t €]0,T), for any ¢ € V°(T?)2, the following equation holds

(1.4) (O (u(t) — aAu(t)) — vAu(t) + rot (u(t) — aAu(t)) x u(t), ¢) = (f(t), o) .
In [23], the authors prove that
Theorem 1.2. Let o« > 0 and T > 0.

(1) For any f € L*>(0,T, H;ET(TQ)) and any ug € V3(T?)?, there exists a unique strong
solution
u € C(0,T,V3(T?)?) nWh>(0,T, V(T?)?)



APPROXIMATE CONTROLLABILITY OF SECOND GRADE FLUIDS 3

of the system (1.3). Moreover, for any t € [0,T], the map
V3(T?)? 3 ug v u(t) € V3(T?)?

18 continuous.
(2) Let m > 2. Assume that f € L>®(0,T, H".(T?)?) and ug € V™3(T?)2. Then, the

per

solution u of the system (1.3) belongs to C(0,T,V™+3(T?)2).

For the system (1.1), we want to define the approximate controllability using low-mode con-
trols. We will adapt the definition of approximate controllability given in [25] to the case of
fluids of second grade.

Definition 1.3. Let T > 0 and let E be a finite-dimensional subspace of V3(T?)2. The second
grade fluid system (1.1) is approzimately controllable in time T by E-valued controls if, for any
e > 0, for any ug,ur € V4(T?), there exist a control n € L*>(0,T,E)? and a strong solution
u € C(0,T,V4(T?)?) of the system (1.1) such that

[(T) = urllys(pzyz < e

For any m € Z? \ {0}, let

cm(z) = m&t cos (m, ), and Sm(z) = m®L sin (m, z)

.
Then, it is classical that ¢, sm, with m € Z2\ {0}, are eigenvectors of the Stokes operator
—PA, where P is the Leray projection, and that the family {cp,sm | m € Z?\ {0}} forms an

orthonormal basis of V*(T2)?, k € N. For any N € N*, we set
(1.5) HY = Span{cm, sm | m € Z\ {0}, |m| < N}.
The main result of this paper is the following theorem.

Theorem 1.4. Let T > 0 and f € L>=(0,T, H2,.(T?)?). Then the system (1.1) is approzimately

per
controllable in time T by 'Hg’—valued controls.

We note that, unlike the case of Navier-Stokes equations, the system of second grade fluids is
an exemple of asymptotically smooth system, which only possesses a smoothing effect in infinite
time. The systems (1.1) or (1.3) also differ from the a-type models, such as the so-called a-
Navier-Stokes system (see [8], [9] and the references therein). Indeed, the a-Navier-Stokes system
contains the very regularizing term —vA(u — aAu) instead of —vAw, and thus is a semilinear
problem, which is easier to solve. It is different in the case of second grade fluids where the
dissipation is much weaker. This weak smoothing effect explains why in our result (Definition
1.3 and Theorem 1.4) we can not obtain an approximate control in the V4(T?)2-norm (norm of
the same space as the initial data) but only a control in V3(T?)2-norm. Another problem when
we want to apply the method of Shirikyan [25] lies in the complexity of the nonlinear term and
the appearance of the term 0; (—aAwu). To avoid this difficulty, let

U=u—aAu and Uy= ug— aAug
and let us rewrite the system (1.1) in the following form
OU+ LU+ BU,U)=Pf+n
(1.6) divi =0
U(0) = U,

where

{ LU = —vPA(I — aA) U
(1.7)

By, Up) =P (rotly x ((I —ad)"'U)).
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Along with the system (1.6), we consider the following controlled system
U+ LU+ +BU+CUAC) =Pf+n
(1.8) divid =0
U) =U.
Following the ideas of [1] and [25], we give the following definition

Definition 1.5. For any finite-dimensional subspace E of V3(T?)?, we define F(E) as the
largest vector subspace of V3(T?)? such that for any 7 € F(E), there exist

keN, ag,...,ar >0, n,pl,...,pkEE

satisfying
k

j=1
It is easy to verify that F(FE) is well defined and E C F(E). Then, we can define a sequence of

subspace
E=FyCFE C...CE,C...

such that, for any n € N we have E, 1 = F(E,). Let

oo
Ew = | En.
n=0
The goal of this paper is to prove that Theorem 1.4 is only a consequence of the following results.

Theorem 1.6 (Extension). Let T > 0 and E a finite-dimensional subspace of V3(T?)2. Then,
the system (1.6) is approzimately controllable in time T' by an E-valued control n if and only if
so0 is the system (1.8) with E-valued controls n and (.

Theorem 1.7 (Convexification). Let T > 0 and E a finite-dimensional subspace of V3(T?)2.
Then, the system (1.8) is approximately controllable in time T by E-valued controls n and ¢ if
and only if so is the system (1.8) with F(E)-valued controls n.

Theorem 1.8. If F = ’HZ then Es D ”Hév, for any N e N, N > 3.

The paper will be organized as follows. In Section 2, we study a pertubation of the system
(1.6), which is necessary to prove our main theorem. Theorem 1.6 will be proved in Section 3.
Section 4 is devoted to the demonstration of Theorem 1.7. In Section 5, we put in evidence the
saturation property given in Theorem 1.8. Finally, in the last section, we wil prove the main
theorem 1.4.

2. PRELIMINARY RESULTS ON THE SYSTEM OF FLUIDS OF SECOND GRADE

In this section, we consider the following perturbed system of fluids of second grade
OW + LW + BW) + BOW, V) + B(V,W) =Pf in T? x [0, T
(2.1) divy =0 in T2 x [0, T
W(0) = Wy in T2,
where V € L>°(0,T,V?(T?)?), f € L>°(0,T, H,,(T?)?). We want to prove that
Theorem 2.1. Let T > 0 fized.
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(1) For any V € L2(0,T,V2(T2)?), f € L2(0,T, H}..(T?)?) and Wo € V1(T?)2, the system
(2.1) with ¥V = 17, f= ]? and Wy = WO has a unique solution

W e L(0,T,VH(T?)?) n C(0,T, V'(T?)?).

