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ABSTRACT
Model Predictive control is an advanced control tech-
nique that has been used to optimize thermal comfort
in buildings. Nowadays, the new buildings are char-
acterized by an important inertia as well as low power
heating systems. Since the thermal losses are very low,
taking into account the intermittent occupancies in the
control strategy is questionable. More precisely, in
this paper, two model predictive controllers are devel-
oped to reduce energy consumption while preserving
the thermal comfort. These strategies keep using the
local controllers and they are adapted for being imple-
mented in embedded systems. The simulation results
show lower energy consumptions and higher comfort
levels in comparison with non-predictive strategies.

INTRODUCTION
In order to reduce the impact of buildings in the global
energy consumption, an important effort has been
made on their insulation. New buildings are now char-
acterized by their great inertia and are equipped with
low-power heating systems. For many of them, in ter-
tiary sector, the occupancy is intermittent. Some ther-
mal discomfort can be felt, when the heating system
takes in consideration this intermittency. Indeed, after
a cold night or week-end without heating, the build-
ing needs time to be warmed. Heating systems are
saturated and generate a peak of heat power and the
temperature stays too cold during the morning. Other
strategies with heating 24/7 can satisfy the thermal
comfort but could lead to important overconsumption.
In previous works, Model Predictive Control (MPC)
techniques have been introduced to optimize the en-
ergy bill while maintaining the thermal comfort of the
occupants Morosan et al. (2010a). But as new build-
ings are well insulated, the potential energetic gain of
this advanced control technique can be limited.
So, a first question can be raised: are predictive control
techniques still interesting to take into account inter-
mittent occupancy to manage thermal comfort while
minimizing the energy consumption? This is the prob-
lem addressed in this paper. Moreover, due to the in-
ternal heat gains, the good capacities of the windows to
collect the solar radiation and the inertia of walls, the
afternoon can lead to a peak of temperature, accentu-
ating the thermal discomfort. A second question can
be raised: can predictive control techniques be an effi-

cient solution to avoid the temperature peaks induced
by the solar radiations?

A report of the European Union (Union Europenne,
2006) has already highlighted that BEMSs (Building
Energy Management System) are one of the best ways
to improve significantly the energy efficiency of build-
ings. Looking at the literature on this domain a lot
of approaches have been developed to improve the
control of energetic systems in conventional buildings.
Fraisse et al. (1999) inventories different model-based
strategies to anticipate the effect of night cooling. Due
to the relative long time constants of such systems,
MPC controllers have been widely developed for the
control of energetic system in buildings. More pre-
cisely, MPC has been used to control the PMV (Pre-
dictive Mean Vote) (Freire et al., 2008), a comfort cri-
terion dedicated to thermal comfort in buildings, but
also the heating floor (Chen, 2002), the HVAC (Heat
Ventilation and Air Conditioning) system (Yuan and
Perez, 2006; Huang et al., 2009; Hadjiski et al., 2006;
Paris et al., 2010), and also to manage different ener-
getic systems in a room (Lamoudi et al., 2011) or in
distributive way in different rooms of a building Mo-
rosan et al. (2010a). MPC has also been coupled with
artificial intelligence like adaptive neuro-fuzzy infer-
ence systems (Terziyska et al., 2006) to manage energy
in buildings.

Some of these strategies are very efficient but it can
be difficult to implement them in embedded systems.
More precisely, it requires not only optimization algo-
rithms that could be nonlinear but also a good tech-
nical expertise for the tuning phase of these advanced
controllers. In this paper, the problem is tackled with
a logical control strategy which relies on a predictive
model of the building that takes in consideration ex-
ogenous perturbations forecast (outdoor temperature
and solar radiations). For tertiary buildings, it is not
possible to control directly the power of each heat-
ing system: the local regulators cannot be removed
so they have to be taken into account in the predic-
tion model. Under these considerations, the model
predictive control optimizes the temperature set-point
of the zone. Although the prediction model is a sim-
ple linear model, the resulting optimization is under
constraints because of the local regulator (saturation
of the PID for instance). In the first part the global ap-
proach to design a model-based predictive controller is
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described. Then, the second part present two compu-
tationally tractable MPC to address the problem. Fi-
nally, to illustrate these two approaches, a case study
(a building) is proposed in the fourth section, and the
different simulation results are compared in the fifth
part. Conclusions and future work are given in a last
section.

