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ROTATING FLUIDS WITH SMALL VISCOSITY - THE CASE OF ILL PREPARED

DATA

VAN-SANG NGO

Abstract. In this paper, we prove the existence of a unique, global strong solution of the damped

rotating fluid system in the whole space R3, that is the Navier-Stokes system with a damping force
term, a large Coriolis force term and with a small anisotropic viscosity, provided that the rotation is

fast enough. We also study the convergence of this solution towards the solution of the limiting system,

in the case where the limiting system is not zero, and give an application in the case where the fluid
rotates between two parallel infinite plates.

1. Introduction

In this paper, we study the following rotating fluid system in R3, which is the incompressible Navier-
Stokes equations together with a large Coriolis force term and a damping term γuε:

(1.1)


∂tu

ε − νh(ε)∆hu
ε + γuε + uε · ∇uε +

e3 ∧ uε

ε
= −∇pε in R3 × R+

div uε = 0 in R3 × R+

uε |t=0
= u0 in R3,

where the unknowns are the velocity uε and the pressure pε. The fluid rotates around the e3-axis and ε
stands for the Rossby number. We remark that this system is anisotropic in the sense that the “total”
diffusion (in all directions) is replaced by an horizontal diffusion term

−νh(ε)∆h = −νh(ε)
(
∂21 + ∂22

)
,

where ∂i is the partial derivative with respect to the variable xi and where νh(ε) > 0 is the viscosity in
the horizontal direction, depending on ε, and goes to 0 when ε → 0. We emphasize that all along this
paper, we always use the index “h” to refer to the horizontal terms and horizontal variables, and the
index “v” or “3” to the vertical ones.

We first recall that the system (1.1), with γ = 0, is a simplified model, usually used to describe the
behavior of geophysical fluids. The anisotropic diffusion term is often considered in meteorology and
oceanography as representing the influence of the Coriolis force on the fluid movements (see [36] or [21]
for the details). One can also find an extended survey on the system (1.1), with γ = 0, in [12] or [20].

It is clear that the Coriolis force term has no contribution in the energy estimates for the system (1.1).
Using the same method as for the Euler system, we can prove that the system (1.1) is locally well-posed

when the initial data u0 belong to a smooth enough Sobolev space, e.g., H
5
2+η(R3), η > 0. We also

remind the reader that, the vanishing of the vertical viscosity introduces additional problems and that
the existence of a weak Leray solution is still an open question. In order to obtain a result close to the
Fujita-Kato theorem and the existence of a unique strong solution, Chemin, Desjardins, Gallagher and
Grenier ([10]) considered the system (1.1), with γ = 0, νh > 0 independent of ε, and with the initial
data in the following anisotropic Sobolev spaces1

H0,s(R3) =

{
u ∈ S ′ : ‖u‖H0,s(R3)

def
=

(∫
R3

(
1 + |ξ3|2

)s
|F(u)(ξ)|2 dξ

) 1
2

< +∞

}
,

with s > 1
2 . Here, F and F−1 denote the Fourier transform and its inverse, and S ′ is the space of

tempered distributions. We also use the notation û to denote the Fourier transform of u. In [10], the
authors proved the local existence (global for small data) of a strong solution in H0,s0(R3), s0 >

1
2 , and
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1For the sake of the simplicity, we use the bold character X to indicate the space of vector fields, each component of

which belongs to the space X.
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proved the uniqueness of this solution in H0,s1(R3), s1 >
3
2 . The uniqueness in H0,s0(R3), s0 >

1
2 was

proven later by Iftimie in [25]. Their results can be generalized to the system (1.1) in the following way:

Theorem 1.1. Let γ = 0, s0 >
1
2 and u0 ∈ H0,s0(R3). Then, there exists T > 0 and a unique strong

solution uε of the system (1.1) such that

uε ∈ L∞
(
[0, T ],H0,s0(R3)

)
and ∇huε ∈ L2

(
[0, T ],H0,s0(R3)

)
.

Moreover, there is a constant c > 0 such that, if ‖u0‖H0,s0 ≤ cνh, then the solution is global.

The main ideas of the proof of this theorem are the use of the Littlewood-Paley theory and a decom-
position of the system (1.1) in frequencies, where the vertical variable plays a different role from the
horizontal ones. The crucial point in their method is that the missing vertical viscosity can be “com-
pensated” by the divergence-free property of the velocity field. Indeed, in the nonlinear term uε · ∇uε,
the vertical derivative ∂3 is always multiplied by uε,3 (as in uε,3∂3), and the third component uε,3 is
smoother than expected, because of the relation

∂3u
ε,3 = −∂1uε,1 − ∂2uε,2 = −divhu

ε,h,

and because of the smoothing effect induced by the horizontal viscosity on the horizontal components.
By a minor modification of this method, we can also prove the same result for the system (1.1) in the
case where γ > 0 and where νh(ε) > 0 depends on ε.

In the above result, the role of the Coriolis force is not mentioned. But, actually in fast rotating
systems with small Rossby number, the Coriolis force plays an important role. In the experiment of G.I.
Taylor (see [15]), drops of dye injected into a rapidly rotating, homogeneous fluid, within a few rotations,
formed perfectly vertical sheets of dyed fluid, known as Taylor curtains. In large-scale atmospheric and
oceanic flows, the fluid motions also have a tendency towards columnar behaviors (Taylor columns). For
example, currents in the western North Atlantic have been observed to extend vertically over several
thousands meters without significant change in amplitude and direction ([39]).

Fast rotating flows have first been considered in periodic domains. In the work of Babin, Mahalov
and Nicolaenko [1], [3], the authors studied the isotropic case, where the diffusion term is −νh∆h−νv∂23 ,
with νh, νv > 0 independent of ε. For any initial data in appropriate Sobolev spaces, they proved the
global existence and uniqueness of a smooth solution when the rotation is fast enough (that is, the
Rossby number ε is small enough). The same result was proven by Gallagher in [18], using the method
of Schochet [40], for fast rotating fluid systems and also for more general parabolic systems. It was
also shown in [1], [3] and [18] that, when ε goes to zero, the fast rotating system converges to a two-
dimensional Navier-Stokes system with three components, if νh > 0 is fixed, or to a two-dimensional
Euler system with three components, if νh is zero or goes to zero as ε goes to zero. The convergence in
the more general case, where the rotation axis is not fixed, was proven in [19] by Gallagher and Saint-
Raymond. The anisotropic case, with zero vertical viscosity (νv = 0), in periodic domains, that is the
system (1.1), with γ = 0 and νh > 0 independent of ε, in the torus T3, was studied later by Paicu in [33].

In the case of rotating fluids in the whole space R3, it was proved in [9], [10] and [19] that, if the
initial data are divergence-free vector fields belonging to H0,s(R3) then, when ε goes to zero, the limiting
system corresponding to (1.1), with γ = 0, is zero. The main idea consists in proving and using Strichartz
estimates for the associated linear system, which shows that, in the case of R3, the free oscillation waves
of the fluid propagate to infinity and the energy of the fluid decreases. Using this property, it was also
proved in [10] that the system (1.1), with γ = 0 and νh > 0 fixed, has a unique, global solution when
the rotation is fast enough.

In physical models, the fluid is turbulent and νh, νv denote in fact turbulent viscosities instead of the
molecular kinematic viscosity of the fluid. In real situations, the viscosity is not fixed but depends on
the speed of rotation of the fluid. The viscosities νh, νv go to 0 as the Rossby number goes to 0 (i.e., as
the rotation speed goes to infinity). Such models were studied in the papers of Grenier and Masmoudi
[22] and of Masmoudi [30] for fast rotating fluids between two parallel plates. In [32], following the
ideas of [22] and [30], we considered the Navier-Stokes-Coriolis system (1.1) in the case where γ = 0,
νv = 0 and νh = νh(ε) goes slowly to 0 as ε goes to 0 and where the initial data belong to H0,s, s > 1

2 .
In [32], the fact that νh(ε) goes slowly to 0 was expressed by setting νh(ε) = εα, with α ∈]0, α0], for
some α0 > 0. The difficulty arising in the study of this model consists in the fact that the coefficient

1
νh(ε)

in the energy estimates goes to infinity when ε goes to 0, which prevents one to use Gronwall-type

arguments to deduce the global existence of strong solutions. In [32], by modifying the method of [10],
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we proved that the limiting system is zero and there exists a unique global strong solution if the rotation
is fast enough. We emphasize the importance of a positive horizontal viscosity which does not go to zero
too fast so that the dispersion due to Strichartz estimates can balance the large coefficient 1

νh(ε)
.

In this paper, also following the ideas of [22] and [30], we consider the system (1.1) in the anisotropic
framework, with γ > 0, νv = 0 and νh = νh(ε) = εα, 0 < α ≤ α0, for some α0 > 0. We remark that
the choice νh(ε) = εα is to simplify the notations and the calculations. We can of course consider other
forms of νh which are equivalent or smaller than εα0 . We also remark that the results remain true in the
isotropic case, with initial data in appropriate isotropic Sobolev spaces. Here, the idea of choosing γ > 0
is motivated by the dissipation of energy which was put in evidence in [22] and [30] when the rotation is
fast. More motivations to take γ > 0 will be given after the introduction of the systems (1.3), (1.4) and
after Theorem 1.2.

The goal of the paper is to determine what we can obtain if the limiting system is not zero. Can we
still prove the existence of a unique, global solution when the rotation is fast enough? In what follows,
we consider initial data of the form

(1.2) u0 = u0 + v0,

where
u0 =

(
u10(x1, x2), u20(x1, x2), u30(x1, x2)

)
is a divergence-free vector field, independent of x3 and

v0 =
(
v10(x1, x2, x3), v20(x1, x2, x3), v30(x1, x2, x3)

)
.

We recall that in [10], Chemin et al. proved that, for the system (1.1), with γ = 0 and νh > 0 fixed, if
we consider initial data of the form (1.2), with u0 ∈ L2(R2

h) and v0 ∈ H0,s(R3), the limiting system is
not zero, but the two-dimensional Navier-Stokes system with three components

(1.3)



∂tu
h + νh∆hu

h + uh · ∇huh = −∇hp

∂tu
3 + νh∆hu

3 + uh · ∇hu3 = 0

divh u = 0

∂3u = 0

u |t=0
= u0,

where u = (uh, u3) and uh = (u1, u2). When νh = νh(ε) goes to zero as ε goes to zero, the limiting
system is the two-dimensional Euler system with three components ([19])

(1.4)



∂tu
h + uh · ∇huh = −∇hp

∂tu
3 + uh · ∇hu3 = 0

divh u = 0

∂3u = 0

u |t=0
= u0.

