Tractable Predictive Control Strategies for Heating Systems in Buildings

Julien Eynard¹, Romain Bourdais², Hervé Gueguen² and Didier Dumur³

¹PROMES-CNRS Laboratory, University of Perpignan Via Domitia, Perpignan France ²Hybrid System Control Team, IETR, Supélec, Rennes, France ³Automatic Control Department, E3S, Supélec, Gif-sur-Yvette, France

> IBPSA Building Simulation Conference, Chambéry, 25-28 August 2013

Introduction

2 Model Based Predictive Control

3 Case study

- ④ Simulation Results
- 5 Conclusion and outlook

Summary

Introduction

- Model Based Predictive Control
- 3 Case study
- Simulation Results
- Conclusion and outlook

- Energy Context
- "Sustainable Building and Innovation" Project

Energy context

- Non-residential building sector is one of the most energy-consuming sectors
- Needs to reduce consumption have led to new low-consumption non-residential buildings

\Rightarrow Then heating and cooling can be significantly reduced

But:

- Low consumption buildings have limited heat power and high inertia
- Non-residential buildings have known intermittent occupation
- \Rightarrow Therefore important thermal discomfort and energy waste can appear:
 - Thermal comfort takes too long to be good after a none-occupancy period
 - Internal heat gain can cause energy waste and overheating
 - Energy consumption until the end of occupancy is not always required

Energy context

- Non-residential building sector is one of the most energy-consuming sectors
- Needs to reduce consumption have led to new low-consumption non-residential buildings

 \Rightarrow Then heating and cooling can be significantly reduced

- But:
 - Low consumption buildings have limited heat power and high inertia
 - Non-residential buildings have known intermittent occupation
- \Rightarrow Therefore important thermal discomfort and energy waste can appear:
 - Thermal comfort takes too long to be good after a none-occupancy period
 - Internal heat gain can cause energy waste and overheating
 - Energy consumption until the end of occupancy is not always required

Energy context

- Non-residential building sector is one of the most energy-consuming sectors
- Needs to reduce consumption have led to new low-consumption non-residential buildings

 \Rightarrow Then heating and cooling can be significantly reduced

But:

- Low consumption buildings have limited heat power and high inertia
- Non-residential buildings have known intermittent occupation
- \Rightarrow Therefore important thermal discomfort and energy waste can appear:
 - Thermal comfort takes too long to be good after a none-occupancy period
 - Internal heat gain can cause energy waste and overheating
 - Energy consumption until the end of occupancy is not always required

"Sustainable Building and Innovation" Project

- Financial support and partnerships
 - Research chair on "Sustainable Building and Innovation"
 - Financial support of Bouygues Construction
 - Partnership between research laboratories of Supelec (French graduate school of engineering) and the CSTB (French Scientific and Technical Center for Building)

- Objectives
 - Develop a simulation model of a low-energy non-residential building using Simbad
 - Evaluate the impact of intermittent occupation on both the thermal comfort of the occupants and energy consumption
 - Propose predictive control algorithms to manage heating efficiently, taking into account intermittency
 - Propose solutions which are computationally tractable in order to been implanted in industrial embedded system

"Sustainable Building and Innovation" Project

- Financial support and partnerships
 - Research chair on "Sustainable Building and Innovation"
 - Financial support of Bouygues Construction
 - Partnership between research laboratories of Supelec (French graduate school of engineering) and the CSTB (French Scientific and Technical Center for Building)

- Objectives
 - Develop a simulation model of a low-energy non-residential building using Simbad
 - Evaluate the impact of intermittent occupation on both the thermal comfort of the occupants and energy consumption
 - Propose predictive control algorithms to manage heating efficiently, taking into account intermittency
 - Propose solutions which are computationally tractable in order to been implanted in industrial embedded system

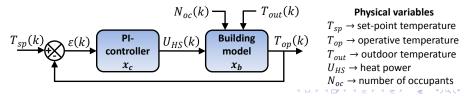
Summary

Introduction

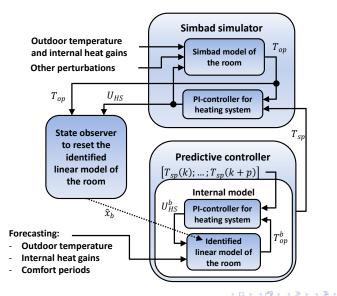
- Model Based Predictive Control
- 3 Case study
- Isimulation Results
- 5 Conclusion and outlook