MODEL-BASED PREDICTIVE CONTROL
Structure of the system
Many factors are linked to the evolution of the tem-
perature in buildings: the heating power, the internal
gains of the occupants, and also the outdoor temper-
ature and the solar radiations. In many buildings, the
outdoor temperature is measured and the number of
occupants can be well estimated. These factors can be
integrated in the prediction model. Even if some sen-
sors can measure the solar radiations, many buildings
are not equipped with such sensors. The influence of
the solar radiation will not be considered in the predic-
tion model, but will be considered as unknown distur-
bance.
The thermal behavior of the building can be described
by a discrete state equation, as follows:

 xb(k + 1) = Abxb(k) + Bb

 UHS(k)
Tout(k)
Noc(k)


Top(k) = Cbxb(k)

(1)

In this equation, Top is the operative temperature
which can be seen as a good approximation of the tem-
perature felt by the occupants. It can be approximated
by the mean between the wall temperature and the air
temperature. UHS is the heating power, Tout is the
outdoor temperature and Noc is the number of occu-
pants in the building.
For most tertiary buildings, it is not possible to manage
directly the power of each heating system, because of
the local controllers that cannot be removed. So they
have to be taken into account in the prediction model.
Consequently, the control variable of the MPC con-
troller is not the power allocated to the heating system
but its temperature set-point. In most cases, the local
controller is a PI which can also be described by a dis-
crete state equation, as follows:{

xc(k + 1) = Acxc(k) + Bcε(k)
UHS(k) = Ccxc(k) + Dcε(k)

(2)

In this equation, ε is the input of the PI controller. In
practice, this is the difference between the temperature
set-point Tsp and the measured temperature Top. The
presence of a proportional gain implies a direct term
Dc between its input and its output.
From all these considerations, the structure of the ther-
mal behavior is detailed in figure 1.

Figure 1: Layout of the system

Towards a prediction model
For a given prediction horizon Nh, UHS(k : k+Nh−
1) denotes the vector of all the control inputs over the
prediction horizon. Top(k + 1 : k + Nh) is the pre-
dicted output constructed from the state xc(k) and ac-
cording to the input vector UHS(k : k + Nh − 1) a
prediction of the internal gain Noc(k : k + Nh − 1)
and the outdoor temperature Tout(k : k + Nh − 1).
Top(k + 1 : k + Nh) can be defined recursively by:

Top(k + j) = Cbxb(k + j)

= Cb

(
Ab

(j)xb(k)

+
j∑

i=1

Ab
(j−i)Bb

 UHS(k + i− 1)
Tout(k + i− 1)
Noc(k + i− 1)

 (3)

This equation can been aggregated in the following
equation:

Top(k + 1 : k +Nh) = Mbxb(k)

+Nb

 UHS(k : k +Nh − 1)
Tout(k : k +Nh − 1)
Noc(k : k +Nh − 1)

 (4)

With a similar approach, the predictive equation of the
PI controller can be expressed as follows:

UHS(k : k+Nh−1) = Mcxc(k)+Ncε(k : k+Nh−1)
(5)

Considering the closed-loop structure of the system
(figure 1), the combination of the two predictive mod-
els (4) and (5) leads to define the prediction of the heat-
ing system power consumption UHS(k : k +Nh − 1)
as well as the prediction of the operative temperature
Top(k+1 : k+Nh), from the states xb(k) and xc(k)
and according to a planning of the temperature set-
point TSP(k : k + Nh − 1), the predictions of the
internal gain Noc(k : k + Nh − 1) and the outdoor
temperature Tout(k : k + Nh − 1).

