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DAMPING EFFECTS IN BOUNDARY LAYERS FOR ROTATING FLUIDS WITH

SMALL VISCOSITY

VAN-SANG NGO

Abstract. The goal of this paper is to study the system of rotating fluids between two infinite parallel

plates with Dirichlet boundary conditions and with small viscosity which vanishes when the Rossby
number goes to zero. We want to improve the convergence result of [16] and show the global in

time convergence of the weak solution of the system of rotating fluids towards the solution of a two-

dimensional damped Euler system with three components, using the decay in time of the Hs-norm
(s > 2) of the limiting solution.

1. Introduction

In this paper, we consider the system of fast rotating incompressible fluids

(1.1)


∂tu

ε − νh(ε)∆hu
ε − βε∂23uε + uε · ∇uε +

e3 ∧ uε

ε
+∇pε = 0

divuε = 0

uε |t=0
= uε0,

for t > 0 and for x ∈ Ω = R2×]0, 1[, coupled with the Dirichlet boundary conditions

uε(t, x1, x2, 0) = uε(t, x1, x2, 1) = 0.

Here, the fluid rotates around e3-axis and ε > 0 stands for the Rossby number, which will be small and
goes to zero. In this system, the vertical viscosity is νv = βε, with β > 0 and the horizontal viscosity
νh = νh(ε) > 0 depends on ε and goes to zero as ε goes to zero. The classical isotropic diffusion −ν∆ is
replaced by an anisotropic diffusion of the form

−νh∆h − νv∂23 = −νh(ε)
(
∂21 + ∂22

)
− βε∂23 ,

where ∂i is the partial derivative with respect to the variable xi. This anisotropy is often considered
in meteorology and oceanography, where vertical viscosity νv is taken to be much smaller than the
horizontal viscosity νh. We refer to Pedlosky [25] and Greenspan [15] for more details about physical
considerations.

It is clear that the Coriolis force term has no contribution in the energy estimates for the system (1.1).
In the case where νh > 0 and νv > 0, independent of ε, the global existence of weak solutions of (1.1)
in the sense of Leray can be proved by the same method as in the case of the Navier-Stokes equations
(see J. Leray, [19]). By using the same arguments as in H. Fujika and T. Kato [12] for the Navier-Stokes
equations, one can show local existence and uniqueness of a strong solution of (1.1), the lifespan of which
is bounded from below, uniformly with respect to ε. We also want to refer to [6], [7], [17], [23], [24],
. . . , and the references therein for the anisotropic cases where the vertical viscosity is zero. In the case
where νh and νv vanish or depend on ε, using the same method as for the Euler system, we can prove
that the system (1.1) is locally well-posed when the initial data uε0 belong to a smooth enough Sobolev
space, independent of νh and νv.

We have not mentioned the role of the Coriolis force yet. Actually in fast rotating systems with small
Rossby number, the Coriolis force plays an important role. In the experiment of G.I. Taylor (see [11]),
drops of dye injected into a rapidly rotating, homogeneous fluid, within a few rotations, formed perfectly
vertical sheets of dyed fluid, known as Taylor curtains. In large-scale atmospheric and oceanic flows, the
fluid motions also have a tendency towards columnar behaviors (Taylor columns). For example, currents
in the western North Atlantic have been observed to extend vertically over several thousands meters
without significant change in amplitude and direction ([26]).
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Fast rotating flows have first been considered in periodic domains. In the work of Babin, Mahalov and
Nicolaenko [1], [2], the authors studied the isotropic case, where the diffusion term is −ν∆, with ν > 0
independent of ε. For any initial data in appropriate Sobolev spaces, they proved the global existence and
uniqueness of a smooth solution when the rotation is fast enough (that is, the Rossby number ε is small
enough). The same result was proven by Gallagher in [13], using the method of Schochet [27], for fast
rotating fluid systems and also for more general parabolic systems. It was also shown in [1], [2] and [13]
that, when ε goes to zero, the fast rotating system converges to a two-dimensional Navier-Stokes system
with three components, if νh > 0 is fixed, or to a two-dimensional Euler system with three components,
if νh is zero or goes to zero as ε goes to zero. The convergence in the more general case, where the
rotation axis is fixed but not the amplitude, was proven in [14] by Gallagher and Saint-Raymond. The
anisotropic case, with zero vertical viscosity (νv = 0), in periodic domains, that is the system (1.1), with
νh > 0 independent of ε, in the torus T3, was studied later by Paicu in [23].

In the case of rotating fluids in the whole space R3, it was proved in [6], [7] and [14] that, if the
initial data are divergence-free vector fields belonging to H0,s(R3) then, when ε goes to zero, the limiting
system corresponding to (1.1) is zero. We remark that in this paper, in order to simplify the notations,
we use the bold character X to indicate the space of vector fields, each component of which belongs to
the space X. The main idea consists in proving and using Strichartz estimates for the associated linear
system, which shows that, in the case of R3, the free oscillation waves of the fluid propagate to infinity
and the energy of the fluid decreases. Using this property, it was also proved in [7] that the system (1.1),
with νh > 0 fixed, has a unique, global solution when the rotation is fast enough. The same result in
the case where νh slowly goes to zero as ε → 0, say νh = εα, with α ∈]0, α0], for a certain α0 > 0, was
proved in [22]. If the initial data is not in H0,s(R3) but is the sum of a 2D part in L2(R2

h)3 and a 3D
part in H0,s(R3), s > 1

2 , then the limit system is not zero but a 2D Navier-Stokes system (νh > 0 fixe)
or a 2D Euler system (νh → 0) with three components, as ε goes to zero. Using the global wellposedness
of the limit system, the global existence of a strong solution when ε is small enough can be proved in
the case of fixed νh > 0 (see [7]).

The case of a domain between two parallel plates (with Dirichlet boundary conditions) is very different
from the case of a domain without boundary (R3 or T3) mentioned above. Indeed, when the rotation
goes to infinity (ε→ 0), the fluid has the tendency to have a columnar behavior (the Taylor-Proudman
theorem). However, the Taylor columns are only formed in the interior of the domain. Near the boundary,
the Taylor columns are destroyed and very thin boundary layers are formed (Ekman boundary layers).
Inside the boundary layers, the behavior of the fluid becomes very complex and the friction slows the
fluid down in a way that the velocity is zero on the boundary. As a consequence, in the limiting system,
an additional damping term of the form γu, γ > 0, appears. The coefficient γ was proved to be

√
2β in

[16] (we will explain the calculation of this coefficient in the appendix). This phenomenon is well known
in fluid mechanics as the Ekman pumping.

For any ε > 0, and for any uε0 ∈ L2(Ω), the system (1.1) possesses a weak Leray solution

uε ∈ L∞(R+,L
2(Ω)) ∩ L2(R+, Ḣ

1(Ω)).

If νh > 0 is fixed, then taking into account the Ekman pumping, the limiting system is the following 2D
damped Navier-Stokes sytem

(1.2)


∂t u

h − νh∆hu
h + uh · ∇h uh +

√
2β uh = −∇h p

∂3u = 0, divhu
h = 0, u3 = 0

u|t=0
= u0 = (u10, u

2
0, 0).

When ε → 0, uε was proved to converge to the solution of the limiting system in L∞(R+,L
2(Ω)), for

Ω = T2
h × [0, 1], by Grenier and Masmoudi [16] and by Masmoudi [20] in the case where the initial data

are well prepared (i.e. lim
ε→0

uε0 = u0 = (u10(x1, x2), u20(x1, x2), 0) in L2(T2
h × [0, 1]) and by Masmoudi [21]

in the case of general initial data. The same result for Ω = R2
h× [0, 1] was prove by Chemin et al. in [8],

using Strichartz estimates.

If νh = νh(ε)→ 0 when ε→ 0, the limiting system is now the following 2D damped Euler system

(1.3)


∂t u

h + uh · ∇h uh +
√

2β uh = −∇h p

∂3u = 0, divhu
h = 0, u3 = 0

u|t=0
= u0 = (u10, u

2
0, 0).



DAMPING EFFECTS IN BOUNDARY LAYERS FOR ROTATING FLUIDS WITH SMALL VISCOSITY 3

In [16], [20], [21] (for Ω = T2
h × [0, 1]) and in [8] (for Ω = R2

h × [0, 1]), the solution uε can still be proved
to converge to the solution of (1.3) in L∞loc(R+,L

2(Ω)). The local convergence with respect to the time
variable is due to the local in time boundedness of the Hσ(R2

h)-norm (σ > 2) of the solution of (1.3)
used in the previous results.

The goal of this paper is to improve the above results and to prove that, in the case where νh = νh(ε)
goes to zero as ε goes to zero, the convergence of uε towards u is global in time. We consider the system
(1.1) in the domain Ω = R2

h × [0, 1] (the same result can be proved for the domain Ω = T2
h × [0, 1] with

minor changes) with Dirichlet boundary conditions and with the well-prepared data as in [16] or [20].
The main result of the paper is the following theorem.