Moreover, if V € L(0,T, V3(T?)?), fe L2(0,T, H2,.(T?)?) and W € V2(T?)? then

per
W e L=(0,T, VA(T?)?) N C(0, T, V2(T?)?).
(2) Suppose that
W e L(0,T,VX(T?)?) n C(0,T, V2(T?)?).
Let W be the solution of the system (2.1) with data (V, f,Wy). Then, there exists a

constant C > 0 such that, for any t € [0,T], we have
(2.2)
Vl(TZ)Z) )

W -

—~

W(t)‘ gCOV—ﬁ]

+HIP>f—Pﬂ

-

Vi(T2)? L2(0,T,V2)? L2(0,T,V1)?

We remark that if we set
v=(I—aA)"'V
wo = (I — OzA)flVVQ
w= (I —al)"'W
then, w is solution of the following system
O(w — aAw) — vAw + PB(w) + PB(w,v) + PB(v,w) = Pf
(2.3) divw =0
w(0) = wo,
where
B(uy,uz) =rot (u3 — alAug) X ug and B(u) = B(u,u).
Theorem 2.1 is in fact equivalent to the following theorem for the system (2.3)
Theorem 2.2. Let T > 0 fized.
(1) For any v € L*(0,T,V*(T?)?), fe L*(0,T, Hp,,.(T*)?) and wy € V3(T?)?, the system
(2.3) withv =1, f = f and wy = @ has a unique solution
@ e L*®0,T,V3(T?)*) nC(0,T,V3(T?)?).
Moreover, if U € L2(0, T, V3(T?)?), f € L*(0,T, H2.,.(T?)?) and wo € V*(T?)? then
W e L®0,T,VY(T?)*) nC(0,T,VHT??).

(2) Suppose that
@ e L°°(0,T,V4(T?)?) nC(0,T,Vi(T?)?).
Let w be the solution of the system (2.3) with data (v, f,wy). Then, there exists a

constant C > 0 such that, for any t € [0,T], we have
(2.4)

Hmw—wwmqusc(w—ﬁmmmwp+Ww—Pﬂ

L2(0,T,V1)2 + Hwo - wOHVS(Tz)2> .
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In what follows, using the same notations as in [6], [23] or [22], we identify a 2D vector (u1,u2)
with the 3D vector (uj,us2,0) and a scalar A with the 3D vector (0,0, ). We also set

Q = rot (w — cAw), Q = rot (@0 — e AD)
(2.5) V =rot (v — aAv), V = rot (U — aAD)
0=0-Q. W =w—a.

2.1. Propagation of the V3-norm. In this paragraph, we give a priori estimates of a solution
of the system (2.3) in V3(T?)-norm. Applying the rot operator to the first equation of (2.3),
we obtain

(2.6) 02 + gQ +P(w-VQ)+P(v-VQ) +P(w-VV) =rot Pf + grotw.

Since v and w are divergence-free vector fields on T2, integrations by parts show that
(- VO, Q) p2qaye = (v VE, Q) 1222 = 0.

As a consequence, taking the L?(T?)? inner product of (2.6) with Q, we get

(2.7)
1d
5@ + <I'0t f, Q>L2(T2)2

2 v 2
12 72(2y2 + o [ 72(r2y2 < [{w - VV, Q) 2(q2y2 (ot w, ) 2(72)2

14
+ —
«

14
< [0t £l p2(roye 19 zzcrzye + (IVV Il zzgazye + = ) 19205 2craye

which implies that

d
(2.8) G2y < IF g + (14 2 [0llyacrape ) 1920 7oy

Finally, the Gronwall lemma gives, for any 0 <t < T,

29)  120)F2mey < (190 Fgmeye + 1 1Frvrroy ) expt (1420l mo vy )

2.2. 2D a priori estimates of the difference of two solutions in V3-norm. We recall the
identity (given for example in [6] or [23])

rot (rot (a) x b) = b- Vrot (a),

where a and b are 2D vector fields and dive = 0. We deduce from (2.3) that Q and Q are
solutions of the following equation, with data (v, f,wp) and (v, f, Wy) respectively.

(2.10) 20 + gﬂ FP(w-VQ) +P(v-VQ) +P(w-VV) =rotPf + grotw.

The calculation of the difference between the equations corresponding to €2 and O shows that
O satisfies the following equation

(2.11) 8t0+§O+P(w'VO)+P<(w—@)-Vﬁ) +P(v-v0)+u»((v—a)-vﬁ)

“~ 14

+P(w-V(V—?>)+P((w—ﬁ?)'Vr/> = rot(IF’f—IP’f)—l—Erot(w—@).

Using the divergence-free property of v and w, we have

(2.12) <1) : VO, O>L2(T2)2 = (w : VO, O>L2(T2)2 =0.
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Now, using Hélder’s and Cauchy-Schwarz’s inequalities, we get

(2.13) ’<(w — @) vﬁ,0>

<[vo

lw = @[ oo (12y2 [|O] L2(72)2

L2(T2)2 L2(T2)2

<c||va| , ., I = @llyagae 100 L2y

L3(T2)2
< C|@llyacpzyz 1O (p2yz

The same calculations give

(2.14) <(u ~%)- v, 0>L2(T2 <C HVQ) pocaye 10 = Plaoegzags 10l acraye
< C[@llyagraye (Hv = Blszeye + 10122 raye)

213 |(w(v-7).0), ..

< Hw”Loo(’]I‘Q)Q \Y (V - V) L2(T2)2 ||(9||L2(']I‘2)2

< Ollwllprereye v — Dllyapey 10 1 paye

< O (I = @l gy + 1l ograye ) 0 = Bllyaraye 10l 2raye

< C (10l acraye + 18l g raye ) 10 = Blyacraye 1Ol ey

< C @] oo p2y2 IIv = BllFragaye + C (H@HLoo(W)'z + v — 17”\/4@2)2) 1O 72292 »
(2.16) ‘<(w —w) - V‘//\Y, O>L2(T2)2 < lw — 1/U\||Loo(11-2)2 22 HOHL?(T?)?