Top(k + 1 : k +Nh) = M̃bxb(k) + M̃bcxc(k)

+Ñb

 TSP(k : k +Nh − 1)
Tout(k : k +Nh − 1)
Noc(k : k +Nh − 1)

 (6)

And for the heating power consumption, the prediction
is:

UHS(k : k +Nh − 1) = M̃cxc(k) + M̃cbxb(k)

+Ñc

 TSP(k : k +Nh − 1)
Tout(k : k +Nh − 1)
Noc(k : k +Nh − 1)

 (7)



The expression of the different matrices M̃c, M̃b, . . .
can be directly deduced from the equations (4) and (5),
with ε(k : k + Nh − 1) = TSP(k : k + Nh − 1) −
Top(k : k + Nh − 1).

Optimization problem
The optimization problem can be formulated from the
equations (6) and (7). It consists in maximizing the
thermal comfort during the occupation times, while
minimizing the energy bill. These two objectives are
antagonist and then a compromise has to be defined.
As achieved in previous work Morosan et al. (2010a),
the first idea is to formalize this compromise by repre-
senting the comfort problem as constraints on the op-
erative temperature, which has to be maintained under
a given band, called band of comfort, but only during
the occupancy periods. As the number of occupants
Noc is supposed to be known over the prediction hori-
zon, the occupancy periods are also supposed to be
known.
The optimization variables are the temperature set-
point vector TSP(k : k + Nh − 1) and the objective
function is linked to the heating power consumption
over the prediction horizon UHS(k : k + Nh − 1).
These considerations leads to the following optimiza-
tion problem:

Problem 1 Initial optimization problem.
At a time k, given xb(k), xc(k), Tout(k : k+Nh−1)
and Noc(k : k + Nh), the optimization problem is:

min
TSP(k:k+Nh−1)

Nh−1∑
j=0

UHS(k + j), (8)

s.t. ∀j = 1..Nh\Noc(k + j) 6= 0

Top,min ≤ Top(k + j) ≤ Top,max (9)

It is interesting to notice that the resulting problem is
a linear optimization problem which could be easily
solved by an efficient solver (Cplex for instance). Any-
way, two points should be developed:
• The equation (9) is linked to the comfort, but,

under certain conditions, there could exist no
inputs such that these constraints are fulfilled:
if the initial temperature is too low and there is
not enough power to increase the temperature
enough over a given time. In practice, to ensure
that the optimizer will always give a solution,
these constraints are softened by the introduc-
tion of slack variables. This technique will not
be detailed in this paper. The reader may refer
to Morosan et al. (2010a) or Camacho and Bor-
dons (2004) for more details.

• The second point is linked to the limited power
of the heating systems. The local PI controllers
that are integrated in buildings are saturated. If
we take in consideration these saturations, the
problem becomes nonlinear and solving it can

be much more difficult. The idea considered
here is to add more constraints on UHS so that
UHS remains between 0 and Umax

HS . Contrary
to the thermal comfort constraints, there always
exists an input Top such that the constraints are
fulfilled. This can be formalized as follows,
∀j ∈ 0..Nh − 1:

0 ≤ UHS(k + j) ≤ Umax
HS (10)

Control Structure
The optimization problem being defined, it can be in-
teresting to present the global structure. It is detailed
in figure 2. At each time step k, the MPC controller
receives the required predictions: the outdoor temper-
ature, the occupancy profile. The state of the system is
a parameter of the optimization problem. It could be
given to the MPC controller by a state observer.