Theorem 1.1. We suppose that νh(ε)→ 0 as ε→ 0. Let uε0 ∈ L2(R2
h× [0, 1]) be a family of initial data

such that

lim
ε→0

uε0 = u0 = (u10(x1, x2), u20(x1, x2), 0) in L2(R2
h × [0, 1]),

where u0 is a divergence-free two-dimensional vector field in Hσ(R2
h), σ > 2. Let u be the solution of

the limiting system (1.3) with initial data u0 and, for each ε > 0, let uε be a weak solution of (1.1) with
initial data uε0. There exists a positive constant C = C(u0) > 0 such that, if νh(ε) ≥ C(u0) ε, then

lim
ε→0
‖uε − u‖L∞(R+,L2(R2

h×[0,1]))
= 0.

The key of the proof of Theorem 1.1 consists in the careful study of the limiting system (1.3). We prove
that the damping term

√
2β u in the system (1.3) plays a very important role which allow us to prove

the exponential decay in time of the Hσ(R2
h)-norm, σ > 2, of the solution. More precisely, in Section 3,

we prove the following theorem.

Theorem 1.2. Let u0 = (u10(x1, x2), u20(x1, x2), 0) ∈ L2(R2
h) be a divergence-free vector field, the hori-

zontal vorticity of which w0 = ∂1u
2
0−∂2u10 ∈ L2(R2

h)∩L∞(R2
h). Then, the system (1.3), with initial data

u0, has a unique, global solution

u ∈ C(R+,L
2(R2

h)) ∩ L∞(R+,L
2(R2

h)).

Moreover, if u0 belongs to Hσ(R2
h), σ > 2, then there exists a positive constant C depending on β and

‖u0‖Hσ(R2
h)

such that, for any t > 0,

‖u(t)‖Hσ(R2
h)
≤ Ce−t

√
2β .

We note that a unique global solution of (1.3) exists thanks to the Yudovitch theorem [28] and the
exponential decay is not true in the case of the two-dimensional non-damped Euler system, where the
L∞-norm of the gradient of the vorticity may have a double exponential growth in time (see Bahouri
& Chemin [3], Kiselev & Šverák [18] and the references therein). The goal of Section 3 is to prove the
exponential decay properties of this solution in the case of damped Euler system.

The paper is organized as follows. In the next section, we briefly recall the dyadic decompositions and
the Littlewood-Paley theory which will be used in Section 3 to prove Theorem 1.2. In the last section, we
prove the main theorem (Theorem 1.1) on the convergence of weak solutions of the system (1.1) towards
the solution of the system (1.3). Finally, for the convenience of the reader, we will very briefly recall the
construction of Ekman boundary layers and the formation of the limiting system in the appendix. We
will also explain why the damping term appears in the limiting system (the Ekman pumping).

2. Brief recall of dyadic decompositions

In this section, we briefly recall the properties of dyadic decompositions in the Fourier space and give
some elements of the Littlewood-Paley theory. The complete details can be found in [4], [5] and [10].
Let F and F−1 be the Fourier transform and its inverse, and that we also write û = Fu. For any d ∈ N∗
and 0 < r < R, we denote

Bd(0, R) =
{
ξ ∈ Rd | |ξ| ≤ R

}
and Cd(r,R) =

{
ξ ∈ Rd | r ≤ |ξ| ≤ R

}
.

The following Bernstein lemma gives important properties of a distribution u when its Fourier transform
is well localized. We refer the reader to [5] for the proof of this lemma.
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Lemma 2.1. Let k ∈ N, d ∈ N∗ and r1, r2 ∈ R satisfy 0 < r1 < r2. There exists a constant C > 0 such
that, for any a, b ∈ R, 1 ≤ a ≤ b ≤ +∞, for any λ > 0 and for any u ∈ La(Rd), we have

(2.1) supp (û) ⊂ Bd(0, r1λ) =⇒ sup
|α|=k

‖∂αu‖Lb ≤ C
kλk+d(

1
a−

1
b ) ‖u‖La ,

and

(2.2) supp (û) ⊂ Cd(r1λ, r2λ) =⇒ C−kλk ‖u‖La ≤ sup
|α|=k

‖∂αu‖La ≤ C
kλk ‖u‖La .

Let ψ be an even smooth function in C∞0 (R), whose support is contained in the ball B1(0, 43 ), such

that ψ is equal to 1 on a neighborhood of the ball B1(0, 34 ). Let

ϕ(z) = ψ
(z

2

)
− ψ(z).

Then, the support of ϕ is contained in the ring C1( 3
4 ,

8
3 ), and ϕ is identically equal to 1 on the ring

C1( 4
3 ,

3
2 ). The functions ψ and ϕ allow us to define a dyadic partition of Rd, d ∈ N∗, as follows

∀z ∈ R, ψ(z) +
∑
j∈N

ϕ(2−jz) = 1.

Moreover, this decomposition is almost orthogonal, in the sense that, if |j − j′| ≥ 2, then

supp ϕ(2−j(·)) ∩ supp ϕ(2−j
′
(·)) = ∅.

We introduce the following dyadic frequency cut-off operators. We refer to [4] and [5] for more details.

Definition 2.2. For any d ∈ N∗ and for any tempered distribution u ∈ S ′(Rd), we set

∆qu = F−1
(
ϕ(2−q |ξ|)û(ξ)

)
, ∀q ∈ N,

∆−1u = F−1 (ψ(|ξ|)û(ξ)) ,

∆qu = 0, ∀q ≤ −2,

Squ =
∑

q′≤q−1

∆q′u, ∀q ≥ 1.

Using the properties of ψ and ϕ, one can prove that for any tempered distribution u ∈ S ′(Rd), we have

u =
∑
q≥−1

∆qu in S ′(Rd),

and the (isotropic) nonhomogeneous Sobolev spaces Hs(Rd), with s ∈ R, can be characterized as follows

Proposition 2.3. Let d ∈ N∗, s ∈ R and u ∈ Hs(Rd). Then,

‖u‖Hs :=

(∫
Rd

(1 + |ξ|2)s |û(ξ)|2 dξ
) 1

2

∼

∑
q≥−1

22qs ‖∆qu‖2L2

 1
2

Moreover, there exists a square-summable sequence of positive numbers {cq(u)} with
∑
q cq(u)2 = 1, such

that

‖∆qu‖L2 ≤ cq(u)2−qs ‖u‖Hs .

In what follows, we also use separate dyadic decompositions in the horizontal and vertical directions.

Definition 2.4. For any tempered distribution u ∈ S ′(R3), we set

∆h
qu = F−1

(
ϕ(2−q |ξh|)û(ξ)

)
, ∆v

qu = F−1
(
ϕ(2−q |ξ3|)û(ξ)

)
, ∀q ∈ N,

∆h
−1u = F−1 (ψ(|ξh|)û(ξ)) , ∆v

−1u = F−1 (ψ(|ξ3|)û(ξ)) ,

∆h
qu = 0, ∆v

qu = 0, ∀q ≤ −2,

Shq u =
∑

q′≤q−1

∆h
q′u, Svqu =

∑
q′≤q−1

∆v
q′u, ∀q ≥ 1.
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3. Exponential decay for the 2D limiting system

In this section, we prove the exponential decay in time of the solution of the 2D limiting system (1.3).
We recall that throughout this paper, for any vector field u = (u1, u2, u3) independent of the vertical
variable x3, we denote by w the associated horizontal vorticity, w = ∂1u

2 − ∂2u1. We also set γ =
√

2β
to simplify the notation.

Lemma 3.1. Let u0 = (u10(x1, x2), u20(x1, x2), u30(x1, x2)) ∈ L2(R2
h) be a divergence-free vector field, the

horizontal vorticity of which

w0 = ∂1u
2
0 − ∂2u10 ∈ L2(R2

h) ∩ L∞(R2
h).

Then, the system (1.3), with initial data u0, has a unique, global solution

u ∈ C(R+,L
2(R2

h)) ∩ L∞(R+,L
2(R2

h)).

Moreover,

(i) There exists a constant C > 0 such that, for any p ≥ 2 and for any t > 0, we have∥∥∇huh(t)
∥∥
Lp(R2

h)
≤ CMp e−γt,(3.1) ∥∥uh(t)

∥∥
Lp(R2

h)
≤ CMe−γt,(3.2)

where

M = max
{∥∥uh0∥∥L2(R2

h)
, ‖w0‖L2(R2

h)
, ‖w0‖L∞(R2

h)

}
.

(ii) For any p ≥ 2, if u30 ∈ Lp(R2
h), then,

(3.3)
∥∥u3(t)

∥∥
Lp(R2

h)
≤
∥∥u30∥∥Lp(R2

h)
e−γt.

Proof

In (1.3), the first two components of u satisfy a two-dimensional damped Euler system. Then, thanks
to the Yudovitch theorem [28] (see also [5]), this system has a unique solution

uh ∈ C
(
R+,L

2(R2
h)
)
∩ L∞

(
R+,L

2(R2
h)
)

such that the horizontal vorticity w ∈ L∞(R+,L
2(R2

h)) ∩ L∞(R+,L
∞(R2

h)). Since the third component
u3 satisfies a linear transport-type equation, we can deduce the existence and uniqueness of the solution
u of the limiting system (1.3).