< Cllw = @llysepzye [[2llyacrzye 100 2 (p2)2
< Clollyarye Ol ey

For the forcing term, we have

N 2
(2.17) (vot (Bf — IP’f),O>L2(T2)2 <C <pr B ||0\|L2(T2)2) ,
and finally,
(2.18) ‘(rot (w — @), 0) p2(p22| < ||rot (w — D) || 2 g2y 1Ol p2epye < CON 72 g2z -

Taking the L? inner product of (2.11) with O, and using Estimates (2.12) to (2.18), we obtain

1d

> d (el r2)2 + — HO”%?(TQ)Q

< O llyagroys o = lbageays + [ ~ BF]

V1(T2)2
+ O (1+ 1B llyacray + [Fllyacraye + v =Bllysceaye ) 1032z
For any 0 <t < T, the Gronwall lemma implies that
~ 2
(219)  0)2ga < Ce™(Jjew(0) = BO) [y

+ 7| - Pﬂ\ + O T o =813 e yagrae )

LoV (T2)2
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where C' is a generic positive constant and

Cr = [0l Lo, v412)2)

Co = 14 [[@l] poo (o1 (12)2) + V1l oo o, va(12)2) + 10 = Vll oo (07,10 (12)2)
The inequality (2.4) of Theorem 2.2 (2) is then proved.

3. STUDY OF THE EXTENDED CONTROLLED SYSTEM

In this section, we want to show that, the approximate controllability of the system (1.6) is
equivalent to the approximate controllability of the system (1.8) by low-mode controls. For any
finite-dimensional subspace E of V3(T?)2, we remark that the approximate controllability of the
system (1.6) by E-valued controls implies immediately the approximate controllability of the
system (1.8) in the same space of controls. Indeed, we only need to choose ¢ = 0 in the system
(1.8). Then, in order to prove Theorem 1.6, we only need to prove that

Theorem 3.1. Let T > 0 and E be a finite-dimensional subspace of V3(T?)2. Let 0, €
L>®(0,T,E)* and

UeL®(0,T,V¥T*)?)nC(0,T,V*(T?)?)
be a solution of (1.8). Then, for any k € N*, there are a control ni, € L*> (0,T, E)2 and a
solution

U, € L= (0,7, V*(T*?) nC (0,7, V*(T?)?)
of the system (1.6), with n = ng, such that Ux(0) = Uy, and
kgffoo U4 (T) — Z/{(T)HVS(T?)2 =0.

Proof. First of all, we can rewrite the system (1.8) as
oU + LU+ BU,U) +BU, )+ B U)=Pf +n— L —B(C)
(3.1) divi =0
U(0) = U,
where
LU = —vPA(T — ad) U
{ B(Uy,Us) =P (rotlh x (I —aA)"'U)).

Thus, applying Theorem 2.1 to this system, for any 1, € L>(0,T, E)?, we obtain the existence
of a unique solution of the system (3.1) (or (1.8))

UeL>®(0,T,V¥T*)?)nC(0,T,V*(T?)?).

Next, we remark that we can also rewrite the system (1.8) as
U+ O)+LUA)+BU+C) =Pf+7
(3.2) divid =0
U(0) = Uy,
where
=1+ 0,
which means that, if & is a solution of the system (1.8) and if 7 is well defined and belongs

to L*(0,T, E)?, then U + ( is a solution of the system (1.6), with 1 replaced by 7 and Uy by
Up + ¢(0). So, if we want to construct a solution of the controlled system (1.6) satisfying the
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conditions of Theorem 3.1, we only need to check whether the conditions at time ¢ = 0 and
t =T are satisfied. To this end, we will consider a sequence of controls

(€ CH0,T,E), VkeN
such that
and
Jim 116 = Gl gy = 0.

Applying Theorem 2.1 to the system (3.1), for any € > 0, for ko large enough and for any k > ko,
there exists a unique solution

Wy € L= (0,7, V*(T?)?) n C (0,T,V*(T?)?)
of the system (3.1) (or (1.8)), with ¢ replaced by (j, such that

sup [[Wi(t) — U(t)|ly1(2y2 < e
te[0,7
Now, setting
U = Wi + (.

Then, U, is the solution of the system (1.6), with 5 replaced by n + ;¢ € L*(0,T, E)?.
Moreover, we have

U (0) = Wi(0) = U(0) = Uo,
and
[Ue(T) = U(T)ly3(12y2 = [We(T) = UT)[ly5(g2y2 < e
Theorem 3.1 is proved. ]

4. CONVEXIFICATION OF THE CONTROLLED SYSTEM

This section is devoted the to prove of Theorem 1.7. From the definition 1.5 of F(E), we
remark that £ C F(E) ans so, the approximate controllability of the system (1.1) (or (1.6))
by E-valued controls evidently implies the approximate controllability of the system (1.1) (or
(1.6)) by F(E)-valued controls. In order to prove Theorem 1.7, we only need to prove that

Theorem 4.1. Let T > 0, E be a finite-dimensional subspace of V3(T?)2. Let 7 be a control in
L>®(0,T, F(E))? and

UeL>®(0,T,V*T?)?)nC (0,T,V*(T?)?)
be a solution of (1.6), with n replaced by 1. Then, for any k € N*, there are controls ny, (i €
L>®(0,T, E)* and a solution

U, € L= (0,7, V*(T*)?) nC (0,7, V*(T?)?)
of the system (1.8), with n replaced by n and ¢ by k., such that Uy(0) = Uy, and
’uk(T) - H(T)Hvl(TZ)Z =0.

lim {
k——+o0

The proof of Theorem 4.1 is rather long and complex. In order to introduce this proof in a
legible way, we will divide it into several steps.

Step 1. Limit the proof of Theorem 4.1 to the case of F(E)-valued piecewise constant controls
(with respect to the time variable).
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We suppose that Theorem 4.1 is true for F(FE)-valued piecewise constant controls. We want
to prove that Theorem 4.1 is also true in the general case. Let 77 € L*°(0,T, F(E)) and let

UeL>®(0,T,V¥T?)?)nC(0,T,V*(T?)?)

be a solution of (1.6), with n replaced by 7. We consider an approximation of 77 by a sequence
{n™} of F(FE)-valued piecewise constant controls such that

ml_lg_loo Hnm _ ﬁHLZ(O,T,VQ(T?)?) =0.

Applying Theorem 2.1 (while taking V = 0 and replacing f by f 4+ n™ and f + 77), we deduce
the existence of a solution

U™ e L>(0,7,V*(T*?) nC (0,7, V(T?)?)
of the system (1.6), with n replaced by ™, such that
m 77 7/ m_q °
tes[l(l)%] Hu (t) 7u(t)Hvl(T2)2 <C (HL{HLQ(O’TA/Q(TQ)Q)) ||7] - 77||L2(0,T,V2(T2)2) < 5’
for any m larger than a certain mg € N*.