- Control structure
- Predictive controller MPC 1
- Predictive controller MPC 2

PI-control struture for the heating system


Linear thermal model of the building

$$\mathbf{x}_{\mathbf{b}}(k+1) = \mathbf{A}_{\mathbf{b}}\mathbf{x}_{\mathbf{b}}(k) + \mathbf{B}_{\mathbf{b}}\begin{bmatrix} U_{HS}(k) \\ T_{out}(k) \\ N_{oc}(k) \end{bmatrix}$$
(1)
$$T_{op}(k) = \mathbf{C}_{\mathbf{b}}\mathbf{x}_{\mathbf{b}}(k)$$


PI-control of the heating system

$$\begin{aligned} \mathbf{x}_{\mathbf{c}}(k+1) &= \mathbf{A}_{\mathbf{c}}\mathbf{x}_{\mathbf{c}}(k) + \mathbf{B}_{\mathbf{c}}\varepsilon(k) \\ U_{HS}(k) &= \mathbf{C}_{\mathbf{c}}\mathbf{x}_{\mathbf{c}}(k) + \mathbf{D}_{\mathbf{c}}\varepsilon(k) \end{aligned}$$
 (2)

Closed loop of the PI-control

MPC-control struture for the heating system

1st predictive controller (with linear optimization)

On-line linear optimization problem

Problem

At a time k, given $\mathbf{x}_{\mathbf{b}}(k)$, $\mathbf{x}_{\mathbf{c}}(k)$, the optimization problem is:

$$\min_{\mathbf{T}_{SP}(k:k+N_h-1)} \sum_{j=0}^{N_h-1} U_{HS}(k+j),$$
(3)

s.t.
$$\forall j = 1..N_h \setminus N_{oc}(k+j) \neq 0$$

$$T_{op,min} \le T_{op}(k+j) \le T_{op,max}$$

$$0 \le U_{HS}(k+j) \le U_{HS}^{max}$$
(4)
(5)

 T_{op} and U_{HS} are computed according to linear models of the room and PI-controller with the prediction of:

- $T_{SP}(k:k+N_h-1)$ (output of the MPC controller),
- $\mathbf{T}_{out}(k:k+N_h-1)$ (flat prediction)
- $N_{oc}(k:k+N_h-1)$ (supposed known)

2nd predictive controller (without on-line optimization)

- Logical decision based on the prediction model
- No optimization toolbox needed
- The controller answers two questions:
 - Case 1: During inoccupancy, when switching the heating system on to ensure the thermal comfort for the next working hours, now or later ? (later if possible)
 - Case 2: During occupancy, when switching the heating system off to ensure the thermal comfort until the last occupancy hour, now or later ? (now if possible)

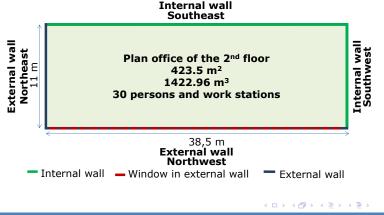
Algorithms to solve these problems:

- Case 1 : One simulation with input: $\mathbf{T}_{SP}(k:k+N_h) = [0, T_{SP}, T_{SP}, \dots, T_{SP}]^T$ $\Rightarrow \text{ if } T_{op}(k:k+N_h) \ge T_{op,min}(k+N_h) \text{ then apply: } T_{SP}(k) = 0$ $\text{ else apply: } T_{SP}(k) = T_{SP}$
- Case 2 : One simulation with input: $\mathbf{T}_{SP}(k:k+N_h) = [0, T_{SP}, T_{SP}, \dots, T_{SP}]^T$
 - $\Rightarrow if \forall i = 1, ..., N_h, T_{op}(k+i) \ge T_{op,min}(k+i) \text{ then apply: } T_{SP}(k) = 0 \\ else apply: T_{SP}(k) = T_{SP}$