By definition, the horizontal vorticity w satisfies the following equation

(3.4) ∂tw + γw + uh · ∇hw = 0

Taking the L2 scalar product of (3.4) with |w|p−2 w, we get

1

p

d

dt
‖w‖p

Lp(R2
h)

+ γ ‖w‖p
Lp(R2

h)
= 0.

By using an interpolation between L2(R2
h) and L∞(R2

h), we deduce from the above equation that

(3.5) ‖w(t)‖Lp(R2
h)
≤ ‖w0‖Lp(R2

h)
e−γt ≤ C ‖w0‖

2
p

L2(R2
h)
‖w0‖

1− 2
p

L∞(R2
h)

e−γt ≤ CMe−γt.

We recall that ∇huh = Rw where R is an homogeneous Caldéron-Zygmund operator of order 0. Ac-
cording to [[5], Theorem 3.1.1], for any p > 1 and for any t > 0,∥∥∇huh(t)

∥∥
Lp(R2

h)
≤ C p2

p− 1
‖w(t)‖Lp(R2

h)
,

which implies (3.1), for any p ≥ 2. In particular, we have

(3.6)
∥∥uh(t)

∥∥
Ḣ1(R2

h)
=
∥∥∇huh(t)

∥∥
L2(R2

h)
= ‖w(t)‖L2(R2

h)
≤ CM e−γt.

We remark that Inequality (3.2), in the case where p = 2, directly comes from the energy estimate

for the damped Euler systems. So, using the Sobolev embedding Ḣ
p−2
p (R2

h) ↪→ Lp(R2
h) and the fact that

Ḣ
p−2
p (R2

h) is an interpolated space between L2(R2
h) and Ḣ1(R2

h), we deduce (3.2) from Estimate (3.6),
when p ≥ 2. Since the vertical component u3 satisfies the same linear transport equation as w, Inequality
(3.3) can be proved in the same way as (3.5). �
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Lemma 3.2. Let r > 1. There is a constant C > 0 such that, for any divergence-free vector fields u in
L2(R2

h), the horizontal gradient ∇huh ∈ L∞(R2
h) and the vorticity w = ∂1u

2 − ∂2u1 ∈ Hr(R2
h), we have

(3.7)
∣∣〈∆h

q (uh · ∇hw)
∣∣ ∆h

qw
〉∣∣ ≤ Cdq2−2qr (∥∥∇huh∥∥L∞ + ‖w‖L∞

)
‖w‖2Hr .

where (dq)q≥−1 is a summable sequence of positive numbers, the `1-norm of which is independent of u.

In order to prove Lemma 3.2, we need the following estimate (the proof of which can be found in [24]).
Let [., .] denote the usual commutator.

Lemma 3.3. Let d ∈ N∗. There exists a constant C > 0 such that, for any tempered distributions u, v
in S ′(Rd), we have

‖[∆q, u] v‖L2 := ‖∆q(uv)− u∆qv‖L2 ≤ C2−q ‖∇u‖L∞ ‖v‖L2 .

Proof of Lemma 3.2

First of all, using the anisotropic Bony decomposition into paraproducts and remainders as in Defini-
tion 2.4, we can write

(3.8)
∣∣〈∆h

q (uh · ∇hw)
∣∣ ∆h

qw
〉∣∣ ≤ I1q (w) + I2q (w),

where

I1q (w) =

∣∣∣∣∣∣
〈

∆h
q

( ∑
q′−q≥N

Shq′+2(∇hw)∆h
q′u

h
) ∣∣∣ ∆h

qw

〉∣∣∣∣∣∣ ,
and

I2q (w) =

∣∣∣∣∣∣
〈

∆h
q

( ∑
|q′−q|≤N

Shq′−1u
h ∆h

q′(∇hw)
) ∣∣∣ ∆h

qw

〉∣∣∣∣∣∣ ,
and where N > 0 is a fixed large enough integer.

Using Cauchy-Schwarz and Hölder inequalities, we get

(3.9) I1q (w) ≤
∑

q′−q≥N

∥∥Shq′+2(∇hw)
∥∥
L∞

∥∥∆h
q′u

h
∥∥
L2

∥∥∆h
qw
∥∥
L2 .

The Bernstein lemma 2.1 implies that∥∥Shq′+2(∇hw)
∥∥
L∞
≤ C2q

′ ∥∥Shq′+2w
∥∥
L∞
≤ C2q

′
‖w‖L∞ ,

and ∥∥∆h
q′u

h
∥∥
L2 ≤ C2−q

′ ∥∥∆h
q′∇huh

∥∥
L2 .

Taking into account the fact that w = ∂1u
2 − ∂2u1 and divhu

h = 0, using an integration by parts, we
easily obtain ∥∥∆h

q′w
∥∥2
L2 =

∥∥∆h
q′∂1u

2
∥∥2
L2 +

∥∥∆h
q′∂2u

1
∥∥2
L2 − 2

〈
∆h
q′∂1u

2 | ∆h
q′∂2u

1
〉

=
∥∥∆h

q′∂1u
2
∥∥2
L2 +

∥∥∆h
q′∂2u

1
∥∥2
L2 +

∥∥∆h
q′∂1u

1
∥∥2
L2 +

∥∥∆h
q′∂2u

2
∥∥2
L2

=
∥∥∆h

q′∇huh
∥∥2
L2 .

Therefore, using Proposition 2.3, we deduce from (3.9) that

I1q (w) ≤ C
∑

q′−q≥N

‖w‖L∞
∥∥∆h

q′w
∥∥
L2

∥∥∆h
qw
∥∥
L2

≤ C
(
cq(w)

∑
q′−q≥N

cq′(w)2−(q
′−q)r

)
2−2qr ‖w‖L∞ ‖w‖

2
Hr ,

where (cq(w))q≥−1 is a square-summable sequence of positive numbers such that
∑
q cq(w)2 = 1. We

remark that (2−qr)q≥−N is a summable sequence. So, as a convolution product of a `2-sequence and a

`1-sequence,  ∑
q′−q≥N

cq′(w)2−(q
′−q)r


q

is square-summable. Let

dq = cq(w)
∑

q′−q≥N

cq′(w)2−(q
′−q)r.
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It is clear that (dq)q≥−1 is a summable sequence of positive numbers. Thus, we have

(3.10) I1q (w) ≤ Cdq2−2qr ‖w‖L∞ ‖w‖
2
Hr .

In order to estimate I2q (w), we write

(3.11) I2q (w) ≤ I2Aq (w) + I2Bq (w) + I2Cq (w),

where
I2Aq (w) =

∣∣〈Shq uh · ∇h∆h
qw
∣∣ ∆h

qw
〉∣∣ ,

I2Bq (w) =

∣∣∣∣∣∣
〈 ∑
|q′−q|≤N

(
Shq − Shq′−1

)
uh · ∇h∆h

q′w
∣∣∣∆h

qw

〉∣∣∣∣∣∣ ,
and

I2Cq (w) =

∣∣∣∣∣∣
〈 ∑
|q′−q|≤N

[
∆h
q , S

h
q′−1u

h
]
∇h∆h

q′w
∣∣∣∆h

qw

〉∣∣∣∣∣∣ .
Using integrations by parts, we get

(3.12) I2Aq (w) =
1

2

∣∣〈Shq (divhu
h)∆h

qw
∣∣ ∆h

qw
〉∣∣ = 0.

We remark that when q, q′ ≥ 1, Shq −Shq′−1 does not contain the low Fourier frequencies. So, I2Bq (w) can

be bounded in the same way as I1q (w), and we have

(3.13) I2Bq (w) ≤ Cdq2−2qr ‖w‖L∞ ‖w‖
2
Hr .

Finally, using Lemma 3.3 and the same calculations as for I1q (w) (since r > 1), we obtain

I2Cq (w) ≤ C2−q
∑

|q′−q|≤N

∥∥Shq′−1∇huh∥∥L∞ ∥∥∇h∆h
q′w
∥∥
L2

∥∥∆h
qw
∥∥
L2(3.14)

≤ C2−2qr
∥∥∇huh∥∥L∞ ‖w‖2Hr

cq(w)
∑

|q′−q|≤N

cq′(w)2−(q
′−q)(r−1)


≤ Cdq2−2qr

∥∥∇huh∥∥L∞ ‖w‖2Hr .
From (3.10)-(3.14), we easily deduce (3.7) and Lemma 3.2 is proved. �

Lemma 3.4. Let r > 1. There exists a constant Cr > 0 such that, for any divergence-free vector fields
u in L2(R2

h), the horizontal gradient ∇huh ∈ L∞(R2
h) and the vorticity w = ∂1u

2 − ∂2u1 ∈ Hr(R2
h), we

have

(3.15)
∥∥∇huh∥∥L∞(R2

h)
≤ Cr ‖w‖L∞(R2

h)
ln

(
e+
‖w‖Hr(R2

h)

‖w‖L∞(R2
h)

)
.

The lemma 3.4 is only a special case of [[5], Theorem 3.3.2]. We refer to [5] for a proof of this lemma.