Figure 2: General scheme of the MPC supervisor

TWO MODEL PREDICTIVE STRATEGIES
Strategy 1: on-line linear optimization problem
The first strategy is straightforward from the optimiza-
tion problem 1, with the additional power constraint
(10). This problem is a constrained linear problem
that could be easily solved by an optimization toolbox.
Two parameters have to be fixed. The time step, and
the size of the prediction horizon. First, Te = 1 min
is an admissible value for the sampling period. The
length of the prediction horizon should be long enough
to take into account the inertia of the building, but can
not be too long, to ensure that the problem remains
tractable. As the number of optimization variables is
not huge, this point is not a real problem, then, the
horizon must be chosen so that the next occupancy pe-
riod can be seen (about 50 hours from Friday evening
to Monday morning for a tertiary building). As it was
proposed in Morosan et al. (2010b), this length has
been chosen time-variable to improve the behavior of
the controller, minimizing the number of optimization
parameters. Regarding the time constant of the sys-
tem, the optimal control sequences are not computed



and applied at each step time, but only for each 30 min,
reducing the number of optimization phases.
The results of this technique are presented in the next
section with comparisons with other control strategies.
Its main drawback is the consequence of the on-line
optimization that requires to embed an optimization
solver. This is why another strategy is proposed in the
following based on logical decisions.

Strategy 2: logical decision based on the prediction
model
This strategy is based on two simple questions that the
controller will try to answer at each time step.

• During the inoccupancy periods, the question is:
should the heating be turned on now or can it
wait for another step time, so that the temper-
ature will be in the comfort band when people
arrive at work?

• During the occupation periods, the question is:
can the heating system be turn off so that the
temperature stays in the comfort band as long as
there are people in the office?

The answers are given by using the closed-loop pre-
diction model (6).

Case 1:

For the first question, the prediction horizon is chosen
in such a way that the end of the prediction horizon
(k + Nh) coincides with the beginning of the occu-
pancy period. For a desired temperature TSP , the in-
put vector TSP(k : k +Nh) used for the simulation is

TSP(k : k + Nh) = [0, TSP , TSP , . . . TSP ]
T (11)

Then, if Top(k + Nh) ≥ Top,min(k + Nh) then ap-
ply TSP (k) = 0. If not, it is time to start heating, by
applying TSP (k) = TSP .

Case 2:

For the second question, as the temperature set-point
is the control input, turning off the heating system
is equivalent to consider TSP = 0. In this case,
the end of the prediction horizon coincides with the
end of the next occupancy period. The input vector
TSP(k : k + Nh) used for the simulation is

TSP(k : k + Nh) = [0, 0, 0, 0, . . . 0]
T (12)

Then, if ∀i = 1..Nh, Top(k + i) ≥ Top,min(k + i)
then apply TSP (k) = 0. If not, it is not the time to
turn off the heating system and then the control applies
TSP (k) = TSP , which is the desired temperature.
The advantage of this strategy is that it does not require
any optimization toolbox. The next session presents
the various results obtained by simulations, using the
Simbad toolbox to simulate the tertiary building.

CASE STUDY
Geometric and thermal parameters
For this study, we used a room of an office building.
All the parameters described in the model have been
chosen according to a real building.

Figure 3: Configuration of the room

The room has a rectangular shape with a volume of
1422.96 m3 (length = 38.5 m, width = 11 m, height =
3.36 m) and a surface area of 423.5 m2. This room
is located at the second floor of the building which has
four floors. So, the ceiling and the floor of the room are
not external but internal walls. The room has two ver-
tical external walls, on the Northeast and on the North-
west. Only the Northwest wall has windows. The
Southeast and the Southwest walls are internal walls
with other rooms of the building. The Northwest and
the Southeast walls have a surface area of 129.26 m2

and the Northeast and the Southwest walls have a sur-
face area of 36.96 m2. Each one of the 28 windows
of the Northwest wall has a surface area of 1.8 m2,
so the total glass surface of this wall is 50.4 m2. The
model of the room has been developed using the Sim-
bad toolbox of the CSTB (SIM). The most important
parameters are presented in Table 2 for the walls and
in Table 1 for the windows.