We remark that the above limiting systems have very different properties. The first one, which is
a 2D Navier-Stokes system, is globally well-posed in L2(R2

h). In addition, the solution is bounded in

L∞(R+,L
2(R2

h)) ∩ L2(R+, Ḣ
1(R2

h)). This property allows to prove (see [10]) that, if the initial data are
of the form (1.2), with u0 ∈ L2(R2

h) and v0 ∈ H0,s(R3), s > 1
2 , then there exists a global solution of the

system (1.1), with γ = 0 and νh > 0 fixed, when ε is small enough. Furthermore, this solution of (1.1)
is close to the solution of (1.3) in L∞

(
R+,H

0,s(R3)
)
. The second limiting system, which is the system

(1.4), is still well-posed in Hσ(R2
h), σ > 2. However, the solution of (1.4) could exponentially grow in

Hσ(R2
h)-norm, σ > 2, and we do not know if this solution is integrable with respect to the time variable.

For the system (1.1) with γ = 0, νv = 0 and where νh = νh(ε) goes to zero with ε, the above difficulty
prevents us from using the method of [10] or [32] for proving the existence of a global solution when ε is
small enough, in the case where νh = νh(ε) goes to zero with ε. In this paper, the fact that γ > 0 allows
us to simply avoid this difficulty as explained in Section 3. The system (1.1) is thus considered with the
following hypotheses

• γ > 0 is fixed,
• νh = νh(ε)→ 0 as ε→ 0 (more precisely, we will consider νh(ε) = εα, α > 0),
• and u0 = u0 + v0 as in (1.2).
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As we will explain after the introduction of Theorem 1.2, such a choice is not artificial at all. We will
prove that the limiting system of (1.1) with γ > 0, when ε goes to zero, is the following two-dimensional
damped Euler system with three components:

(1.5)



∂tu
h + γuh + uh · ∇huh = −∇hp

∂tu
3 + γu3 + uh · ∇hu3 = 0

divh u = 0

∂3u = 0

u |t=0
= u0,

where u = (uh, u3).

We remark that, in the system (1.1) with γ > 0, the additional damping term γuε does not regularize
the system. But, with presence of the damping term γu in the limiting system (1.5), we can prove
the exponential decay in time of the Hσ(R2

h)-norm, σ > 2, of the solution of (1.5). Due to the decay
property, by using the method of [10] and [32], we obtain the existence of a unique, global strong solution
of the system (1.1), and the convergence of (1.1) to (1.5) as ε goes to zero.

Before stating the main result of this paper, we want to say a few words about the role of the viscosity
νh(ε). The fact that νh(ε) > 0 is primordial, even when νh(ε) is small and goes to 0 as ε → 0 (e.g.,
νh(ε) = εα, α > 0). Indeed, if we consider the fast rotating Euler system with damping term (that is, the
system (1.1), with γ > 0 and νh(ε) = 0), we cannot obtain better results than in [1], [2] or in [16], where
the authors proved the existence of a unique solution on any time interval [0, T ], with T > 0 arbitrarily
large, provided that ε is small enough.

In order to state our main result, for any σ1, σ2 ∈ R, we define the following spaces

Hσ1,σ2(R3) =

{
u ∈ S ′ :

(∫
R3

(
1 + |ξh|2

)σ1
(

1 + |ξ3|2
)σ2

|F(u)(ξ)|2 dξ
) 1

2

< +∞

}

Ḣσ1,σ2(R3) =

{
u ∈ S ′ :

(∫
R3

|ξh|2σ1

(
1 + |ξ3|2

)σ2

|F(u)(ξ)|2 dξ
) 1

2

< +∞

}

L2
hḢ

σ2
v (R3) =

{
u ∈ S ′ :

(∫
R3

|ξ3|2σ2 |F(u)(ξ)|2 dξ
) 1

2

< +∞

}
,

and for any η > 0, s > 1
2 , let

Ys,η = Ḣ−η,s(R3) ∩ L2
hḢ
−η
v (R3) ∩Hη,η+s(R3).

The main result of this paper is the following theorem.

Theorem 1.2. Let s > 1
2 , σ > 2, γ > 0 and η > 0. There is a constant M > 0 such that, for any α > 0,

a > 0, 3α+ 2a < M , for any a0 > 0, b0 > 0, there exists ε0 > 0, depending on s, σ, γ, η, a0 and b0, so
that, if νh(ε) = εα, with 0 < ε ≤ ε0, and if

u0 = u0 + v0,

where

(i) u0 = (u10(x1, x2), u20(x1, x2), u30(x1, x2)) is a two-dimensional, divergence-free vector field belong-
ing to Hσ(R2

h), satisfying ‖u0‖Hσ(R2
h)
≤ a0,

(ii) v0 = (v10(x1, x2, x3), v20(x1, x2, x3), v30(x1, x2, x3)) is a three-dimensional, divergence-free vector
field in H0,s(R3) ∩Ys,η such that ‖v0‖Ys,η

≤ b0ε−a,

the system (1.1) has a unique global solution

uε ∈ C(R+,H
0,s(R3)) ∩ L∞(R+,H

0,s(R3)) with ∇huε ∈ L2(R+,H
0,s(R3)).

Remark

(1) In the above theorem, the three-dimensional part v0 of the initial data can be chosen arbitrarily
large when ε is small enough.

(2) The constant M can be chosen as follows

M =
η

6 + 4η
.



ROTATING FLUIDS WITH SMALL VISCOSITY - THE CASE OF ILL PREPARED DATA 5

We want to emphasize that the choice of the damping term γuε, with γ > 0, in the system (1.1) is
not artificial. If we consider the fast rotating fluid system between two parallel plates, with Dirichlet
boundary conditions, as in [22], [30] or [11]

(1.6)


∂tu

ε − νh(ε)∆hu
ε − βε∂23uε + uε · ∇uε +

e3 ∧ uε

ε
= −∇pε in R+ × Ωh × [0, 1]

div uε = 0 in R+ × Ωh × [0, 1]

uε |t=0
= uε0, in Ωh × [0, 1],

where Ωh = R2
h and where νh = εα, with α > 0, then, the damping term really exists in the limiting

system. Indeed, when the rotation goes to infinity, the Taylor columns are only formed in the interior of
the domain. Near the boundary, Ekman boundary layers exist. The behaviors of the fluid become very
complex and the friction slows the fluid down in a way that the velocity is zero on the boundary. As a
consequence, in the limiting system, we obtain the additional damping term of the form γu, γ > 0 (the
coefficient γ was proved to be

√
2β in [22]). This phenomenon is well known in fluid mechanics as the

Ekman pumping.

Since the viscosity is positive in all three directions (νh = νh(ε) > 0 and νv = βε > 0), the system
(1.6) possesses a weak Leray solution

uε ∈ L∞(R+,L
2(R3)) ∩ L2(R+, Ḣ

1(R3)).

In the case where νh > 0 is fixed and where the initial data are well prepared (i.e. lim
ε→0

uε0 = u0 =

(u10(x1, x2), u20(x1, x2), 0) in L2(R2
h × [0, 1]) and u0 is a divergence-free two-dimensional vector field in

Hσ(R2
h), σ > 2), it was proved by Grenier and Masmoudi in [22], in the case Ωh = T2

h and by Chemin et
al. in [11], in the case Ωh = R2

h that, when ε goes to zero, uε converges to the solution of the following
limiting system in L∞(R+,L

2(R3))

(1.7)



∂t u
h + uh · ∇h uh +

√
2β uh = −∇h p

∂t u
3 + uh · ∇h u3 +

√
2β u3 = 0

div hu
h = 0

∂3u = 0

u|t=0
= u0.

We want to remark that in this case, as u30 = 0, the third component u3 = 0 for any t > 0. In the case
where νh → 0 as ε → 0, however, the convergence is only local with respect to the time variable (see
[22]). In this paper, applying the method of the proof of Theorem 1.2, we show the exponential decay of
the solution of the system (1.7) in appropriate Sobolev norms, and we improve the result of [22], in the
case where νh(ε) = εα, α > 0. More precisely, we prove the uniform convergence (with respect to the
time variable) of (1.6) towards (1.7).

Theorem 1.3. Let 0 < α < 1
2 and uε0 ∈ L2(R2

h × [0, 1]) be a family of initial data such that

lim
ε→0

uε0 = u0 = (u10(x1, x2), u20(x1, x2), 0) in L2(R2
h × [0, 1]),

where u0 is a divergence-free two-dimensional vector field in Hσ(R2
h), σ > 2. Let u be the solution of

the limiting system (1.7) with initial data u0 and, for each ε > 0, let uε be a weak solution of (1.6) with
initial data uε0. Then

lim
ε→0
‖uε − u‖L∞(R+,L2(R2

h×[0,1]))
= 0.

The structure of the paper is as follows. In Section 2, we recall some elements of the Littlewood-Paley
theory and the dyadic decompositions. Section 3 deals with estimates concerning the solution of the
system (1.5). In Section 4, we prove Strichartz estimates for the cut-off linear system (4.2). Section 5 is
devoted to the proof of Theorem 1.2. Finally, in the last section, we study the system (1.6) of rotating
fluids between two parallel infinite plates and prove Theorem 1.3.

2. Preliminaries: Dyadic decompositions

In this section, we briefly recall the properties of dyadic decompositions in the Fourier space and give
some elements of the Littlewood-Paley theory. Using dyadic decompositions, we define the anisotropic
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Sobolev spaces H0,s, which will be used in this paper. At the end of the section, we recall important a
priori estimates which we need in the proof of Theorem 1.2.

2.1. Dyadic decomposition. We recall that F and F−1 are the Fourier transform and its inverse, and
that we also write û = Fu. For any d ∈ N∗ and 0 < r < R, we denote Bd(0, R) =

{
ξ ∈ Rd | |ξ| ≤ R

}
,

and Cd(r,R) =
{
ξ ∈ Rd | r ≤ |ξ| ≤ R

}
. The following Bernstein lemma gives important properties of

a distribution u when its Fourier transform is well localized. We refer the reader to [8] for the proof of
this lemma.

Lemma 2.1. Let k ∈ N, d ∈ N∗ and r1, r2 ∈ R satisfy 0 < r1 < r2. There exists a constant C > 0 such
that, for any a, b ∈ R, 1 ≤ a ≤ b ≤ +∞, for any λ > 0 and for any u ∈ La(Rd), we have

(2.1) supp (û) ⊂ Bd(0, r1λ) =⇒ sup
|α|=k

‖∂αu‖Lb ≤ C
kλk+d(

1
a−

1
b ) ‖u‖La ,

and

(2.2) supp (û) ⊂ Cd(r1λ, r2λ) =⇒ C−kλk ‖u‖La ≤ sup
|α|=k

‖∂αu‖La ≤ C
kλk ‖u‖La .

Let ψ be an even smooth function in C∞0 (R), whose support is contained in the ball B1(0, 43 ), such

that ψ is equal to 1 on a neighborhood of the ball B1(0, 34 ). Let

ϕ(z) = ψ
(z

2

)
− ψ(z).

Then, the support of ϕ is contained in the ring C1( 3
4 ,

8
3 ), and ϕ is identically equal to 1 on the ring

C1( 4
3 ,

3
2 ). The functions ψ and ϕ allow us to define a dyadic partition of Rd, d ∈ N∗, as follows

∀z ∈ R, ψ(z) +
∑
j∈N

ϕ(2−jz) = 1.