Lemma 3.5. Let r > 1. Under the hypotheses of Lemma 3.1 and the additional hypothesis that w0

belongs to Hr(R2
h), there exist positive constants C1 and C2 depending on γ and ‖w0‖Hr(R2) such that

(3.16) ‖w(t)‖Hr(R2
h)
≤ C1e

−γt,

and

(3.17)
∥∥∇huh(t)

∥∥
L∞(R2

h)
≤ C2e

−γt.

Proof

In what follows, we use C to refer to a generic positive constant that may change from line to line.
For any r > 1, using Lemma 3.2, we get the following energy estimate in the Sobolev Hr-norm:

(3.18)
1

2

d

dt
‖w(t)‖2Hr + γ ‖w(t)‖2Hr ≤ C

(
‖w(t)‖L∞ +

∥∥∇huh(t)
∥∥
L∞

)
‖w(t)‖2Hr .

Taking into account Estimate (3.15), we rewrite (3.18) as follows

(3.19)
d

dt
‖w(t)‖Hr + γ ‖w(t)‖Hr ≤ C ‖w‖L∞

(
1 + ln

(
e+
‖w‖Hr
‖w‖L∞

))
‖w(t)‖Hr .



8 VAN-SANG NGO

From (3.5), we have ‖w(t)‖Lp ≤ CMe−γt, where

M = max
{∥∥uh0∥∥L2(R2

h)
, ‖w0‖L2(R2

h)
, ‖w0‖L∞(R2

h)

}
.

Since C and M do not depend on p, we have

‖w(t)‖L∞ ≤ CMe−γt.

We remark that x ln
(
e+ α

x

)
, α > 0, is an increasing function. We deduce from (3.19) that

(3.20)
d

dt
‖w(t)‖Hr + γ ‖w(t)‖Hr ≤ CMe−γt

(
1 + ln

(
e+
‖w‖Hr eγt

CM

))
‖w(t)‖Hr .

Therefore, considering y(t) = (CM)−1 ‖w(t)‖Hr eγt, we get from (3.20) that

y′(t) ≤ CMe−γty(t) (1 + ln (e+ y(t))) ,

which implies

(3.21)
y′(t)

(e+ y(t)) (1 + ln (e+ y(t)))
≤ CMe−γt.

Integrating (3.21) with respect to t, we obtain

ln (1 + ln (e+ y(t))) ≤ ln (1 + ln (e+ y(0))) +
CM

γ
.

Choosing

C1 = CM (e+ ‖w0‖Hr )
2e
CM
γ

,

we get

‖w(t)‖Hr ≤ C1e
−γt.

Combining the above estimate with (3.15) and using again the fact that x ln
(
e+ α

x

)
is an increasing

function, we obtain the existence of a positive constant C2, depending on γ and ‖w0‖Hr , such that∥∥∇huh(t)
∥∥
L∞
≤ C2e

−γt. �

In order to prove Theorem 1.2, we finally need the following lemma.

Lemma 3.6. Let σ > 2. For any divergence-free vector fields u = (u1(x1, x2), u2(x1, x2), u3(x1, x2)) in
Hσ(R2

h), there exist a constant C > 0 independent of u, a summable sequence
(
dq(u

h)
)
q≥−1 of positive

numbers such that

(3.22)
∣∣〈∆h

q (uh · ∇huh)
∣∣ ∆h

qu
h
〉∣∣ ≤ Cdq(uh)2−2qσ

∥∥∇huh∥∥L∞ ∥∥uh∥∥2Hσ ,

and a summable sequence (dq(u))q≥−1 of positive numbers such that

(3.23)
∣∣〈∆h

q (uh · ∇hu3)
∣∣ ∆h

qu
3
〉∣∣ ≤ Cdq(u)2−2qσ

∥∥uh∥∥
Hσ

∥∥u3∥∥2
Hσ

.

Proof

We use the similar Bony decomposition as in the proof of Lemma 3.2, with w replaced by uh.

(3.24)
∣∣〈∆h

q (uh · ∇huh)
∣∣ ∆h

qu
h
〉∣∣ ≤ I1q (uh) + I2Aq (uh) + I2Bq (uh) + I2Cq (uh).

Then, using Young’s inequality, Bernstein lemma 2.1 and Proposition 2.3, we have

I1q (uh) =

∣∣∣∣∣∣
〈

∆h
q

( ∑
q′−q≥N

Shq′+2(∇huh)∆h
q′u

h
) ∣∣∣ ∆h

qu
h

〉∣∣∣∣∣∣(3.25)

≤
∑

q′−q≥N

∥∥Shq′+2(∇huh)
∥∥
L∞

∥∥∆h
q′u

h
∥∥
L2

∥∥∆h
qu

h
∥∥
L2

≤ C
∑

q′−q≥N

∥∥∇huh∥∥L∞ (cq′(uh)2−q
′σ
∥∥uh∥∥

Hσ

) (
cq(u

h)2−qσ
∥∥uh∥∥

Hσ

)

= C

cq(uh)
∑

q′−q≥N

cq′(u
h)2−(q

′−q)σ

 2−2qσ
∥∥∇huh∥∥L∞ ∥∥uh∥∥2Hσ

= Cdq(u
h)2−2qσ

∥∥∇huh∥∥L∞ ∥∥uh∥∥2Hσ .
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As in the proof of Lemma 3.2, integrations by parts imply

(3.26) I2Aq (uh) =
∣∣〈Shq uh · ∇h∆h

qu
h
∣∣ ∆h

qu
h
〉∣∣ = 0.

Since for any q, q′ ≥ 1, Shq − Shq′−1 does not contain the low Fourier frequencies, I2Bq can be bounded in

the same way as I1q , and we have

(3.27) I2Bq (uh) =

∣∣∣∣∣∣
〈 ∑
|q′−q|≤N

(
Shq − Shq′−1

)
uh · ∇h∆h

q′u
h
∣∣∣∆h

qu
h

〉∣∣∣∣∣∣ ≤ Cdq(uh)2−2qσ
∥∥∇huh∥∥L∞ ∥∥uh∥∥2Hσ .

The last term on the right hand side of (3.24) can be bounded exactly in the same way as in (3.14)

I2Cq (uh) =

∣∣∣∣∣∣
〈 ∑
|q′−q|≤N

[
∆h
q , S

h
q′−1u

h
]
∇h∆h

q′u
h
∣∣∣∆h

qu
h

〉∣∣∣∣∣∣(3.28)

≤ C2−q
∑

|q′−q|≤N

∥∥Shq′−1∇huh∥∥L∞ ∥∥∇h∆h
q′u

h
∥∥
L2

∥∥∆h
qu

h
∥∥
L2

≤ C2−2qσ
∥∥∇huh∥∥L∞ ∥∥uh∥∥2Hσ

cq(uh)
∑

|q′−q|≤N

cq′(u
h)2−(q

′−q)(σ−1)


≤ Cdq(uh)2−2qσ

∥∥∇huh∥∥L∞ ∥∥uh∥∥2Hσ .

Combining Estimates (3.24) to (3.28), we obtain (3.22).

Now, to prove (3.23), as in (3.24), with uh replaced by u3, we also write

(3.29)
∣∣〈∆h

q (uh · ∇hu3)
∣∣ ∆h

qu
3
〉∣∣ ≤ I1q (u3) + I2Aq (u3) + I2Bq (u3) + I2Cq (u3).

We will estimate I2Aq (u3) and I2Cq (u3) exactly in the same way as I2Aq (uh) and I2Cq (uh). We have

(3.30) I2Aq (u3) =
∣∣〈Shq uh · ∇h∆h

qu
3
∣∣ ∆h

qu
3
〉∣∣ = 0,

and, using the inclusion Hσ−1(R2
h) ↪→ L∞(R2

h) for σ > 2,

I2Cq (u3) =

∣∣∣∣∣∣
〈 ∑
|q′−q|≤N

[
∆h
q , S

h
q′−1u

h
]
∇h∆h

q′u
3
∣∣∣∆h

qu
3

〉∣∣∣∣∣∣(3.31)

≤ C2−q
∑

|q′−q|≤N

∥∥Shq′−1∇huh∥∥L∞ ∥∥∇h∆h
q′u

3
∥∥
L2

∥∥∆h
qu

3
∥∥
L2

≤ C2−2qσ
∥∥∇huh∥∥L∞ ∥∥u3∥∥2Hσ

cq(u3)
∑

|q′−q|≤N

cq′(u
3)2−(q

′−q)(σ−1)


≤ Cdq(u3)2−2qσ

∥∥uh∥∥
Hσ

∥∥u3∥∥2
Hσ .