Now, Theorem 4.1 being true for F(FE)-valued piecewise constant controls, we deduce the
existence of n and ¢ in L®(0,T, E)?, and a solution

UeL>®(0,T,V¥(T*)?)nC (0,T,V*(T?)?)
of the system (1.8) such that
U©) =um(0) =u(0),

and ;
sup ”Z/I(t) 7um0(t)||vl(T2)2 S 5
te[0,T)
Therefore,
sup [[U(t) = U1y < sup [UE) = U™ )l g2je + sup [UT() = UD) |1 gaye < e
t€[0,7) te[0,T) t€[0,T)

Remark We can even reduce the study to the case where the control 77 accepts only one interval
of constancy, with respect to the time variable. For that, we suppose that the intervals of
constancy of 77 is |0, ¢1[, |t1,t2[, - ..]tn, T[ and then we perform an argument par iteration (as in
[25]). So from now on, we will consider 77 € F(FE) independent of the time variable.

Step 2. Construction of solutions of the extended controlled system (1.8).

The construction of controls 7, (; and a solution Uy, of the controlled system (1.8), with
(n,¢) replaced by (7, (), follows the lines of the construction in [25] (see also [1] and [2]). The
main difficulty consists in the treatment of the relaxation norm and the convergence to zero of
the solution of the system (4.14) described later.

Let
UeL>®(0,T,V¥T*)?)nC(0,T,V*(T?)?)
be the solution of the controlled system (1.6), with n replaced by 7 € F(FE). Let ¢ > 0 and
6 > 0 which will be precised later and choose N > 0 large enough such that

1f = Pnfll20,mv 22y + U0 — PnUolly ()2 <9,

where Py is the projection onto the space of the first N eigenvectors of the Stokes operator
—PA and where P is the Leray projection onto the subspace of divergence-free vector fields of
L?(T?)2. Let

Vo = Pnly



APPROXIMATE CONTROLLABILITY OF SECOND GRADE FLUIDS 11

and Vy be the solution of the system

VN +LVN+B(Vn)=PPnf+7
(4.1) divVy =0
Vn(0) = Vo = PnlUp.

Using the definition in (1.7), we remark that (I — aA)~'Vy is the solution of the system (1.1),
with ug = (I — @A)~ PylUy and 7 replaced by 7. Then, applying [[23], Theorems 2.1 and 2.4],
we obtain the existence of a unique solution

Vn € L™ (0,T,V3(T?)?) n C (0,T,V3(T?)?)

of the system (4.1). The following lemma (see [25]) allows us to have a “good decomposition”
of F(E)-valued controls in terms of E-valued controls.

Lemma 4.2. Let E be a finite-dimensional subspace of V3(T?)2. Then, for any 7 € F(E),
there exist m € N*; n,p,....p"m € E and M\i,..., A\ € R%, with Y- A\j = 1, such that, for any
U € VHT?)?2, we have

m

BU) —1=>Y X (B(u+p)+Lp)—n.

j=1
Proof. Since 77 € F(F), Definition 1.5 implies that there exist
keN* aq,...,5>0; and 7,p',...,pF € E

such that

k

m=1i->» aB({).

j=1

Let m=2k,a=a1+ ...+ o and
Aj:%, P =vap, Vjiell,... .k}
e

Qi . ~G .
N= = —Vap Tt Ve kL. m).

We remark that, for any j € {1,...,k}, we have
Aj=XNgx and pf = —pitk
Then, for any U € V?(T?)2, direct calculations give,

B(u,U)—ﬁ:ZAj (BU+ o))+ Lp") —n. |

Jj=1

Lemma 4.2 allows us to rewrite the system (4.1) as follows

OVN + LVN + YN (B(Vn +p7) + L)) =PPxf +1

(4.2) =1
divVy =0

Y (0) = Vo = Pylho.
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Now, we use the same construction as explained in [25] to build the needed additional control
¢ in the system (1.8). To this end, we introduce the following 1-periodic function ¢ : Ry — F

o(s) =¢(s+1) forany s € Ry

(4.3) o(s) = pt si0<s< A\
o(s)=p’ SiA . N1 <s<AA+... .+, forany2<ji<m
For any k > 1, let
kt
(1.4 w0 = ()

Then, the system (4.2) can be rewritten as follows

VN + LN + ) + B(VN +¢r) =PPnf +n+ fi
(4.5) divVy =0

Vn(0) = Vo = PylUo,

where
(4.6) Te(t) = gr(t) + h(t),
with

gr(t) = Ly(t) ZA Ly
(4.7)

hi(t) = B(Vy + ¥i(t) Z)\BVNer])

7j=1
We remark that, for any s € {1,2} and for any U € V*(T?)2, we have

||£u||vg T2)2 <= HUHW T2)2

Then, for s € {1,2} and for any ¢t > 0, simple calculatmns give,

@8 Ol < IOl + 325 160 e <22 2 17y
]:
(49 Nr®llyserayz < UBON +$e@llyscray + D A5 [|BON +0)lygray:
j=1

<2 max [|BON +07) g -

Concerning the bilinear operator B, classical results imply, for any ¢ € V3(T?)? and V €
VQ('I[Q)Q’
(4.10) HB(uvv)”Vl(TQ)Q < Hrot (rot & x ((I_O‘A)_IV))HH(T?)?

= H( —alA)” ) V(TOtu)HLz(T2)2 <C ||V||V2(']1‘2)2 HZ/{HV?(']I‘?)2
and
(A1) 1BV vy < C(Irotllyagmaye 17— ad) V] oy

-1
< ClVlveerey [Ullys(re)

Then, we obtain, for s € {1,2} and for any t > 0,
(4.12) l96@)llys(raye < 2v max |||

Vs (’]1‘2)2
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and

(4'13) Hhk(t)HVS(’]I‘?)2 <20 1%%}% HVN +ijV2(’]I‘2)2 HVN +P]{

Vs+l(T2)2 .

Next, following the ideas of [25], for any f € L>(0,T, H},.(T?)?), let Kf be the solution of

the system g
OZ+LZ =Pf
(4.14) divZ=0
Z(0) =0.

By considering z = (I — «A)~!Z and applying [[23], Theorem 2.4] (with u* = 0), we have the
following

Lemma 4.3. Let s € N*. If f € L>(0,T,V*(T?)?) then
Kf e L>®(0,T,V*(T*?) N C(0, T, V(T?)?).
For any k£ € N*, we set
Wi = VN — K fi.