Moreover, this decomposition is almost orthogonal, in the sense that, if |j − j′| ≥ 2, then

supp ϕ(2−j(·)) ∩ supp ϕ(2−j
′
(·)) = ∅.

We introduce the following dyadic frequency cut-off operators. We refer to [5] and [8] for more details.

Definition 2.2. For any d ∈ N∗ and for any tempered distribution u ∈ S ′(Rd), we set

∆qu = F−1
(
ϕ(2−q |ξ|)û(ξ)

)
, ∀q ∈ N,

∆−1u = F−1 (ψ(|ξ|)û(ξ)) ,

∆qu = 0, ∀q ≤ −2,

Squ =
∑

q′≤q−1

∆q′u, ∀q ≥ 1.

Using the properties of ψ and ϕ, one can prove that for any tempered distribution u ∈ S ′(Rd), we have

u =
∑
q≥−1

∆qu in S ′(Rd),

and the (isotropic) nonhomogeneous Sobolev spaces Hs(Rd), with s ∈ R, can be characterized as follows

Proposition 2.3. Let d ∈ N∗, s ∈ R and u ∈ Hs(Rd). Then,

‖u‖Hs :=

(∫
Rd

(1 + |ξ|2)s |û(ξ)|2 dξ
) 1

2

∼

∑
q≥−1

22qs ‖∆qu‖2L2

 1
2

Moreover, there exists a square-summable sequence of positive numbers {cq(u)} with
∑
q cq(u)2 = 1, such

that

‖∆qu‖L2 ≤ cq(u)2−qs ‖u‖Hs .

The decomposition into dyadic blocks also gives a very simple characterization of Hölder spaces.

Definition 2.4. Let d ∈ N∗ and r ∈ R+ \ N.
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(1) If r ∈]0, 1[, we denote Cr(Rd) the set of bounded functions u : Rd → R such that there exists
C > 0 satisfying

∀ (x, y) ∈ Rd × Rd, |u(x)− u(y)| ≤ C |x− y|r .
(2) If r > 1 is not an integer, we denote Cr(Rd) the set of [r] times differentiable functions u such

that ∂αu ∈ Cr−[r](Rd), for any α ∈ Nd, |α| ≤ [r], where [r] is the largest integer smaller than r.

One can prove that the set Cr(Rd), endowed with the norm

‖u‖Cr :=
∑
|α|≤[r]

(
‖∂αu‖L∞ + sup

x 6=y

|∂αu(x)− ∂αu(y)|
|x− y|r−[r]

)
is a Banach space. Moreover, we have the following result, the proof of which can be found in [8].

Proposition 2.5. There exists a constant C > 0 such that, for any r ∈ R+ \N and for any u ∈ Cr(Rd),
we have

sup
q

2qr ‖∆qu‖L∞ ≤
Cr+1

[r]!
‖u‖Cr .

Conversely, if the sequence
(
2qr ‖∆qu‖L∞

)
q≥−1 is bounded, then

‖u‖Cr ≤ C
r+1

(
1

r − [r]
+

1

[r] + 1− r

)
sup
q

2qr ‖∆qu‖L∞ .

In what follows, we give the definition of the anisotropic Sobolev spaces on R3, using separate dyadic
decompositions in the horizontal and vertical directions.

Definition 2.6. For any tempered distribution u ∈ S ′(R3), we set

∆h
qu = F−1

(
ϕ(2−q |ξh|)û(ξ)

)
, ∆v

qu = F−1
(
ϕ(2−q |ξ3|)û(ξ)

)
, ∀q ∈ N,

∆h
−1u = F−1 (ψ(|ξh|)û(ξ)) , ∆v

−1u = F−1 (ψ(|ξ3|)û(ξ)) ,

∆h
qu = 0, ∆v

qu = 0, ∀q ≤ −2,

Shq u =
∑

q′≤q−1

∆h
q′u, Svqu =

∑
q′≤q−1

∆v
q′u, ∀q ≥ 1.

Then, we can characterize the anisotropic Sobolev spaces H0,s, defined in the introduction, by the
following equivalent norm.

Proposition 2.7. Let s ∈ R and u ∈ H0,s(R3). Then,

‖u‖H0,s ∼

∑
q≥−1

22qs
∥∥∆v

qu
∥∥2
L2

 1
2

Moreover, there exists a square-summable sequence of positive numbers {cq(u)} with
∑
q cq(u)2 = 1, such

that ∥∥∆v
qu
∥∥
L2 ≤ cq(u)2−qs ‖u‖H0,s .

2.2. A priori estimates. In what follows, we always denote by (cq) (respectively (dq)) a square-
summable (respectively summable) sequence, with

∑
q c

2
q = 1 (respectively

∑
q dq = 1), of positive

numbers (which can depend on several parameters). We also remind the reader that, in order to simplify
the notations, we use the bold character X to indicate the space of vector fields, each component of
which belongs to the space X.

First, we need the following results (for a proof, see [35]). Let [., .] denote the usual commutator.

Lemma 2.8. Let d ∈ N∗. There exists a constant C > 0 such that, for any tempered distributions u, v
in S ′(Rd), we have

‖[∆q, u] v‖L2 := ‖∆q(uv)− u∆qv‖L2 ≤ C2−q ‖∇u‖L∞ ‖v‖L2 .

We recall that, for any p, q ≥ 1, the anisotropic Lebesgue spaces are defined as

LqvL
p
h(R3) = Lq(R; Lp(R2

h)).
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Lemma 2.9. For any real numbers m,n, l ≥ 1 such that 1
m = 1

n + 1
l , there exists a constant C > 0 such

that, for any tempered distributions u, v in S ′(R3), we have∥∥[∆v
q , u
]
v
∥∥
L2
vL

m
h

=
∥∥∆v

q(uv)− u∆v
qv
∥∥
L2
vL

m
h

≤ C2−q ‖∂3u‖L∞v Lnh ‖v‖L2
vL

l
h
.

In [10], Chemin, Desjardins, Gallagher and Grenier proved the following lemma.

Lemma 2.10. Let s > 1
2 . There exists a constant C > 0 such that, for any divergence-free vector fields

u and v in H0,s(R3), the horizontal gradients of which also belong to H0,s(R3), we have∣∣〈∆v
q(u · ∇v)|∆v

qv
〉∣∣ ≤ Cdq2−2qs( ‖∇hu‖H0,s(R3) ‖v‖H0,s(R3) ‖∇hv‖H0,s(R3)

+ ‖u‖
1
2

H0,s(R3) ‖∇hu‖
1
2

H0,s(R3) ‖v‖
1
2

H0,s(R3) ‖∇hv‖
3
2

H0,s(R3)

)
,

where {dq} is a summable sequence of positive numbers.

3. Estimates for the 2D limiting system

In this section, we give useful auxiliary results concerning the 2D limiting system (1.5). Throughout
this paper, for any vector field u = (u1, u2, u3) independent of the vertical variable x3, we denote by
w the associated horizontal vorticity, w = ∂1u

2 − ∂2u1. The first result of this section is the following
lemma

Lemma 3.1. Let u0 = (u10(x1, x2), u20(x1, x2), u30(x1, x2)) ∈ L2(R2
h) be a divergence-free vector field, the

horizontal vorticity of which

w0 = ∂1u
2
0 − ∂2u10 ∈ L2(R2

h) ∩ L∞(R2
h).

Then, the system (1.5), with initial data u0, has a unique, global solution

u ∈ C(R+,L
2(R2

h)) ∩ L∞(R+,L
2(R2

h)).

Moreover,

(i) There exists a constant C > 0 such that, for any p ≥ 2 and for any t > 0, we have∥∥∇huh(t)
∥∥
Lp(R2

h)
≤ CMp e−γt,(3.1) ∥∥uh(t)

∥∥
Lp(R2

h)
≤ CMe−γt,(3.2)

where

M = max
{∥∥uh0∥∥L2(R2

h)
, ‖w0‖L2(R2

h)
, ‖w0‖L∞(R2

h)

}
.

(ii) For any p ≥ 2, if u30 ∈ Lp(R2
h), then,

(3.3)
∥∥u3(t)

∥∥
Lp(R2

h)
≤
∥∥u30∥∥Lp(R2

h)
e−γt.

Proof

We remark that in (1.5), the first two components of u verify a two-dimensional Euler system
with damping term. Then, according to the Yudovitch theorem [44] (see also [8]), this system has
a unique solution uh ∈ C

(
R+,L

2(R2
h)
)
∩ L∞

(
R+,L

2(R2
h)
)

such that the horizontal vorticity w ∈
L∞(R+,L

2(R2
h)) ∩ L∞(R+,L

∞(R2
h)). Since the third component u3 satisfies a linear transport-type

equation, we can deduce the existence and uniqueness of the solution u of the limiting system (1.5).

By definition, the horizontal vorticity w satisfies the following equation

(3.4) ∂tw + γw + uh · ∇hw = 0

Taking the L2 scalar product of (3.4) with |w|p−2 w, we get

1

p

d

dt
‖w‖p

Lp(R2
h)

+ γ ‖w‖p
Lp(R2

h)
= 0.

By using an interpolation between L2(R2
h) and L∞(R2

h), we deduce from the above equation that

(3.5) ‖w(t)‖Lp(R2
h)
≤ ‖w0‖Lp(R2

h)
e−γt ≤ C ‖w0‖

2
p

L2(R2
h)
‖w0‖

1− 2
p

L∞(R2
h)

e−γt ≤ CMe−γt.
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We recall that ∇huh = Rw where R is an homogeneous Caldéron-Zygmund operator of order 0. Ac-
cording to [[8], Theorem 3.1.1], for any p > 1 and for any t > 0,∥∥∇huh(t)

∥∥
Lp(R2

h)
≤ C p2

p− 1
‖w(t)‖Lp(R2

h)
,

which implies (3.1), for any p ≥ 2. In particular, we have

(3.6)
∥∥uh(t)

∥∥
Ḣ1(R2

h)
=
∥∥∇huh(t)

∥∥
L2(R2

h)
= ‖w(t)‖L2(R2

h)
≤ CM e−γt.

Next, we remark that Inequality (3.2), in the case where p = 2 is a direct consequence of the energy

estimate for the damped Euler systems. So, using the Sobolev embedding Ḣ
p−2
p (R2

h) ↪→ Lp(R2
h) and

the fact that Ḣ
p−2
p (R2

h) is an interpolated space between L2(R2
h) and Ḣ1(R2

h), we deduce (3.2) from
Estimate (3.6), when p ≥ 2.

Since the vertical component u3 satisfies the same linear transport equation as w, Inequality (3.3) can
be proved in the same way as (3.5). �

In (3.1), we obtained a control of ∇huh in the Lp-norm, for any 2 ≤ p < +∞. However, we need a
L∞-estimate of ∇huh for the proof of Theorem 1.2. To this end, we first prove the following estimate.