Summary

Introduction

Model Based Predictive Control


3 Case study

- 4 Simulation Results
- Conclusion and outlook

- Geometry, thermal parameters and systems
- Scenario Inputs

Geometry of the building and window parameters

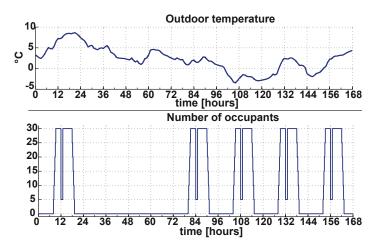
- One room in a low-consumption energy building used for office work
- Second floor of the 4-floor building
- Two external walls and two internal walls
- 28 windows on the Northwest side

Thermal parameters for walls and windows

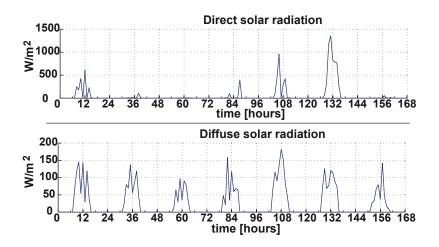
THERMAL PARAMETERS FOR WALLS						
Wall	Layer	Thickness	Density	Capacity	Conductivity	
		m	kg⋅m ⁻³	J·kg ⁻¹ ·K ⁻¹	W⋅m ⁻¹ ⋅K ⁻¹	
	Reinforced concrete	0.2	2150	1008	1.650	
	Rockwool "Rockfaçade [®] "	0.12	39	1030	0.036	
External	Unventilated air gap	0.02	1	1000	0.130	
	Ventilated air gap	0.022	1	1000	0.192	
	Terra cotta "Terreal Zéphir [®] "	0.014	2286	1008	0.98	
	Drywall "BA13"	0.0125	825	1008	0.25	
Internal	Unventilated air gap	0.025	1	1000	0.155	
	Drywall "BA13"	0.0125	825	1008	0.25	
Floor	Concrete	0.31	2350		2.3	

THERMAL PARAMETERS FOR WINDOWS				
Parameters	Value			
Thermal diffusivity (W·m ⁻² ·K ⁻¹)	1.8			
Solar absorption	0.095			
g factor	0.42			
Light transmission	0.71			
Emissivity of exterior side	0.095			
Emissivity of interior side	0.095			

Systems for lighting and HVAC


Lighting system

PARAMETERS OF THE LIGHTING SYSTEM				
Name	Unit	Value		
Total lighting power	W	40		
Illuminance efficiency	lm/W	88		
Luminaire mean efficiency	-	0.8		
Luminaire maintenance factor	-	1.11		
Lighting heat gain	-	0.25		


HVAC system

- Mechanical ventilation with heat recovery (ε = 84%)
- Air flow during occupancy : 0.3454 kg·s⁻¹
- Air flow during inoccupancy : 0.03454 kg s⁻¹
- Heat power : 0 to 12.588 kW (8.8 W·m³)

Outdoor temperature and number of occupants

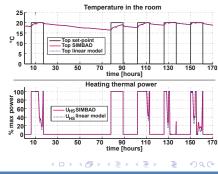
Solar radiation

Summary

Introduction

Model Based Predictive Control

3 Case study


- Simulation Results
- 5 Conclusion and outlook

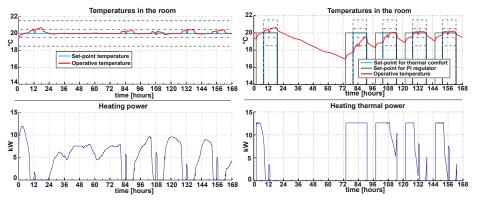
- Identification of a linear model
- Evaluation of thermal comfort
- Simulation results of PI-controller strategies
- Simulation results of Predictive Control MPC 1
- Simulation results of Predictive Control MPC 2

Identification of a linear model

- Identification of a 4-order linear model of the room (open loop), using the numerical algorithm for subspace state-space systems, based on dataset generated with Simbad
- Validation of the closed-loop model (with the PI-controller) considering 2 scenarios
 - V1: heating control always switched on
 - V2: heating control works during occupancy periods