Then, the system (4.5) becomes
(4.15)

OWr + LW + BOWL) + BWi, ¥ + K fx) + Bty + K fir, W)

=PPyf+n—PBWr+ Kfi) — LYy
div Wy, = 0
Wk(O) = Vn(0) = PnlUp.

In other words, W, is the solution of the system (2.1), with

(4.16) V= +Kfe, f=Pnf+n—By+Kfx)—Lop, Wo= Pylho.
Let
(4.17) V=1, [=f+n-B{xr) — L, Wo=U,

and let Uy be the solution of the system (2.1) with data (V, f, Wy). It is then easy to show that
U, is the solution of the controlled system (1.8), with controls n and { =

Oy, + L (U + Yx) + B (U + i) =Pf +1n
divif, =0
Ur(0) = Up.

So, all we need to do now is to prove that, for any € > 0, there exists kg € N* such that, for any
k > kg, we have
Huk(T) - u(T)HVI(TQ)Q <eg,

where U is the solution of the controlled system (1.6), with 7 replaced by 7j € F(E).

Recall that Wk = VN — Kfi. For any t > 0, we have
(4.18)

2 (8) = U [[ 1 g2y < U (1) = VN (B)llyagpoye + [V () = U@ || 1 722
< b = Wa)|| A Oz + [0 =Ty e

V1(T2)2
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Applying Theorem 2.1 with V = Y= 0, we obtain

VN () = U gy2 < € (I1F = Pull oy oz + o = Paldollysraye ) < €.
Applying Theorem 2.1 once again with
V=ap+Kfr, f=Pxf+n—B+Kfx)— Ly, Wo=Pylh.

and
V=1, [=F+n-BWk) — L, Wo=U,
we get
ZAORSTACH B
= C( HV -V L2(0,T,V2(T2)?) + H? B ‘}?' L2(0,T,V1(T2)?) + HWO B WO) Vl(’ﬂ‘2)2)

< C(IC il aqomvamoyey + 1Bk + i) = B 2o vy

+ 1 = Pnfll20,m,v1(2y2) + U — PnUol[y1p2)2 )
Next, Estimate (4.10) implies that
1Bk + Kfie) = Bl L20,mv1 (12)2)
S NBWow, Kfi)ll 20,0, (r292) + 1B Sies ) | 20,7 v 1 (r202) + 1B Sl 20, 1,01 (12029

< CT? I fill 1,00 (0,T,V2(T2)2 (HIkaHLOO 0.T,v2(12)2) T 1%3221 HP]HW T2)2 )
Then, we deduce from (4.18) that

Huk(t) Uu t)HV1 (T2)2

<C§+CT: 1Skl oo (0,102 (122 <HIkaHL°° (0,T,v2(T2)2) T 1258 HijVZ(’]TQ)? + 1) :

Now, we fixe NV € N* so large that C'§ < 5. In order to prove Theorem 4.1, we only need to
prove the following lemma.
Lemma 4.4. We have
e 1 Full oo 0,7,v2(m2)2) = 0.

In order to prove Lemma 4.4, we need to prove the following result concerning a relaxation norm
of fi (see [1] and [2] for more details on the definition of relaxation norm).

Lemma 4.5. Let T' > 0 and for any k € N*, let f be defined as in (4.6). Then, we have

/fk

lim sup =0.

k——+o0 tE[O T

V2(T2)2

Step 3. Proof of Lemma 4.5.
For any k£ € N* and for any t > 0, let

0= [ nisris

(4.19) R 1Ekll 0.7,z (72)2) = 0-

So, our goal is to prove that
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We remark that Estimates (4.10), (4.11) and the definition of fj imply that if (4.19) is true for
all piecewise constant (with respect to the time variable) functions Vy, then (4.19) is true for
all functions Vy (by using an approximation of Vy by piecewise constant functions). For this
reason, we suppose that there exist L € N*| tg,...,tr, € Ry such that

O=ty<...<tp=T,

and that
VN(t) = Uq, VtE]tq_l,tq[, Vqe {1,...,L}.

Step 3.1. We will proof that
lim Fy(t) =0.

k—4o00

First of all, we suppose that Vy is a constant function with respect to the time variable, i.e.,
Vn(t) = v, for any t € [0,T]. Then, recalling the definition of gx, hy in (4.7) and of 1% in (4.3)
and (4.4), for any ¢ € [0,7] we have

/Otgk(S)ds:/Otﬁ¢k<3>d8—j§)\j/0tﬁpjd52 (/ot&P (kT3> ds) ‘tg%ﬁpj

kt m
T [T ,
_ /T Lo (r)dr— > A Lo,
k Jo =
and similarly,

/Othk(s)ds: CIC/OTB(v+¢(7))d7—tZAjB(v+pf').

j=1
Using the definition of ¢, we deduce that, for any ¢ > 0,
t+1

t

Lo (T)dr = Z Lo,
j=1

and thus,

kt m kt
T [T T |kt . T [T

kt

where [z] is the largest integer smaller than or equal to the real number x. Since, / ! Lo (T)dr
[7]

is bounded for all £ € N*, and since

im Z @ =1
k~>+ook T 7

for any t > 0, we obtain
t
li ds = 0.
k—1>I-|I—100 0 gk(S) 8
The same argument gives
t
li hi(s)ds =0
k—1>I-‘yI-100 0 k(S) s ’

and thus, we have

t
lim Fi(t) = lim /fk(s)ds:().
0

k——+o0 k——+o0
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Now, if Vy is a piecewise constant (with respect to the time variable) function, then there
exist L € N*, tg, ..., t, such that
O=to<...<tp, =T,
and that
VN (t) = vy, Vitelte—1,ty, Vge{l,...,L}.
For any t € [0, T'[, there exist ¢ € {1,... L} such that t,_1 <t <t,, and we write

t

(4.20) Z s)ds + fr(s)ds

tp—1 tg—1

Since Vy is constant on every time interval |t,_1,t4[, for any ¢ € {1,..., L}, by a change of time
variable, we deduce from the previous paragraph that

t
lim fr(s)ds =0,

k—+oc0 tq—l
for any ¢ € [t,—1,t,] and for any ¢ € {1,...,L}. Then, (4.20) implies that
lim Fy(t) = lim / fr(s

k—+o0 k—+o0

Step 3.2. We remark that, for any ¢ € [0, 77, the set {F(t)}, is relatively compact in V2(T?)2.
Indeed, the set {fx(t)} only takes a finite number of value, independently of k. Let M be the
set of value of {fi(t)} and we suppose that