Lemma 3.2. Let r > 1. There is a constant C > 0 such that, for any divergence-free vertor fields u in
L2(R2

h), the horizontal gradient ∇huh ∈ L∞(R2
h) and the vorticity w = ∂1u

2 − ∂2u1 ∈ Hr(R2
h), we have

(3.7)
∣∣〈∆h

q (uh · ∇hw)
∣∣ ∆h

qw
〉∣∣ ≤ Cdq2−2qr (∥∥∇huh∥∥L∞ + ‖w‖L∞

)
‖w‖Hr .

where (dq)q≥−1 is a summable sequence of positive numbers.

Proof

First of all, using the Bony decomposition into paraproducts and remainders (see [5], [13] or [10]), we
can write

(3.8)
∣∣〈∆h

q (uh · ∇hw)
∣∣ ∆h

qw
〉∣∣ ≤ I1q + I2q ,

where

I1q =

∣∣∣∣∣∣
〈

∆h
q

( ∑
q′−q≥N

Shq′+2(∇hw)∆h
q′u

h
) ∣∣∣ ∆h

qw

〉∣∣∣∣∣∣ ,
and

I2q =

∣∣∣∣∣∣
〈

∆h
q

( ∑
|q′−q|≤N

Shq′−1u
h ∆h

q′(∇hw)
) ∣∣∣ ∆h

qw

〉∣∣∣∣∣∣ ,
and where N > 0 is a fixed large enough integer.

Using Cauchy-Schwarz and Hölder inequalities, we get

(3.9) I1q ≤
∑

q′−q≥N

∥∥Shq′+2(∇hw)
∥∥
L∞

∥∥∆h
q′u

h
∥∥
L2

∥∥∆h
qw
∥∥
L2 .

The Bernstein lemma 2.1 implies that∥∥Shq′+2(∇hw)
∥∥
L∞
≤ C2q

′ ∥∥Shq′+2w
∥∥
L∞
≤ C2q

′
‖w‖L∞ ,

and ∥∥∆h
q′u

h
∥∥
L2 ≤ C2−q

′ ∥∥∆h
q′∇huh

∥∥
L2 .

Taking into account the fact that w = ∂1u
2 − ∂2u1 and divhu

h = 0, using an integration by parts, we
easily obtain ∥∥∆h

q′w
∥∥2
L2 =

∥∥∆h
q′∂1u

2
∥∥2
L2 +

∥∥∆h
q′∂2u

1
∥∥2
L2 − 2

〈
∆h
q′∂1u

2 | ∆h
q′∂2u

1
〉

=
∥∥∆h

q′∂1u
2
∥∥2
L2 +

∥∥∆h
q′∂2u

1
∥∥2
L2 +

∥∥∆h
q′∂1u

1
∥∥2
L2 +

∥∥∆h
q′∂2u

2
∥∥2
L2

=
∥∥∆h

q′∇huh
∥∥2
L2 .
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Therefore, using Proposition 2.3, we deduce from (3.9) that

I1q ≤ C
∑

q′−q≥N

‖w‖L∞
∥∥∆h

q′w
∥∥
L2

∥∥∆h
qw
∥∥
L2

≤ C
(
cq

∑
q′−q≥N

c̃q′2
−(q′−q)r

)
2−2qr ‖w‖L∞ ‖w‖

2
Hr ,

where (cq)q≥−1 and (c̃q′)q′≥−1 are square-summable sequences of positive numbers. Let

dq = cq
∑

q′−q≥N

c̃q′2
−(q′−q)r.

It is easy to prove that (dq)q≥−1 is a summable sequence of positive numbers. Thus, we have

(3.10) I1q ≤ Cdq2−2qr ‖w‖L∞ ‖w‖
2
Hr .

In order to estimate I2q , we write

(3.11) I2q ≤ IA + IB + IC ,

where
IA =

∣∣〈Shq uh · ∇h∆h
qw
∣∣ ∆h

qw
〉∣∣ ,

IB =

∣∣∣∣∣∣
〈 ∑
|q′−q|≤N

(
Shq − Shq′−1

)
uh · ∇h∆h

q′w
∣∣∣∆h

qw

〉∣∣∣∣∣∣ ,
and

IC =

∣∣∣∣∣∣
〈 ∑
|q′−q|≤N

[
∆h
q , S

h
q′−1uh

]
∇h∆h

q′w
∣∣∣∆h

qw

〉∣∣∣∣∣∣ .
Using an integration by parts, we get

(3.12) IA =
1

2

∣∣〈Shq (divhu
h)∆h

qw
∣∣ ∆h

qw
〉∣∣ = 0.

We remark that when q, q′ ≥ 1, Shq − Shq′−1 does not contain the low Fourier frequencies. So, IB can be

bounded in the same way as I1q , and we have

(3.13) IB ≤ Cdq2−2qr ‖w‖L∞ ‖w‖
2
Hr .

Finally, using Lemma 2.8, we obtain

IC ≤ C2−q
∑

|q′−q|≤N

∥∥Shq′−1∇huh∥∥L∞ ∥∥∇h∆h
q′w
∥∥
L2

∥∥∆h
qw
∥∥
L2(3.14)

≤ C2−2qr
∥∥∇huh∥∥L∞ ‖w‖2Hr

cq ∑
|q′−q|≤N

cq′2
−(q′−q)(r−1)


≤ Cdq2−2qr

∥∥∇huh∥∥L∞ ‖w‖2Hr .
From (3.10)-(3.14), we easily deduce (3.7) and Lemma 3.2 is proved. �

Next, we prove the following Brezis-Gallouet type inequality (see [6] and also [8]).

Lemma 3.3. Let r > 1. There exists a constant Cr > 0 such that, for any divergence-free vertor fields
u in L2(R2

h), the horizontal gradient ∇huh ∈ L∞(R2
h) and the vorticity w = ∂1u

2 − ∂2u1 ∈ Hr(R2
h), we

have

(3.15)
∥∥∇huh∥∥L∞(R2

h)
≤ Cr ‖w‖L∞(R2

h)
ln

(
e+
‖w‖Hr(R2

h)

‖w‖L∞(R2
h)

)
.

Proof

Using Lemma 2.1, for any q ≥ 1 and for any i, j ∈ {1, 2}, we have∥∥∂i∂j∆−1∆h
qw
∥∥
L∞
≤ C

∥∥∆h
qw
∥∥
L∞

.

Therefore, we can write∥∥∂i∂j∆−1w∥∥L∞ ≤ C ∑
−1≤q≤N0−1

∥∥∆h
qw
∥∥
L∞

+ C
∑
q≥N0

∥∥∆h
qw
∥∥
L∞

,
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where N0 will be made more precise below.

Using the definition of Hölderian norms and Lemma 2.1, we obtain∥∥∂i∂j∆−1w∥∥L∞ ≤ C(N0 + 1) ‖w‖L∞ + C
∑
q≥N0

2−q(r−1)2q(r−1)
∥∥∆h

qw
∥∥
L∞

≤ C(N0 + 1) ‖w‖L∞ + C ‖w‖Cr−1

2−(N0−1)(r−1)

2r−1 − 1
.

Choosing

N0 = 1 +

[
1

r − 1
log2

‖w‖Cr−1

‖w‖L∞

]
,

where [X] denotes the largest integer smaller than or equal to X, we deduce from the above inequality
that ∥∥∂i∂j∆−1w∥∥L∞ ≤ C ‖w‖L∞ (2 +

1

r − 1
log2

‖w‖Cr−1

‖w‖L∞

)
+

C

2r−1 − 1
‖w‖L∞ .

Thus, we can show the existence of a positive constant Cr such that

(3.16)
∥∥∂i∂j∆−1w∥∥L∞ ≤ Cr ‖w‖L∞ ln

(
e+
‖w‖Cr−1

‖w‖L∞

)
.

We recall the embedding Hr(R2
h) ↪→ Cr−1(R2

h) and we remark that x ln
(
e+ α

x

)
is an increasing function

on R+, for any α ≥ 0. So, using the Biot-Savart law, we finally deduce from (3.16) that∥∥∇huh∥∥L∞ ≤ Cr ‖w‖L∞ ln

(
e+
‖w‖Hr
‖w‖L∞

)
. �

Lemma 3.4. Let r > 1. Under the hypotheses of Lemma 3.1 and the additional hypothesis that w0

belongs to Hr(R2
h), there exist positive constants C1 = C1(γ, ‖w0‖Hr(R2)) and C2 = C2(γ, ‖w0‖Hr(R2))

such that

(3.17) ‖w(t)‖Hr(R2
h)
≤ C1e

−γt,

and

(3.18)
∥∥∇huh(t)

∥∥
L∞(R2

h)
≤ C2e

−γt.

Proof

For any r > 1, using Lemma 3.2, we get the following energy estimate in the Sobolev Hr-norm:

(3.19)
1

2

d

dt
‖w(t)‖2Hr + γ ‖w(t)‖2Hr ≤ C

(
‖w(t)‖L∞ +

∥∥∇huh(t)
∥∥
L∞

)
‖w(t)‖2Hr .

Taking into account Estimate (3.15), we rewrite (3.19) as follows

(3.20)
d

dt
‖w(t)‖Hr + γ ‖w(t)‖Hr ≤ C ‖w‖L∞

(
1 + ln

(
e+
‖w‖Hr
‖w‖L∞

))
‖w(t)‖Hr .

From (3.5), we have ‖w(t)‖Lp ≤ CMe−γt, where C is a positive constant and

M = max
{∥∥uh0∥∥L2(R2

h)
, ‖w0‖L2(R2

h)
, ‖w0‖L∞(R2

h)

}
.

Since C and M do not depend on p, we have

‖w(t)‖L∞ ≤ CMe−γt.

Therefore, considering y(t) = ‖w(t)‖Hr eγt, we can deduce from (3.20) that

(3.21)
d

dt
y(t) ≤ CMe−γty(t) [1 + ln (e+ y(t))] .

Integrating (3.21) with respect to t, we obtain

ln
(
1 + ln

(
e+ ‖w(t)‖Hr e

γt
))
≤ ln (1 + ln (e+ ‖w0‖Hr )) +

CM

γ
.

Choosing

C1 = (e+ ‖w0‖Hr )
2e
CM
γ

,
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we get

‖w(t)‖Hr ≤ C1e
−γt.

Combining the above estimate with (3.15) and using again the fact that x ln
(
e+ α

x

)
is an increasing

function, we obtain the existence of a positive constant C2, depending on γ and ‖w0‖Hr , such that∥∥∇huh(t)
∥∥
L∞
≤ C2e

−γt. �

Until now, we proved estimates concerning the first two components of the solution u of the system
(1.5). In what follows, we wish to prove an estimate similar to (3.18) for the third component u3 of u.
We first need a slightly more general version of Lemma 3.2, in the case where 0 < r < 1 and in the case
where w is an arbitrary function in Hr(R2).