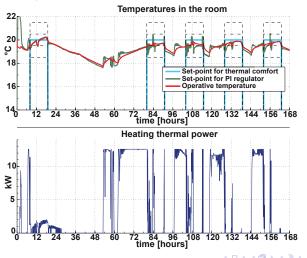
VALIDATION OF THE CLOSED-LOOP MODEL				
Criterion	Unit	V1	V2	
FIT of Top	%	95.6	96.7	
FIT of U _{HS}	%	80.1	95.8	
Total energy difference	%	-0.62	0.26	

Evaluation of thermal comfort


- Thermal comfort is evaluated according to % of time in three comfort domains for the operative temperature T_{op}
 - D_1 : the optimal comfort domain (a 1 °C width temperature band, centered around the set-point).
 - D₂: the low discomfort domain.
 - D₃: the high discomfort domain, when the occupants feel an important thermal discomfort.

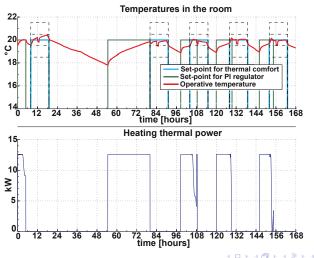
THERMAL COMFORT DOMAINS		
Name	Conditions	
<i>D</i> ₁	$\{T_{sp} + 0.5 > T_{op} > T_{sp} - 0.5\}$	
D ₂	$\begin{bmatrix} \overline{T}_{sp} + \overline{1.5} > \overline{T}_{op} > \overline{T}_{sp} + \overline{0.5} \\ \cup \{T_{sp} - 0.5 > T_{op} > T_{sp} - 1.5 \} \end{bmatrix}$	
D ₃	$\begin{bmatrix} - & - & - & - & - & - & - & - & - & - $	

Results of PI-controller strategies


- PI-S1: Heating switched on 24/7
- Energy consumed: 797 kWh
- % of time with an optimal comfort: 91.1%

- PI-S2: 6-hour anticipation
- Energy consumed: 700 kWh
- % of time with an optimal comfort: 70.33%

Results of the 1st Predictive Controller (MPC 1)


- Energy consumed: 670 kWh (-15.9% than PI-S1, -4.2% than PI-S2)
- % of time with an optimal comfort: 95.2% (+4.5% than PI-S1 +35.4% than PI-S2)

Simulation Results Simulation results of Predictive Control MPC :

Results of the 2nd Predictive Controller (MPC 2)

- Energy consumed: 700 kWh (-12.2% than PI-S1, equal than PI-S2)
- % of time with an optimal comfort: 99.3% (+9% than PI-S1, +41.2% than PI-S2)

Summary

Introduction

Model Based Predictive Control

3 Case study

- Interpretation Simulation Results
- 5 Conclusion and outlook

(a) (b) (c) (b)

4 冊

Conclusion and outlook

- Conclusions
 - Development of a simple but intelligent predictive strategy
 - Preservation of local controllers
 - Computationally tractable algorithms
 - on-line linear optimization (MPC 1)
 - no-online optimization (MPC 2)
 - Significant reduction of energy use and better comfort level
- Future works
 - Estimation of operative temperature without any radiant measurement
 - Use of PMV instead of operative temperature
 - Generalization for multi-zone buildings
 - Control of multiple systems (blinding system...)
 - Integration of variable cost of energy
 - Experimental validation in a real building

Conclusion and outlook

- Conclusions
 - Development of a simple but intelligent predictive strategy
 - Preservation of local controllers
 - Computationally tractable algorithms
 - on-line linear optimization (MPC 1)
 - no-online optimization (MPC 2)
 - Significant reduction of energy use and better comfort level
- Future works
 - Estimation of operative temperature without any radiant measurement
 - Use of PMV instead of operative temperature
 - Generalization for multi-zone buildings
 - Control of multiple systems (blinding system...)
 - Integration of variable cost of energy
 - Experimental validation in a real building

Thank you for your attention

Tractable Predictive Control Strategies for Heating Systems in Buildings

Julien Eynard¹, Romain Bourdais², Hervé Gueguen² and Didier Dumur³

¹PROMES-CNRS Laboratory, University of Perpignan Via Domitia, Perpignan France ²Hybrid System Control Team, IETR, Supélec, Rennes, France ³Automatic Control Department, E3S, Supélec, Gif-sur-Yvette, France

> IBPSA Building Simulation Conference, Chambéry, 25-28 August 2013