To estimate I1q (u3), we write

I1q (u3) =

∣∣∣∣∣∣
〈

∆h
q

( ∑
q′−q≥N

Shq′+2(∇hu3)∆h
q′u

h
) ∣∣∣ ∆h

qu
3

〉∣∣∣∣∣∣(3.32)

≤
∑

q′−q≥N

∥∥Shq′+2(∇hu3)
∥∥
L∞

∥∥∆h
q′u

h
∥∥
L2

∥∥∆h
qu

3
∥∥
L2

≤ C
∑

q′−q≥N

∥∥∇hu3∥∥L∞ (cq′(uh)2−q
′σ
∥∥uh∥∥

Hσ

) (
cq(u

3)2−qσ
∥∥u3∥∥

Hσ

)

= C

cq(u3)
∑

q′−q≥N

cq′(u
h)2−(q

′−q)σ

 2−2qσ
∥∥∇hu3∥∥L∞ ∥∥uh∥∥Hσ

∥∥u3∥∥
Hσ

= Cdq(u)2−2qσ
∥∥uh∥∥

Hσ

∥∥u3∥∥2
Hσ

.
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Finally, the term I2Bq (u3) can be bounded in the same way as I1q (u3),

(3.33) I2Bq (u3) =

∣∣∣∣∣∣
〈 ∑
|q′−q|≤N

(
Shq − Shq′−1

)
uh · ∇h∆h

q′u
3
∣∣∣∆h

qu
3

〉∣∣∣∣∣∣ ≤ Cdq(u)2−2qσ
∥∥uh∥∥

Hσ

∥∥u3∥∥2
Hσ

.

Combining Estimates (3.29) to (3.33), we obtain (3.23). �

Proof of Theorem 1.2

We recall that C to refer to a generic positive constant that may change from line to line. Since
uh satisfies a two-dimensional damped Euler system, using Lemma 3.6, we deduce the following energy
estimate in the Sobolev Hσ-norm for uh

1

2

d

dt

∥∥uh(t)
∥∥2
Hσ + γ

∥∥uh(t)
∥∥2
Hσ ≤ C

∥∥∇huh(t)
∥∥
L∞

∥∥uh(t)
∥∥2
Hσ .

Since uh0 ∈ Hσ(R2
h), σ > 2, we have w0 = ∂1u

2
0 − ∂2u10 ∈ Hσ−1, with σ − 1 > 1. Using Estimate (3.17)

of Lemma 3.5, we get

d

dt

∥∥uh(t)
∥∥
Hσ + γ

∥∥uh(t)
∥∥
Hσ ≤ CC2e

−γt ∥∥uh(t)
∥∥
Hσ ,

which leads to

d

dt
ln
(∥∥uh(t)

∥∥
Hσ e

γt
)
≤ CC2e

−γt.

Integrating this inequality, we obtain

(3.34)
∥∥uh(t)

∥∥
Hσ ≤

(∥∥uh0∥∥Hσ +
CC2

γ

)
e−γt.

Now, using Lemma 3.6, we get the following energy estimate in the Sobolev Hσ-norm for u3

1

2

d

dt

∥∥u3(t)
∥∥2
Hσ

+ γ
∥∥u3(t)

∥∥2
Hσ
≤ C

∥∥uh(t)
∥∥
Hσ

∥∥u3(t)
∥∥2
Hσ

.

Using (3.34), we can write

d

dt

∥∥u3(t)
∥∥
Hσ

+ γ
∥∥u3(t)

∥∥
Hσ
≤ C

(∥∥uh0∥∥Hσ +
C2

γ

)
e−γt

∥∥u3(t)
∥∥
Hσ

,

which finally implies that

(3.35)
∥∥u3(t)

∥∥
Hσ
≤ C

(∥∥u30∥∥Hσ +

∥∥uh0∥∥Hσ

γ
+
C2

γ2

)
e−γt.

Theorem 1.2 is then proved. �

Remark 3.7. If σ ∈ N, we do not need Lemma 3.6. Indeed, Theorem 1.2 can be immediately deduced
from Lemma 3.5 using the identity

‖∇αh∇huh‖L2 = ‖∇αhw‖L2 ,

which holds for all α ∈ N2.

4. Proof of the main result

In this paragraph, we provide the needed a priori estimates and a sketch of the proof of Theorem
1.1. These a priori estimates can be justified by a classical approximation by smooth fonctions (see for
instance [9]). We recall that it is already known that convergence in L∞loc

(
R+,L

2
)

holds, as proved in
[16] and [8]. The important point here is to prove global convergence in time.
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4.1. The corrective boundary layers. Let u be the solution of the limiting system (1.3), the third
component u3 = 0 and we set curluh = ∂1u

2 − ∂2u1. Then, as in [16], we can write the boundary layer
part in the following form

(4.1) B = B1 + B2 + B3 + B4,

where Bi, i ∈ {1, 2, 3, 4}, are defined as described below:

1. The term B1 is the main boundary layer term (see (A.7), (A.8) and (A.9) in the appendix)

(4.2) B1 =


−e−

x3
ε
√

2β

(
u1 cos x3

ε
√
2β

+ u2 sin x3

ε
√
2β

)
− e−

1−x3
ε
√

2β

(
u1 cos 1−x3

ε
√
2β

+ u2 sin 1−x3

ε
√
2β

)
−e−

x3
ε
√

2β

(
u2 cos x3

ε
√
2β
− u1 sin x3

ε
√
2β

)
− e−

1−x3
ε
√

2β

(
u2 cos 1−x3

ε
√
2β
− u1 sin 1−x3

ε
√
2β

)
ε
√
β G(x3) curluh


where

G(x3) = −e−
x3
ε
√

2β sin

(
x3

ε
√

2β
+
π

4

)
+ e
− 1−x3
ε
√

2β sin

(
1− x3
ε
√

2β
+
π

4

)
.

2. The corrective terms B2 and B3 are added to B1 to ensure the Dirichlet boundary conditions at
{x3 = 0} and {x3 = 1}, and we have

B2 =

 ε
√

2β u2

−ε
√

2β u1

ε
√

2β
(
1
2 − x3

)
curluh

(4.3)

B3 = e
− 1
ε
√

2β cos

(
1

ε
√

2β

)u1u2
0

 .(4.4)

3. Finally, the term B4 is added to the sum B1 + B2 + B3 to ensure the divergence-free property of B,

(4.5) B4 = f(x3)

 u2

−u1
0

+ g(x3)

 0
0

curluh

 ,

where

f(x3) = a
[
e
− x3
ε
√

2β + e
− 1−x3
ε
√

2β

]
+ b,(4.6)

g(x3) = −ε
√
β e
− 1
ε
√

2β sin

(
1

ε
√

2β
+
π

4

)
−
∫ x3

0

f(s)ds,

and where (a, b) is the solution of the linear system

(4.7)


(

1 + e
− 1
ε
√

2β

)
a+ b = −ε

√
2β + e

− 1
ε
√

2β sin
1

ε
√

2β

2ε
√

2β
(

1− e−
1

ε
√

2β

)
a+ b = 2ε

√
βe
− 1
ε
√

2β sin

(
1

ε
√

2β
+
π

4

)
.

We remark that the determinant of the system (4.7) is

D = 1 + e
− 1
ε
√

2β − 2ε
√

2β
(

1− e−
1

ε
√

2β

)
.

Thus, for ε > 0 small enough, we have D > 1
2 and (4.7) always has the following solution

(4.8) a =
Jε −Kε

D
and b =

Kε

(
1 + e

− 1
ε
√

2β

)
− 2Jεε

√
2β
(

1− e−
1

ε
√

2β

)
D

,

where

Jε = −ε
√

2β + e
− 1
ε
√

2β sin
1

ε
√

2β
,

Kε = 2ε
√
βe
− 1
ε
√

2β sin

(
1

ε
√

2β
+
π

4

)
.

It is easy to prove that if ε > 0 is small enough, then

|a| < 4(β +
√
β)ε and |b| < 32βε2.
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With the previously defined boundary layer term B, we can verify that

div (u+ B) = 0 and (u+ B)|{x3=0} = (u+ B)|{x3=1} = 0.

Now, let

B0(x3) =

−e
− x3
ε
√

2β cos x3

ε
√
2β
− e
− 1−x3
ε
√

2β cos 1−x3

ε
√
2β

−e
− x3
ε
√

2β sin x3

ε
√
2β
− e
− 1−x3
ε
√

2β sin 1−x3

ε
√
2β

e
− x3
ε
√

2β sin x3

ε
√
2β

+ e
− 1−x3
ε
√

2β sin 1−x3

ε
√
2β

−e
− x3
ε
√

2β cos x3

ε
√
2β
− e
− 1−x3
ε
√

2β cos 1−x3

ε
√
2β


Then, we can write B in the following form

(4.9) B =M(x3)

 u1

u2

curluh

 .

The matrix M(x3) is defined by

(4.10) M(x3) =

[
M(x3) 0

0 m(x3)

]
where

M(x3) = B0(x3) +
(
ε
√

2β + f(x3)
)[

0 1
−1 0

]
+ e
− 1
ε
√

2β cos
1

ε
√

2β

[
1 0
0 1

]
,

m(x3) = ε
√
β G(x3) + ε

√
2β

(
1

2
− x3

)
+ g(x3).

We can also prove the existence of a constant C > 0 such that, for any p ≥ 1, we have

(4.11)


‖M(·)‖Lpx3 ≤ Cε

1
p , ‖M(·)‖L∞x3 ≤ C, ‖M′(·)‖Lpx3 ≤ Cε

1
p−1,

‖m(·)‖L∞x3 ≤ Cε, ‖m(·)‖Lpx3 ≤ Cε

sup
x3∈[0, 12 ]

∣∣x23M ′(x3)
∣∣ ≤ Cε and sup

x3∈[ 1
2 ,1]

∣∣(1− x3)2M ′(x3)
∣∣ ≤ Cε.