Lemma 3.5. Let 0 < r < 1. There exists a constant C > 0 such that, for any divergence-free vector
field u in L2(R2

h), the horizontal gradient ∇huh ∈ L∞(R2
h), and for any function w ∈ Hr(R2), we have

(3.22)
∣∣〈∆h

q (uh · ∇hw)
∣∣ ∆h

qw
〉∣∣ ≤ Cdq2−2qr ∥∥∇huh∥∥L∞ ‖w‖2Hr ,

where (dq)q≥−1 is a summable sequence of positive numbers.

Proof

As in the proof of Lemma 3.2, performing the Bony decomposition into paraproducts and remainders
yields

(3.23)
∣∣〈∆h

q (uh · ∇hw)
∣∣ ∆h

qw
〉∣∣ ≤ I1 + I2,

where

I1 =

∣∣∣∣∣∣
〈

∆h
q

( ∑
q′−q≥N

Shq′+2(∇hw)∆h
q′u

h
) ∣∣∣ ∆h

qw

〉∣∣∣∣∣∣ ,
and

I2 =

∣∣∣∣∣∣
〈

∆h
q

( ∑
|q′−q|≤N

Shq′−1u
h ∆h

q′(∇hw)
) ∣∣∣ ∆h

qw

〉∣∣∣∣∣∣ .
Since 0 < r < 1, we have

∥∥Shq′+2(∇hw)
∥∥
L2
≤ C2q

′(1−r) ‖w‖Hr . Then, using Bernstein Lemma 2.1,

Proposition 2.3, Cauchy-Schwarz and Hölder inequalities, we get

I1 ≤
∑

q′−q≥N

∥∥Shq′+2(∇hw)
∥∥
L2

∥∥∆h
q′u

h
∥∥
L∞

∥∥∆h
qw
∥∥
L2

≤ Cdq2−2qr
∥∥∇huh∥∥L∞ ‖w‖2Hr ,

where

dq = cq
∑

q′−q≥N

cq′2
−(q′−q)r.

Next, we decompose I2 into three parts

I2 ≤ I2A + I2B + I2C ,

where

I2A =
∣∣〈Shq uh · ∇h∆h

qw
∣∣ ∆h

qw
〉∣∣ ,

I2B =

∣∣∣∣∣∣
〈 ∑
|q′−q|≤N

(
Shq − Shq′−1

)
uh · ∇h∆h

q′w
∣∣∣∆h

qw

〉∣∣∣∣∣∣ ,
and

I2C =

∣∣∣∣∣∣
〈 ∑
|q′−q|≤N

[
∆h
q , S

h
q′−1uh

]
∇h∆h

q′w
∣∣∣∆h

qw

〉∣∣∣∣∣∣ .
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Then, an integration by parts implies that I2A = 0 and since Shq −Shq′−1 does not contain the low Fourier

frequencies, when q, q′ ≥ 1, I2B can be bounded in the same way as I1. Finally, as in the proof of Lemma
3.2, using Lemma 2.8, we obtain

I2C ≤ C2−q
∑

|q′−q|≤N

∥∥Shq′−1∇huh∥∥L∞ ∥∥∇h∆h
q′w
∥∥
L2

∥∥∆h
qw
∥∥
L2

≤ C2−2qr
∥∥∇huh∥∥L∞ ‖w‖2Hr

cq ∑
|q′−q|≤N

cq′2
−(q′−q)(r−1)


≤ Cdq2−2qr

∥∥∇huh∥∥L∞ ‖w‖2Hr .
Lemma 3.5 is then proved. �

Lemma 3.6. Let 2 < r < 3 and u(t, x) be a solution of (1.5), with initial data u0 in Hr(R2
h). Then,

there exist a positive constant C3, depending on γ and ‖u0‖Hr(R2
h)

such that, for any t ≥ 0,

(3.24)
∥∥u3(t)

∥∥
Hr(R2

h)
≤ C3e

−γt.

Proof

Differentiating two times the equation verified by u3, for any i, j ∈ {1, 2}, we have

∂t∂i∂ju
3 + γ∂i∂ju

3 + (∂i∂ju
h) · ∇hu3 + (∂iu

h) · ∇h∂ju3

+ (∂ju
h) · ∇h∂iu3 + uh · ∇h∂i∂ju3 = 0.

Taking the Hr−2 scalar product of the above equation with ∂i∂ju
3, we get

1

2

d

dt

∥∥∂i∂ju3∥∥2Hr−2 + γ
∥∥∂i∂ju3∥∥2Hr−2(3.25)

≤
∣∣〈(∂i∂juh) · ∇hu3 | ∂i∂ju3

〉
Hr−2

∣∣+
∣∣〈(∂iuh) · ∇h∂ju3 | ∂i∂ju3

〉
Hr−2

∣∣
+
∣∣〈(∂juh) · ∇h∂iu3 | ∂i∂ju3

〉
Hr−2

∣∣+
∣∣〈uh · ∇h∂i∂ju3 | ∂i∂ju3〉Hr−2

∣∣ .
The divergence-free property allows us to write

(∂i∂ju
h) · ∇hu3 = ∂i

(
(∂ju

h) · ∇hu3
)
− (∂ju

h) · ∇h∂iu3

= ∂i
(
(∂ju

h) · ∇hu3
)
− divh

(
∂iu

3∂ju
h
)
.

Then, using the Cauchy-Schwarz inequality, classical estimates in Sobolev spaces (see [[8], Theorem
2.4.1]) and the Sobolev embedding Hr−1(R2

h) ↪→ L∞(R2
h), we obtain∣∣〈(∂i∂juh) · ∇hu3 | ∂i∂ju3

〉
Hr−2

∣∣
≤
∥∥(∂ju

h) · ∇hu3
∥∥
Hr−1

∥∥∂i∂ju3∥∥Hr−2 +
∥∥∂iu3∂juh∥∥Hr−1

∥∥∂i∂ju3∥∥Hr−2

≤
(∥∥∂juh∥∥L∞ ∥∥u3∥∥Hr +

∥∥∇hu3∥∥L∞ ∥∥∂juh∥∥Hr−1

) ∥∥u3∥∥
Hr

+
(∥∥∂iu3∥∥L∞ ∥∥∂juh∥∥Hr−1 +

∥∥∂juh∥∥L∞ ∥∥u3∥∥Hr) ∥∥u3∥∥Hr
≤ C ‖w‖Hr−1

∥∥u3∥∥2
Hr

.

The same arguments imply∣∣〈(∂iuh) · ∇h∂ju3 | ∂i∂ju3
〉
Hr−2

∣∣
≤
∥∥divh

(
∂ju

3∂iu
h
)
− ∂ju3∂i(divhu

h)
∥∥
Hr−2

∥∥∂i∂ju3∥∥Hr−2

≤
(∥∥∂ju3∥∥L∞ ∥∥∂iuh∥∥Hr−1 +

∥∥∂iuh∥∥L∞ ∥∥u3∥∥Hr) ∥∥u3∥∥Hr
≤ C ‖w‖Hr−1

∥∥u3∥∥2
Hr

,

and likewise, ∣∣〈(∂juh) · ∇h∂iu3 | ∂i∂ju3
〉
Hr−2

∣∣ ≤ C ‖w‖Hr−1

∥∥u3∥∥2
Hr

.

For the last term of (3.25), Lemma 3.5, with 0 < r − 2 < 1, yields∣∣〈uh · ∇h∂i∂ju3 | ∂i∂ju3〉Hr−2

∣∣ ≤ C ∥∥∇huh∥∥L∞ ∥∥∂i∂ju3∥∥2Hr−2 ≤ C
∥∥∇huh∥∥L∞ ∥∥u3∥∥2Hr .
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Multiplying (3.25) by eγt, then integrating the obtained equation with respect to the time variable
and using Lemma 3.4, we get∥∥u3(t)

∥∥
Hr

eγt ≤
∥∥u30∥∥Hr + C

∫ t

0

(∥∥∇huh(τ)
∥∥
L∞

+ ‖w(τ)‖Hr−1

) ∥∥u3(τ)
∥∥
Hr

eγτdτ

≤
∥∥u30∥∥Hr + C(C1 + C2)

∫ t

0

∥∥u3(τ)
∥∥
Hr

dτ.

Thus, the Gronwall lemma allows us to obtain (3.24). �

In the previous section, we recalled Lemma 2.10 which allows us to control the term (u ·∇)v. However,
when this term contains the solution of the limiting system (1.5), the estimate in Lemma 2.10 becomes
much simpler.

Lemma 3.7. Let s > 1
2 and v ∈ H0,s(R3) be a divergence-free vector field.

(1) For any q ≥ −1, we have 〈
∆v
q((u · ∇)v)|∆v

qv
〉

= 0.

(2) There exists a positive constant C and a summable sequence of positive numbers {dq} such that∣∣〈∆v
q((v · ∇)u)|∆v

qv
〉∣∣ ≤ Cdq2−2qs ‖∇hu‖L∞(R2

h)
‖v‖2H0,s(R3) .

Proof

We remark that since u = u(x1, x2) and v = v(x1, x2, x3) belongs to S ′, we have ∆v
q(uv) = u∆v

qv.

Besides, we also have divh u
h = 0 and ∂3u = 0. As a consequence, an integration by parts proves that〈

∆v
q((u · ∇)v)|∆v

qv
〉

=
〈
(u · ∇)∆v

qv|∆v
qv
〉

= 0.

For the second part of Lemma 3.7, using the same remark as above and using Hölder’s inequality, we get∣∣〈∆v
q((v · ∇)u)|∆v

qv
〉∣∣ =

∣∣〈(∆v
qv
h · ∇h)u|∆v

qv
〉∣∣ ≤ ‖∇hu‖L∞(R2

h)

∥∥∆v
qv
∥∥2
L2(R3)

.

Using Proposition 2.7, we easily obtain the second estimate of Lemma 3.7. �

In the next paragraphs, we will not directly compare the system (1.1) with the limiting system (1.5)
because of technical difficulties. Instead of (1.5), we consider the following system

(3.26)



∂tu
ε,h − νh(ε)∆hu

ε,h + γuε,h + uε,h · ∇huε,h = −∇pε

∂tu
ε,3 − νh(ε)∆hu

ε,3 + γuε,3 + uε,h · ∇huε,3 = 0

divh u
ε,h = 0

∂3u
ε = 0

uε |t=0
= u0

with lim
ε→0

νh(ε) = 0, say νh(ε) = εα, α > 0.

Proposition 3.8. Like the system (1.5), the system (3.26) has a unique, global solution

uε ∈ C
(
R+,L

2(R2
h)
)
∩ L∞

(
R+,L

2(R2
h)
)
∩ L2

(
R+, Ḣ

1(R2
h)
)
,

which also satisfies the properties of Lemmas 3.1, 3.2, 3.3, 3.4, 3.5, 3.6 and 3.7.

In the following lemma, we will prove the convergence of uε towards u when ε goes to zero.

Lemma 3.9. Suppose that νh(ε) converges to 0 when ε goes to 0 and that u0 ∈ Hσ(R2
h), σ > 2. Then,

uε converges towards the solution u of (1.5) in L∞(R+,L
2(R2

h)), as ε goes to 0.