Table 1: Window characteristics

PARAMETER VALUE
Thermal diffusivity (W·m−2·K−1) 1.8

Solar absorption 0.095
g factor 0.42

Light transmission 0.71
Emissivity of exterior side 0.095
Emissivity of interior side 0.095

Internal heat gains
This room can accommodate 30 persons and their
work stations. Each employee produces a heat power
of about 100 W (the office work is a relative low ac-
tivity) and the office electric materials produce about
180 W for each work station. This total heat power
(8460 W for the whole room) is divided in two equal
parts, a radiative and a convective heat power.



Table 2: Characteristics of the walls

WALL LAYER THICKNESS DENSITY CAPACITY CONDUCTIVITY
m kg·m−3 J·kg−1·K−1 W·m−1·K−1

External

Reinforced concrete 0.2 2150 1008 1.650
Rockwool “Rockfaçade R©” 0.12 39 1030 0.036

Unventilated air gap 0.02 1 1000 0.130
Ventilated air gap 0.022 1 1000 0.192

Terra cotta “Terreal Zéphir R©” 0.014 2286 1008 0.98

Internal
Drywall “BA13” 0.0125 825 1008 0.25

Unventilated air gap 0.025 1 1000 0.155
Drywall “BA13” 0.0125 825 1008 0.25

Floor Concrete 0.31 2350 880 2.3

Some characteristics of the lamps are given in table 3.
Indeed, the lighting of the room is composed of 72
low-energy lamps (40 W each). The type and the num-
ber of lamps allow ensuring a minimal illumination
of 500 lux with a low-energy consumption, whatever
the natural lighting. The total heat power (25 % of the
electric consumption) produced by the lamps is esti-
mated to 720 W.

Table 3: Artificial lighting parameters

NAME UNIT VALUE
Total lighting power W 40

Illuminance efficiency lm/W 88
Luminaire mean efficiency − 0.8

Luminaire maintenance factor − 1.11
Lighting heat gain − 0.25

HVAC systems
The ventilation system is a mechanical ventilation
with a heat recovery system, whose efficiency is
ε = 84%. The air flow in the room was eval-
uated at 0.3454 kg·s−1 during working time and
0.034 54 kg·s−1 when there is nobody present in the
building. The heat power (UHS) can be adjusted lin-
early between 0 and its maximal value: Umax

HS =
12 588 W. The heating system is not very powerful,
only about 8.8 W·m−3, but it is very typical from low-
energy buildings. The main part of this heating power
is radiant (70 % of whole power), and so, convective
for the rest, i.e. 30 % of the whole power. The heating
system has a response time of 30 minutes.

SIMULATION RESULTS
Identification of an internal model
According to the Simbad model of the room, a black-
box reduced-order model has been identified. As pre-
viously mentioned, it is a discrete and linear state
space model based on equation 1. It estimates the op-
erative temperature according to three inputs: (i) the
outdoor temperature, (ii) the internal heat gains and
(iii) the heat power supplied. The identification of this
four-order model (dim(xb) = 4) has been achieved
using the subspace method for the identification of
state-space models described by Ljung (1999).

Then, this linear model has been coupled with the
model of the PI-controller in order to define the closed-
loop model of the room. So, the internal model of
MPC takes into account three inputs: (i) the set-point
operative temperature given to the PI-controller, (ii)
the internal heat gains and (iii) the outdoor tempera-
ture. The two outputs are (i) the operative temperature,
(ii) the thermal power of the heating system.
The closed-loop model has been validated over a range
of seven weeks and the two scenarios: V1 (heating
control always switched on) and V2 (heating control
works only during occupancy periods). The statistic
criterion for comparing operative temperature given by
the Simbad reference model TSimbad

op and the reduced-
order model TLM

op is the FIT defined in equation 13.
Results are grouped in Table 4 and show very good
correlation for the two outputs Top and UHS.