4.2. Convergence to the limiting system. It is easy to prove that B is small, i.e., B goes to 0 in
L∞

(
R+,L

2(R2
h × [0, 1])

)
as ε goes to 0. Then, our goal is to prove that vε = uε − u− B converges to 0

in L∞
(
R+,L

2(R2
h × [0, 1])

)
as ε goes to 0.

Since a two-dimensional divergence-free vector field (independant of x3) belongs to the kernel of the
operator P(e3 ∧ ·), where P is the Leray projection of L2(R3) onto the subspace of divergence-free vector
fields, e3 ∧ u is a gradient term. Replacing uε by vε + u + B in the first equation of the system (1.1),
and using the fact that u is the solution of the system (1.3) and u3 ≡ 0, we deduce that vε satisfies the
following equation

(4.12) ∂tv
ε − νh(ε)∆hv

ε − βε∂23vε + uε · ∇vε + vε · ∇B + vε,h · ∇hu

+ ∂tB + B · ∇B + Bh · ∇hu+ uh · ∇hB − L1 − L2 +
e3 ∧ vε

ε
= −∇p̃ε,

where

L1 = νh(ε)∆hu+ νh(ε)∆hB,

L2 = βε∂23B −
e3 ∧ B
ε

+
√

2β u,

∇p̃ε = ∇pε −∇hp+
e3 ∧ u
ε

.

Taking the L2 scalar product of (4.12) with vε, then integrating by parts the obtained equation and
taking into account the fact that vε satisfies the Dirichlet boundary condition, we get

(4.13)
1

2

d

dt
‖vε‖2L2 + νh(ε) ‖∇hvε‖2L2 + βε ‖∂3vε‖2L2

= −〈uε · ∇vε, vε〉 − 〈vε · ∇B, vε〉 −
〈
vε,h · ∇hu, vε

〉
− 〈∂tB, vε〉

− 〈B · ∇B, vε〉 −
〈
Bh · ∇hu, vε

〉
−
〈
uh · ∇hB, vε

〉
+ 〈L1, v

ε〉+ 〈L2, v
ε〉 .
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In what follows, we will separately estimate the nine terms on the right-hand side of (4.13). We recall
that we will always denote B1, B2 and B2 (vε,1, vε,2 and vε,3 respectively) the three components of B
(vε respectively) and we also write B = (Bh,B3) and vε = (vε,h, vε,3).

1. The estimate of the first term is classical, using the divergence-free property of uε:

(4.14) 〈uε · ∇vε, vε〉 = 0.

2. The second term is the most difficult to treat. First, we decompose this term as follows

(4.15) 〈vε · ∇B, vε〉 =
〈
vε,h · ∇hBh, vε,h

〉
+
〈
vε,h · ∇hB3, vε,3

〉
+
〈
vε,3 ∂3B3, vε,3

〉
+
〈
vε,3 ∂3Bh, vε,h

〉
.

For the first term on the right-hand side of (4.15), Hölder’s inequality implies that∣∣〈vε,h · ∇hBh, vε,h〉∣∣ ≤ C ∥∥vε,h∥∥L2

∥∥∇hBh∥∥L∞ ∥∥vε,h∥∥L2 ≤ C ‖M(·)‖L∞x3
∥∥∇huh∥∥L∞xh ‖vε‖2L2 .

Then, using Estimates (4.11) and Lemma 3.5, we obtain

(4.16)
∣∣〈vε,h · ∇hBh, vε,h〉∣∣ ≤ C(u0) e−t

√
2β ‖vε‖2L2 .

Next, using integrations by parts and Hölder’s inequality, we deduce that∣∣〈vε,h · ∇hB3, vε,3〉∣∣ ≤ C ‖∇hvε‖L2

∥∥B3∥∥
L∞
‖vε‖L2 .

So, Estimates (4.11), Lemmas 3.1 and 3.5 and Young’s inequality imply∣∣〈vε,h · ∇hB3, vε,3〉∣∣ ≤ C ‖m(·)‖L∞x3
∥∥curluh

∥∥
L∞xh
‖∇hvε‖L2 ‖vε‖L2(4.17)

≤ C(u0) ε e−t
√
2β ‖vε‖L2 ‖∇hvε‖L2

≤ C(u0) ε e−t
√
2β ‖vε‖2L2 +

C(u0) ε

8
‖∇hvε‖2L2 .

Performing an integration by parts, we can control the third term on the right-hand side of (4.15) in
the same way as the second one:∣∣〈vε,3 ∂3B3, vε,3〉∣∣ = 2

∣∣〈B3vε,3, ∂3vε,3〉∣∣ = 2
∣∣〈B3vε,3,divhv

ε,h
〉∣∣(4.18)

≤ C(u0) ε e−t
√
2β ‖vε‖2L2 +

C(u0) ε

8
‖∇hvε‖2L2 .

In order to estimate the last term of the right-hand side of (4.15), we decompose it into two parts,
the first part corresponding to the boundary layer near {x3 = 0} and the other part corresponding to
the one near {x3 = 1}:〈

vε,3 ∂3Bh, vε,h
〉

=

∫
R2
h×[0, 12 ]

(vε,3 ∂3Bh) · vε,hdx+

∫
R2
h×[ 1

2 ,1]
(vε,3 ∂3Bh) · vε,hdx

For the first part, since vε vanishes on {x3 = 0}, using Hölder’s inequality and Hardy’s inequality, we
get ∣∣∣∣∣

∫
R2
h×[0, 12 ]

(vε,3 ∂3Bh) · vε,hdx

∣∣∣∣∣ ≤ sup
x3∈[0, 12 ]

∣∣x23M ′(x3)
∣∣ ‖u‖L∞xh

∥∥∥∥vε,3x3
∥∥∥∥
L2

∥∥∥∥vε,hx3
∥∥∥∥
L2

≤ sup
x3∈[0, 12 ]

∣∣x23M ′(x3)
∣∣ ‖u‖L∞xh ∥∥∂3vε,3∥∥L2

∥∥∂3vε,h∥∥L2 .

We recall that ∂3v
ε,3 = −divhv

ε,h. Then, Lemmas 3.1 and 3.5, Estimates (4.11) and Young’s inequality
imply ∣∣∣∣∣

∫
R2
h×[0, 12 ]

(vε,3 ∂3Bh) · vε,hdx

∣∣∣∣∣ ≤ C(u0) ε e−t
√
2β
∥∥divhv

ε,3
∥∥
L2

∥∥∂3vε,h∥∥L2(4.19)

≤ C(u0) ε

8
‖∇hvε‖2L2 +

βε

4
‖∂3vε‖2L2 .
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For the second part concerning the boundary layer near {x3 = 1}, since vε = (vε,h, vε,3) vanishes on
{x3 = 1}, Hardy’s inequality implies that

Iv =

∫
R2
h

(∫ 1

1
2

∣∣∣∣vε,3(xh, x3)

1− x3

∣∣∣∣2 dx3
)
dxh =

∫
R2
h

(∫ 1
2

0

∣∣∣∣vε,3(xh, 1− x3)

x3

∣∣∣∣2 dx3
)
dxh

≤ C
∫
R2
h

(∫ 1
2

0

∣∣∂3vε,3(xh, 1− x3)
∣∣2 dx3) dxh

≤ C
∥∥∂3vε,3∥∥2L2 = C

∥∥divhv
ε,h
∥∥2
L2 .

Likewise,

Ih =

∫
R2
h

(∫ 1

1
2

∣∣∣∣vε,h(xh, x3)

1− x3

∣∣∣∣2 dx3
)
dxh ≤ C

∥∥∂3vε,h∥∥2L2 .

Thus, using Hölder’s inequality, we get∣∣∣∣∣
∫
R2
h×[ 1

2 ,1]
(vε,3 ∂3Bh) · vε,hdx

∣∣∣∣∣ ≤ sup
x3∈[ 1

2 ,1]

∣∣(1− x3)2M ′(x3)
∣∣ ‖u‖L∞xh √Iv√Ih(4.20)

≤ C(u0) ε e−t
√
2β
∥∥divhv

ε,3
∥∥
L2

∥∥∂3vε,h∥∥L2

≤ C(u0) ε

8
‖∇hvε‖2L2 +

βε

4
‖∂3vε‖2L2 .

3. The third term on the right-hand side of (4.13) can be treated using Hölder’s inequality and Lemma
3.5. We have

(4.21)
∣∣〈vε,h · ∇hu, vε〉∣∣ ≤ C ∥∥∇huh∥∥L∞(R2

h)
‖vε‖2L2 ≤ C(u0) e−t

√
2β ‖vε‖2L2 .

4. We recall that

B =M(x3) tA =

[
M(x3) 0

0 m(x3)

] u1

u2

curluh

 .

Then, we can write the fourth term as

〈∂tB, vε〉 =
〈
M(x3)∂tu

h, vε,h
〉

+
〈
m(x3)∂tcurluh, vε,3

〉
.