Proof

Using Lemma 3.1, for any t > 0, we have

(3.27) ‖u(t)‖L2(R2
h)
≤Me−γt and ‖uε(t)‖L2(R2

h)
≤Me−γt.

Thus, for fixed µ > 0, there exists Tµ > 0 such that, for any t ≥ Tµ,

‖uε(t)‖L2(R2
h)

+ ‖u(t)‖L2(R2
h)
≤ µ

2
.
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On the interval [0, Tµ], let vε = uε − u. Then, vε is a solution of the following system

∂tv
ε,h − νh(ε)∆hv

ε,h + γvε,h + uε,h · ∇hvε,h + vε,h · ∇huh = νh(ε)∆hu
h −∇p̃,

∂tv
ε,3 − νh(ε)∆hv

ε,3 + γvε,3 + uε,h · ∇hvε,3 + vε,h · ∇hu3 = νh(ε)∆hu
3,

divhv
ε,h = 0,

∂3v
ε = 0,

vε|t=0
= 0.

Taking the L2-scalar product of the first two equations of the above system with vε,h and vε,3 respectively,
we get

1

2

d

dt
‖vε‖2L2 + νh(ε) ‖∇hvε‖2L2 + γ ‖vε‖2L2 ≤ νh(ε) ‖∇hu‖L2 ‖∇hvε‖L2 +

∣∣〈vε,h · ∇hu|vε〉∣∣ .
Hence,

d

dt
‖vε‖2L2 + γ ‖vε‖2L2 ≤ νh(ε) ‖∇hu‖2L2 + 2 ‖∇hu‖L∞ ‖v

ε‖2L2 .

Integrating the obtained inequality, we obtain

‖vε(t)‖2L2 ≤
νh(ε)

γ
‖∇hu‖2L∞([0,Tµ],L2) + 2

∫ t

0

‖∇hu(τ)‖L∞ e−γ(t−τ) ‖vε(τ)‖2L2 dτ.

Then, the Gronwall Lemma proves that, for any 0 < t < Tµ,

‖vε(t)‖2L2 ≤ Cνh(ε)M2Tµ exp

{
2

∫ t

0

‖∇hu(τ)‖L∞ dτ
}
.

Combining with (3.27), we deduce from the above estimate that

lim
ε→0
‖uε − u‖L∞(R+,L2(R2

h))
= 0. �

4. Strichartz estimates

We next introduce the following frequency cut-off function:

(4.1) Ψ(ξ) = χ

(
|ξ|
R

)[
1− χ

(
2 |ξh|
r

)][
1− χ

(
2 |ξ3|
r

)]
,

where χ is a C∞-function from R into R, defined as follows

χ(x) =

{
1 si 0 ≤ |x| ≤ 1

0 si |x| ≥ 2.

We remark that Ψ ∈ C∞(R3), supp Ψ ⊂ C r
2 ,2R

and Ψ ≡ 1 in Cr,R, where

Cr1,r2 =
{
ξ ∈ R3 | |ξh| ≥ r1; |ξ3| ≥ r1 and |ξ| ≤ r2

}
,

for any 0 < r1 < r2.

In this section, we provide important dispersion results concerning the linear cut-off system

(4.2)


∂tvL − νh(ε)∆hvL + γvL +

vL ∧ e3
ε

= −∇pL
div vL = 0

vL |t=0
= v0,L = F−1 (Ψ(ξ)F(v0)) ,

where νh(ε) = εα, α > 0, and where F and F−1 denote the Fourier transform and its inverse. The main
result of this section is the following

Theorem 4.1. Let p ≥ 1, β ≥ 1, the cut-off radii 0 < r < R with r = R−β. There exists a constant
C = C(γ, p, β) > 0 such that, for any initial data v0,L ∈ L2(R3), the solution vL of the system (4.2)
satisfies

‖vL‖Lp((0,+∞),L∞h L2
v)
≤ CR

2+2p+3β
2p ε

1
4p ‖v0,L‖L2 .
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In order to prove this theorem, we follow the method of [10] and [32], and we write the system (4.2)
in Fourier variables. Applying the Leray projection P of L2(R3) onto the subspace of divergence-free
vector fields and then the Fourier transformation, we have

∂tv̂L = B(ξ, ε)v̂L,

where

B(ξ, ε) =


−γ − νh(ε) |ξh|2 + ξ1ξ2

ε|ξ|2
ξ22+ξ

2
3

ε|ξ|2 0

− ξ
2
1+ξ

2
3

ε|ξ|2 −γ − νh(ε) |ξh|2 − ξ1ξ2
ε|ξ|2 0

ξ2ξ3
ε|ξ|2 − ξ1ξ3

ε|ξ|2 −γ − νh(ε) |ξh|2

 .
It is well known that B(ξ, ε) possesses the following eigenvalues and their corresponding eigenvectors:

λ0 = −γ − νh(ε) |ξh|2 and V0 =

 0
0
1

 ,

λ+ = −γ − νh(ε) |ξh|2 +
iξ3
ε |ξ|

and V+ =
1

|ξ|2

 −iξ3 |ξ| − ξ1ξ2ξ21 + ξ23
iξ1 |ξ| − ξ2ξ3

 ,

λ− = −γ − νh(ε) |ξh|2 −
iξ3
ε |ξ|

and V− =
1

|ξ|2

 iξ3 |ξ| − ξ1ξ2
ξ21 + ξ23

−iξ1 |ξ| − ξ2ξ3

 .

We recall that {V+, V−} forms an orthogonal basis of the space of the Fourier transforms of all divergence-
free vector fields in L2(R3). Thus, we can write

v̂L(t) = C+e
tλ+V+ + C−e

tλ−V−,

where Ci = 〈v̂0,L, Vi〉, for any i ∈ {±}. As in [10] and [32], we consider the operators Gε±(t), which
associate to any tempered distribution f :

Gε±(t)f(x) = F−1
(
etλ∓ f̂(ξ)

)
(x)

=

∫
R2
yh

F−1ξ3

[∫
R2
ξh

etλ∓+i(xh−yh)ξhFx3
(f)(yh, ξ3)dξh

]
dyh,

Let a(ξ) = ξ3
|ξ| . Then, we have

Ψ(D)Gε±(t)f(x) =

∫
R2
yh

F−1ξ3

[
K±

(
t

ε
, t, ·, ξ3

)
∗h Fx3

(f)(·, ξ3)(xh)

]
dyh,

where ∗h is the convolution product in the horizontal direction, and where

(4.3) K± (θ, t, xh, ξ3) =

∫
R2
ξ3

Ψ(ξ) exp
{
∓iθa(ξ) + ixh · ξh − γt− tνh(ε) |ξh|2

}
dξ3.

Therefore, Theorem 4.1 can be directly deduced from the following lemma, using the method of duality,
called TT ?-method (see [10] or [32]).

Lemma 4.2. Let r, R, β be as in Theorem 4.1 and let K± be defined as in (4.3). Then

‖K± (θ, t, ·, ·)‖L∞xhL∞ξ3
≤ CR4+3βe−

γt
2 θ−

1
2 .

To prove Lemma 4.2, we use the method of nonstationary phase and we follow the lines of the proof of
[[32], Lemma 3.2]. We also remark that unlike the case of [32], here, the real part of the eigenvalues of

B(ξ, ε) is −γ−νh(ε) |ξh|2, which is always bounded from above by −γ. That is the reason why we obtain
a slightly better result than in [32]. We leave the details to the reader.

Finally, in the following lemma, we give a different version of Lemma 2.10 when the nonlinear term
contains the solution vL of the system (4.2). One can find a proof of it in [[32], Lemmas 4.4 and 4.5].
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Lemma 4.3. Let s > 1
2 and r, R, β be as in Theorem 4.1. There exists a constant C > 0 such that, for

any divergence-free vector fields v1 and v2 in H0,s(R3), the horizontal gradients of which also belong to
H0,s(R3), we have∣∣〈∆v

q(v2 · ∇vL)|∆v
qv1
〉∣∣ ≤ Cdq2−2qsRs+1 ‖vL‖L∞h L2

v
‖v1‖H0,s ‖v2‖H0,s ,(4.4) ∣∣〈∆v

q(vL · ∇v1)|∆v
qv1
〉∣∣ ≤ Cdq2−2qsRs ‖vL‖L∞h L2

v
‖v1‖H0,s ‖∇hv1‖H0,s(4.5)

+ Cdq2
−2qsRs+1 ‖vL‖L∞h L2

v
‖v1‖2H0,s ,

where {dq} is a summable sequence of positive numbers.

5. Global existence in the case of ill prepared data

This section is devoted to the proof of Theorem 1.2, that is, to the proof of the global existence of a
unique solution of the system (1.1), in the case where the horizontal viscosity is εα, α > 0.

(1.1)


∂tu

ε − εα∆hu
ε + γuε + uε · ∇uε +

uε ∧ e3
ε

= −∇pε dans R3 × R+

div uε = 0 dans R3 × R+

uε |t=0
= u0 dans R3.

In the introduction, we defined the spaces

Ys,η = Ḣ−η,s(R3) ∩ L2
hḢ
−η
v (R3) ∩Hη,η+s(R3),

where η > 0, s > 1
2 . According to the hypothesis on the initial data u0, we have

u0 = u0 + v0,

where

(i) u0 = (u10(x1, x2), u20(x1, x2), u30(x1, x2)) is a divergence-free vector field belonging to Hσ(R2
h),

σ > 2, such that ‖u0‖Hσ(R2
h)
≤ a0,

(ii) v0 = (v10(x1, x2, x3), v20(x1, x2, x3), v30(x1, x2, x3) is a divergence-free vector field belonging to
H0,s(R3) ∩Ys,η such that ‖v0‖Ys,η

≤ b0ε−a.

For the 3D part of the initial data, we write

v0 = v0,L + w0,

where v0,L = F−1 (Ψ(ξ)Fv0), with Ψ being defined in (4.1), and where F and F−1 stand for the Fourier
transform and its inverse. Since v0 ∈ H0,s(R3) ∩Ys,η, one can easily prove the following estimate.

Lemma 5.1. Let r = R−β, β ≥ 1, s > 1
2 and η > 0. Then there exists a positive constant C such that,

‖w0‖H0,s ≤ C ‖v0‖Ys,η
R−βη.

In the next step, we decompose the system (1.1) as follows

uε = uε + vL + w,

where uε is the solution of the 2D system (3.26) and vL is the solution of the cut-off linear system (4.2).
Then, w satisfies the following nonlinear system

(5.1)


∂tw − εα∆hw + γw +Q(w) +

w ∧ e3
ε

= −∇p̃

div w = 0

w |t=0
= w0 = v0 − v0,L,

where

Q(w) = w · ∇w + w · ∇vL + vL · ∇w + vL · ∇vL
+ uε · ∇vL + vL · ∇uε + uε · ∇w + w · ∇uε.