FIT = 100×

(
1−

∥∥TLM
op − TSimbad

op

∥∥
2∥∥TSimbad

op −
〈
TSimbad
op

〉∥∥
2

)
(13)

Table 4: Validation of the closed-loop model

CRITERION UNIT V1 V2
FIT of Top % 95.59 96.68
FIT of UHS % 80.13 95.78

Total energy difference % −0.62 0.26

Scenarios
Simulations have been carried out considering one
week (Wednesday 00:00 AM to Thursday 12:00 PM)
during winter. Figure 4 shows the most significant
exogenous inputs that have been used for the simu-
lations: the outdoor temperature, the occupancy of the
room (number of persons) and the solar radiation.
The occupancy of the building is defined according to
working time. So, people works only five days a week
(Monday to Friday) and only during the day from 8:00
to 19:00. During the other periods, there is nobody in
the room. It is assumed that the 30 persons arrive grad-
ually from 8:00 to 9:00 and leave progressively from
18:00 to 19:00. Moreover, 25 persons leave the room
during lunch time (from 12:00 to 13:00).



Figure 4: Main exogenous inputs of the model

Thermal comfort post evaluation
One of the most famous models to estimate the ther-
mal comfort is based on the work of Fanger (1970).
He introduced two indicators for the thermal comfort,
the PMV “Predictive Mean Vote” and the PPD “Pre-
dicted Percentage Dissatisfied”. These criteria are a
good representation of the thermal comfort. But they
can be difficult to compute, because they are based on
many parameters. In Dufton et al. (1932), the authors
showed that the thermal comfort depends mainly on
the operative temperature, on which thermal comfort
indicators have been defined in this paper.
We have chosen TS1, TS2 and TS3 to represent the
percentage of time spent, during the occupancy, in
three temperature domains, defined as follows:
• D1: the optimal comfort domain (a 1◦C width

temperature band, centered around the set-
point).

• D2: the low discomfort domain.
• D3: the high discomfort domain, when the oc-

cupants feel an important thermal discomfort.
The numerical definition of these domains is given in
Table 5. It is important to notice that these indicators
are a posteriori computed for each simulation. They
are used to compare the performances of the various
controllers.

Table 5: Thermal comfort domains

NAME CONDITIONS
D1 {Tsp + 0.5 > Top > Tsp − 0.5}

D2
{Tsp + 1.5 > Top > Tsp + 0.5}
∪ {Tsp − 0.5 > Top > Tsp − 1.5}

D3
{Top > Tsp + 1.5}
∪ {Top < Tsp − 1.5}

Non-predictive strategies

In the first scenario, denoted PI-S1, the intermittent oc-
cupancy is not considered: the temperature set-point is
set to its nominal value 24 hours a day, 7 days a week.
In this scenario, the indoor temperature never falls un-
der the optimal comfort zone. However, it induces an
important energy consumption (797 kWh).

Figure 5: Temperatures and power for PI-S1

In order to reduce the energy consumption of the first
strategy, the solution is to switch off the control during
a part of the night or during the week-end. However, if
the controller is on only during the occupancy periods,
it is clear that the thermal comfort will be very de-
graded, because of the thermal inertia of the building.
Indeed, after the night or the week-end the operative
temperature is low, and several hours are necessary to
reach the optimal comfort domain. This is the reason
why in practice, the solution is to switch on the con-
trollers some hours before the beginning of the work-
ing time. In this case, the difficulty is to choose the
correct anticipation time. It has to be long enough to
ensure a quite good thermal comfort but not too long
to avoid the overconsumption of energy. The scenario
PI-S2 is an example of this strategy with a 6 hours an-
ticipation time depicted in figure 6.

The main drawback of this strategy is the consequence
of the non-flexible anticipation time. Some days, this
anticipation time is too short (in particular the morning
after the week-end) whereas some days it is too long if
the night is not too cold for instance. Looking at the re-
sults in Table 6, the energy consumption is reduced by
12.2% (−97 kWh) during the week compared with the
PI-S1 strategy. However, this energy saving goes with
a sharp drop of the thermal comfort. Indeed, the time
lasted in the optimal comfort domain falls by 22.8%
(−20.8 points). The results of these two simple strate-
gies show that intermittent heating can save energy but
can reduce the thermal comfort when it is used without
a prediction model.