M ={M,...,Mg}, K e N*.
Then, there exist positive constant aq, ..., ax such that
a1+ ...+axg =1

and
K

Fk(t) = ZalMZ
i=1
Thus, {F)(t)}, is relatively compact in V?(T?)2. Moreover, from (4.12) and (4.13), there exists
a positive constant Cj such that

sup ||fk(t)||v2(']r2)2 < Co,
t€[0,T7

which means that {Fj(-)}, is equicontinuous. Then, the Ascoli’s theorem implies that {Fj()},
is relatively compact in C(0,T,V?(T?)?).
Step 3.3. We have

o {F()}, is relatively compact in C(0, T, VZ(T?)?).
e [,(t) — 0 in V2(T?)2, for any t € [0, T].

Then, it is clear that

| |
=
|

/fsds

lim  sup [[Fj(¢)[ly2(pz)2 = lim sup

k=00 te(0,1) k=00 e(0,1) V2(T2)2

Step 4. Proof of Lemma 4.4.
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We recall that Z = K f}, is the solution of the system

HZ + LZ =Pfy
(4.21) divZ =0
Z(0) = 0.

or equivalently, z = (I — aA)~!Z is solution of the system

O(z — alz) —vAz =Pfy
(4.22) divz =0
z(0) = 0.

We also recall that a priori estimates in this paragraph can be justified by applying an approxi-
mation by a Galerkin scheme. Following the method presented in [23], we apply the rot operator
to the first equation of (4.22) and then we take the L? scalar product of the obtained equation
with —rot (Az — CKAQZ). We get

1d

(423) o

IV (rot z — av rot Az)||L2(T2 s+ v (HArot z||L2 T2)2 + @ HAQ,ZHLQ )

=— <rot fx , rot (Az — aAQZ)>L2(T2)2 .

Integrating over [0,t¢] and then, performing multiple integrations by parts (with respect to the
space variable x and then with respect to the time variable t), we have

(4.24)

1 t t
3 |V (rot z(t) — « rot Az(t))HQLg(Tg)g +v (/0 || Arot z(s)H%g(Tg)g ds + a/o HA%(S)H;(T%Q ds)
t
= —/ / rot fi(s, x) - rot (Az — aA?2)(s, x)dzds
o JT2
t
= / / Vrot fi(s,x) : V(rot z — o rot Az)(s, x)dxdt
0 JT2

= / (/t Vrot fi (s, x)ds) : V(rot z — arot Az) (¢, z)dx
TQ

/TQ/ (/ Vrotfk(T,a:)dr) : (;SV (rot z — a rot Az) (s,x)) dsdx

— Ji(t, k) + Ja(t, k).

For the first term on the right-hand side, Cauchy-Schwarz inequality implies that

(4.25) |J1(t, k)| < IV (rot z(t) — a rot Az(t))HLg(Tg)g

L2 (’]I‘2)2

t
/ Vrot fi(s, x)ds
0

/t fk(57x)d5
0

<C

|V (rot z(t) — a rot AZ(t))HLz(Tz)z )
V2(T2)2
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ds
L2(T2)2

For the second term, also using Cauchy-Schwarz inequality, we obtain

|Jo(t, k)| </ < / Vrot fi (T 885
t s 2 2 t 2 3
< / fr(m)dr ds / ds
0 0 V2(T2)2 0 L2(T2)2
L t 2 %
<T2 sup / fr(s / ds| .
V2(T2)2 0 L2(T2)2

te[0,7]
Now, we come back the first equation of (4.22). Applying the rot operator to this equation and
then, taking the L? scalar product of the obtained equation with — rot (Az — aA?z ) we get

V (rot z — arot Az) (s)

L2('H‘2)2

3}
%V (rot z — arot Az) (s)

0
av (rot z — a rot Az) (s)

|0 Vrot (2 — OZAZ)||L2(T2)2 + = v d <||r0t Az||L2 T2)2 + @ HAQzHLz )

2.dt
= (Vrot f , 8tVrot (z — alz)) 122y -
Thus,

t
2
/0 105 Vrot (2(s) — alz(s))| 3 (22 ds + (Hrot Az(t )H%Q(TQ)Z +a HAzz(t)HLQ(T2)2>
¢
< / IVrot fir(s)ll L2 (r2ye 195 Vrot (2(s) — alz(s))| 2 (g2 ds
0

1
t 2
< Ufullzryacrs ([ 10:9100 (:(6) = a82(6)I s ds)
Come back to Ja(t, k), we have
t
/ fr(s)ds
0

Combining (4.24) with (4.25), (4.26) and the fact that

(4.26) Jo(t, k)| < CT sup

Jrll poo :
Sup. 1kl oo (0,7,v2(72)2)

V2(T2)2

lim sup / fr(s =0,
k=400 tef0,T) V2(T2)2
we conclude that
0< kglfoo 1K fkll oo (0,7, v2 (r2)2) < Ckgrfoo IV (rot z(t) — a rot Az(t)) | peo 0,1, 2(12)2) = 0. W

5. SATURATION PROPERTY FOR THE CONTROLLED SYSTEM OF FLUIDS OF SECOND GRADE
Let ¢ = (q1,q2) € ]0, +00[? be fixed and
T2 = R*/Z? with  Z2 = {x = (1, 22) € R? ; €7, i= 1,2}.
For any = = (x1,22),y = (y1,2) € R?, let
(T,y) = 191 + 22y2, |z = |z1] + 22|, 2] = (2, 2),

/ 2 722

T1Y1 T2Y2 L )

ny 74_77 D) 9
< >q q1 q2 ” H Q% Q%

and
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For any a = (ay,az) € R?\ {0}, let a* = (—ag,a;). We will denote a®* the unit vector which
satisfied <a, aQ7l>q =0 and Haq’L H = 1 and we denote P, the orthogonal of R? onto the subspace

Span {aq’J—} generated by a%*. Direct calculations also give

Lemma 5.1. Let a,l € R?\ {0}. Then,
(5.1) P (a cos <l,:c>q) — (Pua) cos (I,z),

(5.2) P (a sin (l,x>q) = (Pa)sin(l, z),

We recall that for any m € Z2\ {0}, we set

em(z) = m&t cos (m, x) and Sm(z) = mdt

g sin (m, x)

.
These vector fields ¢, Sm, with m € Z2\ {0}, are eigenvectors of the Stokes operator —PA and

the family {cm, sm | m € Z?\ {0}} forms an orthonormal basis of Vk(Tg)Q, k € N. In Section
1, for any N € N*, we already set

(1.5) HéV:Span{cm,sm|mEZ\{0},]m|SN}.
For any m € Z? \ {0}, let
Cm = Span{cm,c—m} and S = Span {sm, S—m}.