We already know (see [10] for instance) that there exists a unique local solution of (1.1) (and thus a
unique local solution of (5.1)) in L∞(R+,H

0,s(R3))∩C(R+,H
0,s(R3)), the horizontal gradient of which

belongs to L2(R+,H
0,s(R3)). Our goal is to prove that this solution exists globally in time.

Proof of Theorem 1.2
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Applying the operator ∆v
q to the first equation of the system (5.1) and then taking the L2 scalar

product of the obtained equation with ∆v
qw, we get

(5.2)
1

2

d

dt

∥∥∆v
qw
∥∥2
L2 + γ

∥∥∆v
qw
∥∥2
L2 + εα

∥∥∆v
q∇hw

∥∥2
L2 ≤

∣∣〈∆v
qQ(w)|∆v

qw
〉∣∣ .

The definition of Q(w) implies that

(5.3)
∣∣〈∆v

qQ(w)|∆v
qw
〉∣∣ ≤ F1 + F2 + F3 + F4 + F5,

where

F1 =
∣∣〈∆v

q(w · ∇w)|∆v
qw
〉∣∣ ,

F2 =
∣∣〈∆v

q(vL · ∇w)|∆v
qw
〉∣∣+

∣∣〈∆v
q(w · ∇vL)|∆v

qw
〉∣∣ ,

F3 =
∣∣〈∆v

q(vL · ∇vL)|∆v
qw
〉∣∣ ,

F4 =
∣∣〈∆v

q(u
ε · ∇vL)|∆v

qw
〉∣∣+

∣∣〈∆v
q(vL · ∇uε)|∆v

qw
〉∣∣ ,

F5 =
∣∣〈∆v

q(u
ε · ∇w)|∆v

qw
〉∣∣+

∣∣〈∆v
q(w · ∇uε)|∆v

qw
〉∣∣ .

According to Lemma 2.10, we have

(5.4) F1 ≤ Cdq2−2qs ‖w‖H0,s(R3) ‖∇hw‖
2
H0,s(R3) .

Then, Lemma 4.3 gives

(5.5) F2 ≤ Cdq2−2qsRs+1 ‖vL‖L∞h L2
v
‖w‖2H0,s

+ Cdq2
−2qsRs ‖vL‖L∞h L2

v
‖w‖H0,s ‖∇hw‖H0,s .

Next, the energy estimate for the linear system (4.2) shows that,

‖vL(t)‖H0,s ≤ ‖v0‖H0,s ≤ b0ε−a, for any t ≥ 0.

Using Inequality (4.4) of Lemma 4.3, we get

(5.6) F3 =
∣∣〈∆v

q(vL · ∇vL)|∆v
qw
〉∣∣ ≤ Cdq2−2qsRs+1b0ε

−a ‖vL‖L∞h L2
v
‖w‖H0,s .

As to evaluate F4, we can not apply Lemma 4.3, because uε is a two-dimensional vector fields. For the
first term of F4, since ∂3u

ε,3 = 0, we write〈
∆v
q(u

ε · ∇vL)|∆v
qw
〉

=
〈
∆v
qdiv (uε ⊗ vL)|∆v

qw
〉

+
〈
∆v
q((divhu

ε,h)vL)|∆v
qw
〉
.

We recall that uε does not depend on x3. So, in the vertical direction, the support of the Fourier transform
of uε ⊗ vL is included in [−R,R]. Considering that divhu

ε,h = 0, Bernstein lemma 2.1, Inequalities of
Cauchy-Schwarz and Hölder and Proposition 2.7 imply that∣∣〈∆v

q(u
ε · ∇vL)|∆v

qw
〉∣∣ ≤ CR ∥∥∆v

q(u
ε ⊗ vL)

∥∥
L2

∥∥∆v
q∇hw

∥∥
L2

≤ CRdq2−2qs ‖uε ⊗ vL‖H0,s ‖∇hw‖H0,s

≤ CRs+1dq2
−2qs ‖uε‖L2(R2

h)
‖vL‖L∞h L2

v
‖∇hw‖H0,s

≤ CRs+1dq2
−2qs ‖u0‖L2(R2

h)
‖vL‖L∞h L2

v
‖∇hw‖H0,s .

In the same way, we have∣∣〈∆v
q(v

h
L · ∇huε)|∆v

qw
〉∣∣ ≤ Cdq2−2qs ∥∥vhL · ∇huε∥∥H0,s ‖w‖H0,s

≤ CRsdq2−2qs
∥∥vhL · ∇huε∥∥L2 ‖w‖H0,s

≤ CRsdq2−2qs ‖vL‖L∞h L2
v
‖∇huε‖L2(R2

h)
‖w‖H0,s

≤ CRsdq2−2qs ‖u0‖Hσ(R2
h)
‖vL‖L∞h L2

v
‖w‖H0,s .

So,

F4 =
∣∣〈∆v

q(u
ε · ∇vL)|∆v

qw
〉∣∣+

∣∣〈∆v
q(vL · ∇uε)|∆v

qw
〉∣∣(5.7)

≤ Ca0dq2−2qs ‖vL‖L∞h L2
v

[
Rs ‖w‖H0,s +Rs+1 ‖∇hw‖H0,s

]
.

Finally, we deduce from Lemma 3.7 and Proposition 3.8 that

(5.8) F5 ≤ Cdq2−2qs ‖∇huε‖L∞(R2
h)
‖w‖2H0,s(R3) .
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We now go back to the inequality (5.3). Replacing F1, F2, F3, F4 and F5 by their upper bounds given
in the inequalities (5.4) to (5.8), we obtain an inequality for

∣∣〈∆v
qQ(w)|∆v

qw
〉∣∣. Multiplying the obtained

inequality by 22qs, then summing with respect to q, and combining that with (5.2), we get

1

2

d

dt
‖w‖2H0,s + γ ‖w‖2H0,s + εα ‖∇hw‖2H0,s(5.9)

≤ C ‖w‖H0,s ‖∇hw‖2H0,s + CRs+1b0ε
−a ‖vL‖L∞h L2

v
‖w‖H0,s

+ CRs+1 ‖vL‖L∞h L2
v
‖w‖2H0,s + CRs ‖vL‖L∞h L2

v
‖w‖H0,s ‖∇hw‖H0,s

+ Ca0 ‖vL‖L∞h L2
v

[
Rs ‖w‖H0,s +Rs+1 ‖∇hw‖H0,s

]
+ C ‖∇huε‖L∞(R2

h)
‖w‖2H0,s(R3) .

Without loss of generality, we can suppose that ε < 1 and R > 1. Using Young’s inequality and Lemmas
3.4 and 3.6, we obtain the existence of a constant C0 = C0(γ, a0, b0) such that

d

dt
‖w‖2H0,s + 2γ ‖w‖2H0,s + εα ‖∇hw‖2H0,s(5.10)

≤ C ‖w‖H0,s(R3) ‖∇hw‖
2
H0,s(R3) + C0Γ(vL) + C0

(
e−γt + Γ(vL)

)
‖w‖2H0,s ,

where for any t ≥ 0, we have set

Γ(vL)(t) = R2s+2ε−α ‖vL(t)‖2L∞h L2
v

+Rs+1ε−a ‖vL(t)‖L∞h L2
v
.

From now on, we choose

R =
(

4CCb0e
C0
γ

) 1
βη

ε−
α+a
βη .

We immediately deduce from Lemma 5.1 that

(5.11) ‖w0‖H0,s ≤ Cb0ε−aR−βη =
εαe−

C0
γ

4C
.

Let

T ∗ = sup

{
T ≥ 0 | ‖w(t)‖H0,s ≤

εα

2C
, ∀ 0 ≤ t ≤ T

}
.

Then, the continuity of the application t 7→ ‖w(t)‖H0,s and Inequality (5.11) imply that T ∗ > 0. Inte-
grating Equation (5.10) with respect to the time variable, for any 0 ≤ t < T ∗, we get

‖w(t)‖2H0,s ≤ ‖w0‖2H0,s + C0

∫ t

0

Γ(vL)(τ)dτ + C0

∫ t

0

(
e−γτ + Γ(vL)(τ)dτ

)
‖w(τ)‖2H0,s dτ.

Using Gronwall lemma, we obtain

(5.12) ‖w(t)‖2H0,s ≤
(
‖w0‖2H0,s + C0

∫ +∞

0

Γ(vL)(τ)dτ

)
exp

{
C0

γ
+ C0

∫ +∞

0

Γ(vL)(τ)dτ

}
.

The choice of R and the Strichartz estimates proved in Theorem 4.1 allow us to write∫ +∞

0

Γ(vL)(τ)dτ = R2s+2ε−α ‖vL‖2L2(R+,L∞h L2
v)

+Rs+1ε−a ‖vL‖L1(R+,L∞h L2
v)

≤ CR2s+2ε−αR
6+3β

2 ε
1
4 ‖v0,L‖2L2 + CRs+1ε−aR

4+3β
2 ε

1
4 ‖v0,L‖L2

< C̃ε
1
4−α−2a−

(α+a)(10+4s+3β)
2βη ,

where we can choose

C̃ = C(b0 + 1)2
(

4CCb0e
C0
γ

) 10+4s+3β
2βη

.

The hypothesis

3α+ 2a <
η

6 + 4η

allows us to choose β ≥ 1 such that

(5.13) 3α+ 2a <
βη

20 + 8s+ 6β + 4βη
.

Then, the inequality (5.13) implies that,

1

4
− α− 2a− (α+ a)(10 + 4s+ 3β)

2βη
> 0.
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Thus, there exists ε1 > 0 such that, for any 0 ≤ ε ≤ ε1, we have∫ +∞

0

Γ(vL)(τ)dτ ≤ 1

γ
.

We rewrite (5.12) as follows

(5.14) ‖w(t)‖2H0,s ≤
(
‖w0‖2H0,s + C0

∫ +∞

0

Γ(vL)(τ)dτ

)
e

2C0
γ .

From (5.13), we also deduce that

1

4
− α− 2a− (α+ a)(10 + 4s+ 3β)

2βη
> 2α,

which means that there exists ε2 > 0 such that, for any 0 ≤ ε ≤ ε2,

(5.15)

∫ +∞

0

Γ(vL)(τ)dτ ≤ ε2αe−
2C0
γ

16C0C2
.

Let ε0 = min {ε1, ε2}. By gathering (5.11), (5.14) and (5.15), we finally obtain that, for any 0 < ε ≤ ε0
and for any 0 ≤ t < T ∗,

‖w(t)‖H0,s ≤
√
ε2α

8C2
<
εα

2C
.