Let PR2
h

be the Leray projection of L2(R2
h) onto the subspace of two dimensional divergence-free vector

fields. Since u3 = 0, and ∂3p = 0, using Estimate (4.11) and Lemmas 3.1 and 3.5, we have∣∣〈M(x3)∂tu
h, vε,h

〉∣∣ ≤ ∣∣∣〈M(x3)PR2
h

(
uh · ∇huh

)
, vε,h

〉∣∣∣+
√

2β
∣∣〈M(x3)uh, vε,h

〉∣∣(4.22)

≤ ‖M(·)‖L2
x3

(∥∥∥PR2
h

(
uh · ∇huh

)∥∥∥
L2

+
√

2β
∥∥uh∥∥

L2

)∥∥vε,h∥∥
L2

≤ Cε 1
2

∥∥uh∥∥
L2

(
1 +

∥∥∇huh∥∥L∞) ‖vε‖L2

≤ C(u0) ε
1
2 e−t

√
2β
(

1 + ‖vε‖2L2

)
.

Applying the operator curl to the first two equations of the system (1.3) (we recall that in this paper,
curl only acts on the horizontal components and we already defined curluh = ∂1u

2 − ∂2u1), we obtain

∂t(curluh) + uh · ∇h (curluh) +
√

2β (curluh) = 0.

Then, ∣∣〈m(x3)∂tcurluh, vε,3
〉∣∣ ≤ ∣∣〈m(x3)uh · ∇hcurluh, vε,3

〉∣∣+
√

2β
∣∣〈m(x3)curluh, vε,3

〉∣∣(4.23)

≤ ‖m(·)‖L2
x3

(∥∥uh · ∇hcurluh
∥∥
L2 +

√
2β
∥∥curluh

∥∥
L2

)∥∥vε,3∥∥
L2

≤ Cε
(∥∥uh∥∥

L∞

∥∥∇hcurluh
∥∥
L2 +

∥∥curluh
∥∥
L2

)
‖vε‖L2

≤ C(u0) ε e−t
√
2β
(

1 + ‖vε‖2L2

)
.

5. We decompose the fifth term into two parts:

〈B · ∇B, vε〉 =
〈
Bh · ∇hB, vε

〉
+
〈
B3∂3B, vε

〉
.
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The “horizontal” part can be bounded using Hölder’s inequality, Estimates (4.11) and Theorem 1.2 as
follows ∣∣〈Bh · ∇hB, vε〉∣∣ ≤ C ∥∥Bh∥∥L∞ ‖∇hB‖L2 ‖vε‖L2(4.24)

≤ C ‖M(·)‖L∞x3
∥∥uh∥∥

L∞
‖M(·)‖L2

x3

(∥∥∇huh∥∥L2 +
∥∥∇hcurluh

∥∥
L2

)
‖vε‖L2

≤ Cε 1
2

∥∥uh∥∥2
Hσ ‖vε‖L2 ≤ C(u0) ε

1
2 e−t

√
2β
(

1 + ‖vε‖2L2

)
.

Likewise, we have the following estimate for the “vertical” part:∣∣〈B3 ∂3B, vε〉∣∣ ≤ ∥∥B3∥∥
L∞
‖∂3B‖L2 ‖vε‖L2(4.25)

≤ C(u0) e−t
√
2β ‖m(·)‖L∞x3 ‖M

′(·)‖L2
x3

‖vε‖L2

≤ C(u0) ε
1
2 e−t

√
2β
(

1 + ‖vε‖2L2

)
.

6. For the sixth term, taking into account the fact that u is independent of x3, Estimates (4.11) and
Lemma 3.1 imply ∣∣〈Bh · ∇hu, vε〉∣∣ ≤ ∥∥Bh∥∥

L4
xh

L2
x3

‖∇hu‖L4
xh

‖vε‖L2(4.26)

≤ ‖M(·)‖L2
x3

(
‖u‖2L4 + ‖∇hu‖2L4

)
‖vε‖L2

≤ C(u0) ε
1
2 e−t

√
2β
(

1 + ‖vε‖2L2

)
.

7. The seventh term can be bounded in a similar way as the sixth one.∣∣〈uh · ∇hB, vε〉∣∣ ≤ ∥∥uh∥∥
L∞
‖∇hB‖L2 ‖vε‖L2(4.27)

≤ C
∥∥uh∥∥

L∞
‖M(·)‖L2

x3

(∥∥∇huh∥∥L2 +
∥∥∇hcurluh

∥∥
L2

)
‖vε‖L2

≤ C(u0) ε
1
2 e−t

√
2β
(

1 + ‖vε‖2L2

)
.

8. We write the eighth term as

〈L1, v
ε〉 = νh(ε)

〈
∆hu

h, vε,h
〉

+ νh(ε) 〈∆hB, vε〉 .

Then, we have ∣∣νh(ε)
〈
∆hu

h, vε,h
〉∣∣ ≤ νh(ε)

∥∥uh∥∥
Hσ ‖vε‖L2(4.28)

≤ C(u0) νh(ε) e−t
√
2β
(

1 + ‖vε‖2L2

)
and

|νh(ε) 〈∆hB, vε〉| = νh(ε) |〈∇hB,∇hvε〉| ≤ νh(ε) ‖∇hB‖L2 ‖∇hvε‖L2(4.29)

≤ νh(ε) ‖M(·)‖L2
x3

(∥∥∇huh∥∥L2 +
∥∥∇hcurluh

∥∥
L2

)
‖vε‖L2

≤ C(u0) νh(ε) ε
1
2 e−t

√
2β
(

1 + ‖vε‖2L2

)
.

9. We will estimate the ninth term as in [16] or [21]. We have

〈L2, v
ε〉 =

〈
βε∂23B, vε

〉
−
〈
e3 ∧ B
ε

, vε
〉

+
〈√

2β u, vε
〉
.

We recall the definition (4.1) of B
B = B1 + B2 + B3 + B4,

and for any i ∈ {1, 2, 3, 4}, we set Bi = (Bhi ,B3i ), where Bhi and B3i denote the horizontal and vertical
components of Bi respectively. We also recall that B = (Bh,B3). Then, the following identities are
immediate

∂23Bh3 = 0,

βε∂23Bh1 −
e3 ∧ B1

ε
= 0,

βε∂23Bh2 −
e3 ∧ B2

ε
+
√

2β u = 0.
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For the remaining terms, we have

βε
∣∣〈∂23B3, vε,3〉∣∣ ≤ βε

∥∥∂3B3∥∥L2

∥∥∂3vε,3∥∥(4.30)

≤ βε
∥∥∇hBh∥∥L2 ‖∇hvε‖L2

≤ βε ‖M(x3)‖L2
x3

∥∥∇huh∥∥L2
xh

‖∇hvε‖L2

≤ C(u0) ε2e−t
√
2β +

C(u0) ε

8
‖∇hvε‖2L2 ;∣∣∣∣〈e3 ∧ B3ε

, vε,h
〉∣∣∣∣ ≤ Cε−1e−

1
ε ‖u‖L2 ‖vε‖L2 ≤ C(u0) ε

1
2 e−t

√
2β
(

1 + ‖vε‖2L2

)
.(4.31)

We recall that

Bh4 = f(x3)

(
u2

−u1
)
,

where f is defined in (4.6),

f(x3) = a

[
exp

(
− x3

ε
√

2β

)
+ exp

(
−1− x3
ε
√

2β

)]
+ b,

and that, if ε > 0 is small enough, we have

|a| < 4(β +
√
β)ε and |b| < 32βε2.

Then,

βε
∣∣〈∂23Bh4 , vε,h〉∣∣ ≤ βε ‖f ′′(·)‖L2

x3

∥∥uh∥∥
L2

∥∥vε,h∥∥
L2(4.32)

≤ Cε
1
2

∥∥uh∥∥
L2 ‖vε‖L2

≤ C(u0) ε
1
2 e−t

√
2β
(

1 + ‖vε‖2L2

)
.

Finally, we have∣∣∣∣〈e3 ∧ B4ε
, vε,h

〉∣∣∣∣ ≤ C

[(∫ 1

0

∣∣∣e− x3
ε
√

2β + e
− 1−x3
ε
√

2β

∣∣∣2 dx3) 1
2

+ βε

]∥∥uh∥∥
L2

∥∥vε,h∥∥
L2(4.33)

≤ C(u0) ε
1
2 e−t

√
2β
(

1 + ‖vε‖2L2

)
.

End of the proof of Theorem 1.1: Summing all the inequalities from (4.14) to (4.33), we deduce
from (4.13) that, for ε > 0 small enough

d

dt
‖vε‖2L2 + νh(ε) ‖∇hvε‖2L2 + βε ‖∂3vε‖2L2

≤ C(u0)
(
ε

1
2 + νh(ε)

)
e−t
√
2β + C(u0) e−t

√
2β ‖vε‖2L2 + C(u0) ε ‖∇hvε‖2L2 .