Lemma 5.2. Let m,n € Z*\ {0}. For any fm € Cy and g, € Sy, there exist fins Gn € R2 such
that

(Frsm) = (Gam)y = 0,

fn(@) = fin cos (m,z),,

9n(x) = gnsin(n, z), .

For any m,n € Z? \ {0} and for any f,, € C,, and g, € S,,, Lemma 5.2 allows to calculate
P (rot fr x ((1 — aA)_lgn))
=P { (V X (fm cos (m, 1:>q>) X ((Id —alA)™! (gn sin (n, m>q)>}

(1) [ (nces ) (s 0., |
1+a|!n|!§)1p{<<f$’m>qsm <m’x>q) : <§nsm " $>q>}

(
= (1 TLa Hn”2>_1 <fnlwm>qIP’ (gﬁ sin (m, z) , sin <n,m)q)
(

= q) <f7#7m>q]P>[§# (cos(m—n,x>q—cos<m+n,x>q)] .
Using Lemma 5.1, we obtain

(5.3) B(fm,gn) =P (vot fr x (I — ad) " g,))

~1
(1+almi?) |
— 5 <fm, m> (cos (m —n, ), Pn—n — cos (m+n, ar)q Pm+n) T -
q
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Similar calculations give

(5.4)
-1
B(gm, fn) = — <1 b !”Hz) <§#’m m>q (cos (m+n,x); Pmin + cos(m—n,z), men) o
(5.5) 1
-
B(fm: fn) = (1ro !n”q) (Favm)(sin (m 4, ), P +-sin (m =, 2} P ) Fi-
and
(5.6) 1
-
B(gm, gn) = <1 i !an) <§#L, m>q (sin (m —n,x), Pnpn — sin (m+mn,z), Pm+n) G-

The next lemma is the most important result of this section, which allows us to prove the
saturation property of the space of controls (Theorem 1.8).

Lemma 5.3. Let ¢ = (q1,q2), q1,q2 > 0. For any m,n € Z?\ {0} satisfying

o [Imll, # lInll,.
e m, n are not parallel,

and for any f € Comtn, § € Smn, there exist
a,b € Span{Cp,,Cpn,Sm,Sn}
such that
(5.7) B(a) + f, B(b) + g € Span{Cpm—n,Sm-n},
where B is defined in (1.7).

Proof. Taking m = n in Estimates (5.5) and (5.6), we have

(5.8) B ) = (1 allml?) ™ () sin (2, 3, P
(5.9) B (gm, gm) = —% (1 +a ||m|\2)71 <§$’m>q sin (2m, z),, Pom .

Since <fm,m> = <§m,m>q = 0, we deduce that fm,dm € Span {mf{} By definition, Py, is
q

the projection onto the subspace Span {(2m)é‘} = Span {qu} So, we have

Po (F) = Pom (G:) = 0,
which means that, for any m € Z?\ {0},
(5.10) B(fms fm) = B(gm, gm) = 0.

Now, following the idea of [25], for any f € Cpytn, we look for a € Span {C,,,S,} under the
form

such that
B(a) + f € Span{Cp—n,Sm-n} -
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Since a = fi, + gn, taking into account (5.3), (5.4) and (5.10), we have

B(a) = g oos m ~ n.ol Puca{ (14 allll) " (7o) g = (14 alml?) " (akon) 7t}

1 1. 3 -1, .
— goos it )y P { (1 alll?) (o) g+ (14alml?) " (5n), i}

We remark that
-1, . -1 ~
cos m =), P { (1 @lnl?) (o) = (1 alml) " (atn), T}

belongs to Span {Cp—n,Sm-n}. So, we only need to prove that, for any f € Cp,4n, there are
fm € Cpy and g, € S, such that
(5.12)

f= %cos (m+n,z), Pnin {(1 + o ||n||§)_l <ﬁ;,m>q§fg + (1 +a ||m|lz>_1 <§,f,n>q fé} )
Let
F (1 alnl) " (Fhom) g+ (1+alml?) " (ghn) F
Then, we will prove (5.12) if we can find f,, € C,, and g, € S, such that P, ,F # 0, or

equivalently, (F,G) # 0, for some vector G # 0 and G € Span {(m + n)qL} For the sake of
simplicity, we choose

G = ((m2 + n2)qr, —(m1 + n1)ge) -
For any f,, € C,, and g,, € S,, recall that <fm, m>q = (f]n,n)q = 0. Thus, there exist C¢,Cy € R
such that
fm = Cy(magi,—m1g2)  and  gn = Cy (n2qi, —n1g2)

We get
fin = Cy (m1ga, maqn) and g, = Cy (142, m201)
and
3 q2 a1
<f$,m> = =mi+ =m3 = qq ||mH§
7 © q2
~ 1 q2 o q1 o 2
g ,n> =—ni+—ny=qq|n|,-
<n ot [l
Let
2 2
C= (1 —l—aHqu) (1 +a Han> .
Then,

F = CCrComaz | (1+alimll}) Iml2 (nigz,naa) + (1+ o [nll?) [0l (migz,maar)|
Let
_ 2 2 _ 2 2

My = (1+alml}) ml;  and N, = (1+allnl?) |nlf.
Since [|ml|, # [|n||, and m, n are not parallel in R2, we finally obtain
(F,G) = CCrCyq1q2 [(Mgn1q2 + Nym1q2) (maq1 + n2q1) — (Mgnaq1 + Nymaqr) (m1g2 + n1go)]

= C'Cngq%q% (Mg — Ng) (namg — namy) # 0,

if f,, and g, are not zero.