Figure 6: Temperatures and power for PI-S2

Predictive strategies

The simulation results for the predictive strategies are
presented in figure 7 for the first one with on-line op-
timization, and in figure 8 for the second one (logical
decision).

Figure 7: Temperatures and power for MPC-S1

Looking at these graphs, the major problem induced
by the week-end and the nights, i.e. the drop of the
indoor temperature (if no heating) or the excessive en-
ergy consumption (if heating during all the week-end)
does not occur anymore: it is taken in consideration
explicitly by the MPC. Indeed, the prediction model
takes into account a forecast of the internal gains and
the outdoor temperature. The heating starts each day
with a different anticipation time, mainly according to
the outdoor temperature and the duration of the inoc-
cupancy (it starts earlier after the week-end than just
after one night). Besides, it can be noticed that en-
ergy is saved during the afternoon because the heating
system is switched off some hours before the evening
without compromising the thermal comfort due to the
high inertia of the building and the internal heat gains.

Figure 8: Temperatures and power for MPC-S2

To evaluate the gain in terms of energy given by the
predictive strategies, the ∆PI−S1 criterion is defined
to evaluate the rate of energy saved in comparison with
the basic PI-control strategy (PI-S1).
The numerical results of the two basic scenarios with
only PI-controllers and the numerical results of the two
predictive controllers are grouped in Table 6.

Table 6: Results for the different control strategies

CRITERIA PI MPC
Name Unit S1 S2 S1 S2
TS1 % 91.1 70.33 95.2 99.3
TS2 % 8.9 23.7 4.8 0.7
TS3 % 0.0 5.97 0.0 0.0

Energy kWh 797 700 670 700
∆PI−S1 % 0.00 −12.2 −15.9 −12.2

The two predictive controllers have a lower energy
consumption that the PI-S1 and a very good level of
thermal comfort. More interesting, they have the same
level of energy consumption than the PI-S2 but with
a much better thermal comfort. These strategies com-
bine the advantages of the two non-predictive strate-
gies without being impacted by their weaknesses! In-
deed, the MPC-S1 has consumed 670 kWh, i.e. 16%
less than the PI-S1 and the saving of energy reaches
about 12% with the MPC-S2 (700 kWh). If we look at
the thermal comfort, it is clear that the two predictive
controllers give very interesting results because the in-
door operative temperature is maintained in the opti-
mal comfort zone, respectively 99% of the time with
the MPC-S2 strategy (very close to a perfect thermal
comfort level), and 95% of the time with the MPC-S1,
anyway, 4.5% better than the PI-S1.
The results are quite the same for the two algorithms
but the main advantage of the second one lies on
its simplicity. Indeed, no optimization algorithm is
needed for implementation in an embedded system.

CONCLUSION
In this paper, simple but intelligent predictive strate-
gies have been proposed to manage the thermal com-
fort in low-energy tertiary buildings under intermit-



tent occupancy. A special effort has been made to
take in consideration industrial aspects. The strategies
preserve the local controllers and they use computa-
tionally tractable algorithms for being implemented in
embedded systems. The first relies on a linear opti-
mization problem. The second one does not need on-
line optimization but only a single simulation of the
prediction model of the room at each step time. The
effectiveness of these two strategies is very close but
considerably better than non-predictive strategies. The
integration of occupancy in the thermal control seems
to be interesting in terms of energy savings. However,
the behavior of the controller induced by this integra-
tion is very close to an on/off controller. It could be
also interesting to consider the wear of the heating sys-
tems under such a strategy.
Future works will focus on different points like the
estimation of operative temperature without any radi-
ant measurement, the use of PMV instead of operative
temperature to refine the comfort criterion, the gen-
eralization of these algorithms in the case of a multi-
zone building, the control of multiple systems (blind-
ing systems...) or the use of variable energy cost to
optimize the use of decentralized energy production.
Finally, the algorithms will be tested in real buildings
in order to validate them experimentally.
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