If C(u0) ε ≤ νh(ε), for any ε > 0 small enough, by integrating the above inequality with respect to the
time variable, we get

(4.34) ‖vε(t)‖2L2 ≤ ‖vε(0)‖2L2 + C(u0)
ε

1
2 + νh(ε)√

2β
+ C(u0)

∫ t

0

e−s
√
2β ‖vε(s)‖2L2 ds.

We recall that vε = uε − u− B. Thus,

‖vε(0)‖2L2 ≤ ‖uε(0)− u(0)‖2L2 + ‖B(0)‖2L2

≤ ‖uε0 − u0‖
2
L2 + ‖M(·)‖2L2

x3

‖u0‖2L2 ≤ ‖uε0 − u0‖
2
L2 + Cε

1
2 ‖u0‖2L2 .

According to the Gronwall lemma, it follows from (4.34) that

‖vε(t)‖2L2 ≤

(
‖uε0 − u0‖

2
L2 + Cε

1
2 ‖u0‖2L2 + C(u0)

ε
1
2 + νh(ε)√

2β

)
exp

{
C(u0)√

2β

}
,

which leads to

lim
ε→0
‖vε‖L∞(R+,L2) = 0,

and Theorem 1.1 is proved. �
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Appendix A. Contruction of the Ekman layers

The construction of Ekman boundary layers is classical and can be found in [16] or [9] for instance.
In this paper, we will only give very brief recall of this construction. The typical approach consists in
looking for the appropriate solutions of the system (1.1) in the following form

(A.1)
uε = uI,0 + uB,0 + ũB,0 + ε

(
uI,1 + uB,1 + ũB,1

)
+ ε2

(
uI,2 + uB,2 + ũB,2

)
+ . . .

pε =
1

ε

(
pI,−1 + pB,−1 + p̃B,−1

)
+ pI,0 + pB,0 + p̃B,0 + ε

(
pI,1 + pB,1 + p̃B,1

)
+ . . . .

The “interior part” functions with the index “I” depend on (t, x1, x2, x3) and the “boundary layer part”
with the index “B” consists in smooth functions of the form

uB,j = uB,j
(
t, x1, x2,

x3
ε

)
, pB,j = pB,j

(
t, x1, x2,

x3
ε

)
,

ũB,j = ũB,j
(
t, x1, x2,

1− x3
ε

)
, p̃B,j = p̃B,j

(
t, x1, x2,

1− x3
ε

)
,

and which rapidly (exponentially) decrease when the third space variable goes to infinity. The justification
of the size of the boundary layers being ε and the discussion about other sizes of the layers can be found
in [16], [21], [8] and [9].

A.1. In the interior part of the domain. Away from the boundary, all the boundary terms in (A.1)
rapidly decrease to zero. Thus, at the leading order ε−1, the divergence-free conditions and the fast
rotation yield

uI,02 = ∂1p
I,−1, uI,01 = −∂2pI,−1, ∂3pI,−1 = 0,

which leads to

(A.2)

{
∂3u

I,0 = 0, ∂3p
I,−1 = 0

∂1u
I,0
1 + ∂2u

I,0
2 = 0.

The limiting velocity uI,0 is then a two-dimensional divergence-free vector field with three components,
which means that the fluid has tendency to move in columns when the rotation is fast, as predicts the
Taylor-Proudman theorem.

Now, looking at the zeroth order (ε0), one obtains the governing equation of the fluid at the limit as
ε→ 0

(A.3)


∂tu

I,0
1 + uI,0h · ∇hu

I,0
1 − u

I,1
2 + ∂1p

I,0 = 0

∂tu
I,0
2 + uI,0h · ∇hu

I,0
2 + uI,11 + ∂2p

I,0 = 0

∂tu
I,0
3 + uI,0h · ∇hu

I,0
3 + ∂3p

I,0 = 0.

Here, we remark that the fast rotation implies the action of the first order term, i.e. the added vector

field
(
−uI,12 , uI,11 , 0

)
, on the limiting behavior of the fluid. In the next paragraph, we will show that

the interaction with the boundary allows to explicitly calculate this vector field, which turns out to be
a dissipative term (the Ekman pumping).

A.2. In the Ekman boundary layers. We will focus on the boundary layer near {x3 = 0}. The other

layer near {x3 = 1} can be obtained in a similar way. Performing the change of variable y =
x3
ε

, we

deduce the following “divergence-free properties” of uB,j , for any j ≥ 0,

(A.4)

{
∂yu

B,0
3 = 0

∂1u
B,j
1 + ∂2u

B,j
2 + ∂yu

B,j+1
3 = 0, ∀ j ≥ 0.

We remark that the first equation of (A.4) implies that uB,03 ≡ 0 because it goes to zero as y → +∞.

The Dirichlet boundary condition uε(t, x1, x2, 0) = 0 is rewritten as follows

(A.5) uB,j(t, x1, x2, 0) = −uI,j(t, x1, x2, 0), ∀ j ≥ 0,

which implies uI,03 ≡ 0, since uI,03 is independent of x3 and uI,0(t, x1, x2, 0) = −uB,0(t, x1, x2, 0) = 0.

Now, putting the Ansatz into the first equation of (1.1) and looking at the leading order ε−2, we
simply get

∂yp
B,−1 = 0,
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and so, pB,−1 = 0 since pB,−1 → 0 as y → +∞. This is a classical principle of fluid mechanics which
claims that the pressure does not vary in a boundary layer. At the next order ε−1, combining the
boundary condition (A.5) and the fact that uI,0 = uI,0(t, x1, x2) is independent of x3, we recover the
following system

(A.6)



β∂2yu
B,0
1 + uB,02 = 0

β∂2yu
B,0
2 − uB,01 = 0

uB,01 |y=0
= −uI,01 , uB,02 |y=0

= −uI,02

lim
y→+∞

uB,01 = lim
y→+∞

uB,02 = 0.

This system can be explicitly solved and that gives
(A.7)

uB,01 = −e−
y√
2β

(
uI,01 cos

y√
2β

+ uI,02 sin
y√
2β

)
= −e−

x3
ε
√

2β

(
uI,01 cos

x3

ε
√

2β
+ uI,02 sin

x3

ε
√

2β

)
uB,02 = −e−

y√
2β

(
uI,02 cos

y√
2β
− uI,01 sin

y√
2β

)
= −e−

x3
ε
√

2β

(
uI,02 cos

x3

ε
√

2β
− uI,01 sin

x3

ε
√

2β

)
.

Using (A.4), (A.7) and the fact that ∂1u
I,0
1 + ∂2u

I,0
2 = 0, we have

∂yu
B,1
3 = −∂1uB,01 − ∂2uB,02 = exp

(
− y√

2β

)
sin

(
y√
2β

)
curluI,0h ,

where curluI,0h = ∂1u
I,0
2 − ∂2uI,01 . Integrating the above equation with respect to y and recalling that

uB,13 → 0 as y → +∞, we obtain

(A.8) uB,13 = −
√
βe
− y√

2β sin

(
y√
2β

+
π

4

)
curluI,0h = −

√
βe
− x3
ε
√

2β sin

(
x3

ε
√

2β
+
π

4

)
curluI,0h .

Remark A.1. We remark that unlike the irrotational case where the boundary layers are discribed by

the Prandtl equations, in this case, the main boundary layer term
(
uB,01 , uB,02 , uB,13

)
can be explicitly

computed from the limiting velocity in the interior domain, which allows to directly treat these layers
without using the Prandtl equations.

The same arguments near the boundary {x3 = 1} lead to p̃B,−1 = 0 and

(A.9)



ũB,01 = −e−
1−x3
ε
√

2β

(
uI,01 cos

1− x3
ε
√

2β
+ uI,02 sin

1− x3
ε
√

2β

)
ũB,02 = −e−

1−x3
ε
√

2β

(
uI,02 cos

1− x3
ε
√

2β
− uI,01 sin

1− x3
ε
√

2β

)
ũB,13 =

√
βe
− 1−x3
ε
√

2β sin

(
1− x3
ε
√

2β
+
π

4

)
curluI,0h .

We come back to (A.3). Taking curluI,0h = ∂1u
I,0
2 − ∂2u

I,0
1 , we have

(A.10) ∂tcurluI,0h + uI,0h · ∇hcurluI,0h = −∂1uI,11 − ∂2u
I,1
2 = ∂3u

I,1
3 .

Since uI,0 is independent of x3, by integrating (A.10) with respect to x3 over [0, 1], one gets

∂tcurluI,0h + uI,0h · ∇hcurluI,0h = uI,13 |x3=1
− uI,13 |x3=0

= uB,13 |x3=0
− ũB,13 |x3=1

=
√

2βcurluI,0h .

Using the Biot-Savart law, we can finally rewrite the system (A.3) in the same form as (1.3)

(A.11)



∂tu
I,0
1 + uI,0h · ∇hu

I,0
1 +

√
2β uI,01 + ∂1p

I,0 = 0

∂tu
I,0
2 + uI,0h · ∇hu

I,0
2 +

√
2β uI,02 + ∂2p

I,0 = 0

∂3u
I,0 ≡ 0, uI,03 ≡ 0,

∂1u
I,0
1 + ∂2u

I,0
2 = 0.
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