To prove the second part of the lemma, for any g € Sp4y, We can look for b under the form

b:fm""fn or b:gm+gn7
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where f,, € Cin, fn € Cpny gm € Sy and g, € S,,. Indeed, taking into account (5.5), (5.6) and
(5.10), we have

B(fm + fn)
= %Sin (m —n, x>q Pon { <1 +« Han) - < N,#,m>q fnL — (1 +« Hm\|§>_1 < NnL, n>q ﬁ#}

+ %sin (m+n,x), Pnin {(1 + Han)_l <J%,m>q 4 (1 + HmH2>_1 <fnL,n>q fnﬁ} )
and

B(gm+gn)
1 . -1/ 5 -1/ 5
=2sm<m—n,x>qpm_n{(1+aunu§) () e — (1 lmi}) <g¢,n>qgi}

1 . -1/ B -1/ B
—2sm<m+n,x>qpm+n{(1+aunuz) () g+ (1+almi}) <g¢,n>qg;}.

Then, we can repeat the above argument for a to find b. Lemma 5.3 is proved. |

In what follows, we recall that, for any finite-dimensional subspace E of V3(T?)2, we have
defined F(E) as the largest vector subspace of V3(T?)? such that, for any 77 € F(E), there exist

EeN' ar,...,00>0;m,p'....pF e E
satisfying

k
m=n-Y_ a;B(p)).
j=1

We have also defined a sequence of subspace
EF=FyCFE C...CE,C...
such that, for any n € N we have E,; = F(E,) and we set

oo
Ew = | En.
n=0
The saturation property in Theorem 1.8 can be precised as follows

Theorem 5.4 (Saturation Property). Let ¢ = (q1,92), q1,q2 > 0, let E be a finite-dimensional
subspace of V3(T%)? and for any N € N*, let ”Hév be defined as in (1.5). If E D 7—[2, then
EOODHfIV,foranyNGN, N > 3.

Proof. Inspired by the argument of [[25], Theorem 2.5], we will prove Theorem 5.4 by
recurrence that, if £ = Ey D 7—[3’ then, for any & > 0, we have

k+3
(5.13) For D Hq .

It is evident that for k = 0, (5.13) is true. Let k& > 1. We suppose that, for any k¥’ € N,
0 <k <k, we have Egpr D H’q“/+3. In order to prove that (5.13) is true for k, we only need to
prove that, for any | € Z?\ {0}, |I| = k + 3, we have ¢;, s; € Eqy.

1. First case: 1f 1 = (I1,1l2) with 1 # 0 and lo # 0. In this case, since |l;| + |l2| > 3, without
loss of generality, we can suppose that Iy > 2. We choose m = (I — 1,12) and n = (1,0). Then,
we have

m+n=1, |[ml,>nrl,, Im=k+2, In|]=1 |m-n[=Fk+1
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and m, n are not parallel in R%2. Applying Lemma 5.3, we obtain the existence of
a,b € Span{Cp,Cp,Sm,Sn} C HEY? C Eop_s

such that

B(a) + ¢, B(b) + s; € Span{Crm—n,Sm—n} .
Thus, there exist

fa g & Span {Cmfna Smfn} - %§+1 C Eok—2
such that

a=f—Ba), s =g-—DBb).
Then, using the definition of Fo,_1 = F(Fak_2), we deduce that
cl, 81 € Bop1 C Eog.

2. Second case: If | = (l1,lz) with l; = |I| = 3 and I, = 0. In this case, we choose m = (I —1,1)
and n = (1,—1). Then, we have

mtn=1, |ml,>|nl,, |m/=k+3, |o|=2 |m—n|=Fk+3

and m, n are not parallel in R2. Since all the components of the vectors m, n, m — n are not
zero, we can apply the result of the first case and we deduce that

Span {Cp,,Cp, S, Sn} C Eor_1
and

Span {Cpm—n,Sm-n} C Eor_1.
Now, applying Lemma 5.3, we obtain the existence of

a,b € Span{Cp,Cn,Sm,Sn} C Fog_1
such that
B(a) + ¢, B(b) + s; € Span{Crm—n,Sm-n} C Eog_1.
As in the first case, we can deduce that
clr, S| € ./."(Egkfl) = FEoy.

Theorem 5.4 is proved. |

6. APPROXIMATE CONTROLLABILITY BY HIGH-MODE CONTROLS REDUCED TO APPROXIMATE
CONTROLLABILITY BY LOW-MODE CONTROLS

The goal of this section is to prove the main theorem 1.4 by proving that we can reduce the
control of the system (1.1) by high-mode controls to controls in 7—[;’. Let T'> 0, ¢ > 0 and

ug, ur € V4(T?)2. We set
Uy = ug — aAug and Up = ur — aAur.

For any t € [0,T], let

U(t) — % (I — al) (T — t)up + tur).

Then, U is solution of the system (1.6) with

UWO)=Uy and n=0U+ LU+ BU) — Pf.
It is clear that
UeCO,T,V*(T*?) and ne L¥0,T,V(T?)?).
Let Kk € N*, k> 3 and let B B B
N = Py (8,:11 + LU + B(Z/{) - Pf) s
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where Py, is the projection onto ’Hl;. Let Uy be the solution of the system (1.6) with
Up(0) =Up and 7 =1y
Applying Theorem 2.1, we can choose k so large that
HHk(T) - H(T)Hvl(qv)? <C an - (6tﬁ+ LU + B(ﬁ) - Pf) HLQ(O,T,Vl(TQ)Q) se

Now, Theorem 5.4 implies that Hf; C En, where N = 2(k—3). Now, we set U~ = Uy. Applying
Theorems 4.1 and 3.1, we can contruct a sequence of controls n; € Ej, j € {0,...,N}, and a
sequence of solutions U7 of the system (1.6) with

Z/lj(O) =Uy and n=n;,

such that
€

. .
Hu] (T) -’ (T)Hvl(']I‘Q)Q < ma
for any j € {1,..., N}. Thus, & is the solution of the system (1.6) with
UO(O) =Uy and n=mny € Ey= 7-[2,
and moreover, we have

N
HUO(T) _UTHvl(’ﬂQ)Q <e+ Z 2]5—j < 3e.
j=1

Finally, we set u = (I —aA)~'U°. Then u is the solution of the system (1.1), with
u(0) =ug and n=mny € Hg’.

Moreover, we have

1 0 3¢
Hu(T) — UT”VB(Tz)z < m HL{ (T) _uTH\/l(T2)2 < m
Theorem 1.4 is proved. |
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