Hence, T ∗ = +∞ and Theorem 1.2 is proved. �

6. Rotating fluids between two infinite parallel plates: Proof of Theorem 1.3

6.1. Ekman boundary layers. As mentioned in the introduction, when ε goes to 0, the fluid has the
tendency to have a two-dimensional behavior. In the interior part of the domain, far from the boundary,
the fluid moves in vertical columns, according to the Taylor-Proudman theorem. Near the boundary, the
Taylor columns are destroyed and thin boundary layers are formed. The movements of the fluid inside the
layers are very complex and the friction stops the fluid on the boundary. The goal of this paragraph is to
briefly recall the mathematical construction of these boundary layers. More precisely, we will “correct”
the solution of the limiting system (1.7) (which is a divergence-free vector field, independent of x3) by
adding a “boundary layer term” B such that u + B is a divergence-free vector field which vanishes on
the boundary.

In order to construct such boundary layers, a typical approach consists in looking for the approximate
solutions of the system (1.6) in the following form, that is, to make the Ansatz

(6.1)

uεapp = u0,int + u0,BL + εu1,int + εu1,BL + . . .

pεapp =
1

ε
p−1,int +

1

ε
p−1,BL + p0,int + p0,BL + . . . .

The terms with the index “int” stand for the “interior” part, which consists in smooth functions of
(xh, x3) and the index “BL” refers to the boundary layer part, which consists in smooth functions of the
form

(xh, x3)→ F0(t, xh,
x3
δ

) + F1(t, xh,
1− x3
δ

),

where F0(xh, ζ) and F1(xh, ζ) rapidly decrease in ζ at infinity. The quantity δ > 0, which goes to zero
as ε goes to zero, represents the size of the boundary layers. It is proved that δ is of the same order as
ε (see [22], [30], [11] and [12]). In this paper, we simply choose δ = ε.

We recall that u is the solution of the limiting system (1.7), the third component u3 = 0 and we set
curlu = ∂1u

2 − ∂2u1. In [22], [30] and [11], by a careful study of the Ansatz (6.1), the authors proved
that we can write the boundary layer part in the following form

(6.2) B = B1 + B2 + B3 + B4,
where Bi, i ∈ {1, 2, 3, 4}, are defined as described below:

1. The term B1 is defined by

(6.3) B1 =

 w̃1 + w̆1

w̃2 + w̆2

ε
√
β G(x3) curlu
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where

w̃1 = − exp

(
− x3

ε
√

2β

)(
u1 cos

( x3

ε
√

2β

)
+ u2 sin

( x3

ε
√

2β

))
,

w̃2 = − exp

(
− x3

ε
√

2β

)(
u2 cos

( x3

ε
√

2β

)
− u1 sin

( x3

ε
√

2β

))
,

w̆1 = − exp

(
−1− x3
ε
√

2β

)(
u1 cos

(1− x3
ε
√

2β

)
+ u2 sin

(1− x3
ε
√

2β

))
,

w̆2 = − exp

(
−1− x3
ε
√

2β

)(
u2 cos

(1− x3
ε
√

2β

)
− u1 sin

(1− x3
ε
√

2β

))
,

G(x3) = − exp

(
− x3

ε
√

2β

)
sin

(
x3

ε
√

2β
+
π

4

)
+ exp

(
−1− x3
ε
√

2β

)
sin

(
1− x3
ε
√

2β
+
π

4

)
.

2. The terms B2 and B3 are defined by

B2 =

 ε
√

2β u2

−ε
√

2β u1

ε
√

2β
(
1
2 − x3

)
curlu

(6.4)

B3 = exp

(
− 1

ε
√

2β

)
cos

(
1

ε
√

2β

)u1u2
0

 .(6.5)

3. Finally,

(6.6) B4 = f(x3)

 u2

−u1
0

+ g(x3)

 0
0

curlu

 ,

where

f(x3) = a

[
exp

(
− x3

ε
√

2β

)
+ exp

(
−1− x3
ε
√

2β

)]
+ b,(6.7)

g(x3) = −ε
√
β exp

(
− 1

ε
√

2β

)
sin

(
1

ε
√

2β
+
π

4

)
−
∫ x3

0

f(s)ds,

and where (a, b) is the solution of the linear system

(6.8)


a

[
1 + exp

(
− 1

ε
√

2β

)]
+ b = −ε

√
2β + exp

(
− 1

ε
√

2β

)
sin

(
1

ε
√

2β

)
2aε
√

2β

[
1− exp

(
− 1

ε
√

2β

)]
+ b = 2ε

√
β exp

(
− 1

ε
√

2β

)
sin

(
1

ε
√

2β
+
π

4

)
.

We remark that the determinant of the system (6.8) is

D = 1 + exp

(
− 1

ε
√

2β

)
− 2ε

√
2β

[
1− exp

(
− 1

ε
√

2β

)]
.

Thus, for ε > 0 small enough, we have D > 1
2 and (6.8) always has the following solution

a =
Jε −Kε

D
and b =

Kε

[
1 + exp

(
− 1
ε
√
2β

)]
− 2Jεε

√
2β
[
1− exp

(
− 1
ε
√
2β

)]
D

,

where

Jε = −ε
√

2β + exp

(
− 1

ε
√

2β

)
sin

(
1

ε
√

2β

)
,

Kε = 2ε
√
β exp

(
− 1

ε
√

2β

)
sin

(
1

ε
√

2β
+
π

4

)
.

It is easy to prove that if ε > 0 is small enough, then

|a| < 4(β +
√
β)ε and |b| < 32βε2.

With the previously defined boundary layer term B, we can verify that

div (u+ B) = 0 and (u+ B)|{x3=0} = (u+ B)|{x3=1} = 0.
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Now, let

B0(x3) =

−e
− x3
ε
√

2β cos x3

ε
√
2β
− e
− 1−x3
ε
√

2β cos 1−x3

ε
√
2β

−e
− x3
ε
√

2β sin x3

ε
√
2β
− e
− 1−x3
ε
√

2β sin 1−x3

ε
√
2β

e
− x3
ε
√

2β sin x3

ε
√
2β

+ e
− 1−x3
ε
√

2β sin 1−x3

ε
√
2β

−e
− x3
ε
√

2β cos x3

ε
√
2β
− e
− 1−x3
ε
√

2β cos 1−x3

ε
√
2β


Then, we can write B in the following form

B =M(x3)

 u1

u2

curlu

 ,

where

M(x3) =

[
M(x3) 0

0 m(x3)

]
with M(x3) and m(x3) defined by

M(x3) = B0(x3) +
(
ε
√

2β + f(x3)
)[

0 1
−1 0

]
+ exp

(
− 1

ε
√

2β

)
cos

1

ε
√

2β

[
1 0
0 1

]
,

m(x3) = ε
√
β G(x3) + ε

√
2β

(
1

2
− x3

)
+ g(x3).

We can also prove the existence of a constant C > 0 such that, for any p ≥ 1, we have

(6.9)


‖M(·)‖Lpx3 ≤ Cε

1
p , ‖M(·)‖L∞x3 ≤ C, ‖M′(·)‖Lpx3 ≤ Cε

1
p−1,

‖m(·)‖L∞x3 ≤ Cε, ‖m(·)‖Lpx3 ≤ Cε

sup
x3∈[0, 12 ]

∣∣x23M ′(x3)
∣∣ ≤ Cε and sup

x3∈[ 1
2 ,1]

∣∣(1− x3)2M ′(x3)
∣∣ ≤ Cε.

6.2. Convergence to the limiting system. In this paragraph, we provide the needed a priori estimates
and a sketch of the proof of Theorem 1.3. These a priori estimates can be justified by a classical
approximation by smooth fonctions (see for instance [12]). Following the idea of the proof of Theorem
1.2, for any ε > 0, we consider the 2D damped Navier-Stokes system with three components

(6.10)



∂t u
ε,h − εα∆h u

ε,h +
√

2β uε,h + uε,h · ∇h uε,h = −∇h pε

∂t u
ε,3 − εα∆h u

ε,3 +
√

2β uε,3 + uε,h · ∇h uε,3 = 0

divhu
ε,h = 0

∂3u
ε = 0

uε |t=0
= u0.

Then, Lemma 3.9 implies that Theorem 1.3 is a corollary of the following theorem

Theorem 6.1. Let 0 < α < 1
2 and let uε0 ∈ L2(Ω) be a family of initial data such that

lim
ε→0

uε0 = u0 = (u10(x1, x2), u20(x1, x2), 0) in L2(R2
h × [0, 1]),

where u0 is a two-dimensional divergence-free vector field in Hσ(R2
h), σ > 2. Let uε be the solution of

the system (6.10) with initial data u0 and for each ε > 0, let uε be a weak solution of (1.6) with initial
data uε0. Then

lim
ε→0
‖uε − uε‖L∞(R+,L2(R2

h×[0,1]))
= 0.

Proof

We first remark that we can construct the “boundary layers” Bε for the system (6.10) in the same
way as the construction of B, with u being replaced by uε. More precisely, we also write

(6.11) Bε = Bε1 + Bε2 + Bε3 + Bε4,
where Bεi , i ∈ {1, 2, 3, 4} are defined by the same formulas as in (6.3) to (6.6), with u being replaced by
uε. We obtain

(6.12) Bε =M(x3)

 uε,1

uε,2

curluε

 ,
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where

• uε = (uε,1(x1, x2), uε,2(x1, x2), 0) is a two-dimensional divergence-free vector field, which is the
solution of (6.10),

• curluε = ∂1u
ε,2 − ∂2uε,1,

• and the matrix M(x3) is given in the previous paragraph.

It is easy to prove that Bε is small, i.e., Bε goes to 0 in L∞
(
R+,L

2(R2
h × [0, 1])

)
as ε goes to 0. Then,

our goal is to prove that vε = uε − uε − Bε converges to 0 in L∞
(
R+,L

2(R2
h × [0, 1])

)
as ε goes to 0.

We recall that a two-dimensional divergence-free vector field (independant of x3) belongs to the kernel
of the operator P(e3 ∧ ·), where P is the Leray projection of L2(R3) onto the subspace of divergence-free
vector fields. As a consequence, e3 ∧ uε is a gradient term. Replacing uε by vε + uε + Bε in the system
(1.6), we deduce that vε satisfies the following equation

(6.13) ∂tv
ε − εα∆hv

ε − βε∂23vε + L1 + uε · ∇vε + Bε · ∇Bε

+ Bε · ∇uε + vε · ∇Bε + vε · ∇uε − L2 +
e3 ∧ vε

ε
= −∇p̃ε,

where

L1 = ∂tBε − εα∆hBε + uε · ∇Bε

L2 = βε∂23Bε −
e3 ∧ Bε

ε
+
√

2β uε.

Taking the L2 scalar product of (6.13) with vε, then integrating by parts the obtained equation and
taking into account the fact that vε satisfies the Dirichlet boundary condition, we get

(6.14)
1

2

d

dt
‖vε‖2L2 + εα ‖∇hvε‖2L2 + βε ‖∂3vε‖2L2

= −〈L1, v
ε〉 − 〈uε · ∇vε, vε〉 − 〈Bε · ∇Bε, vε〉 − 〈Bε · ∇uε, vε〉

− 〈vε · ∇Bε, vε〉 − 〈vε · ∇uε, vε〉+ 〈L2, v
ε〉 .

In what follows, we will separately estimate the seven terms on the right-hand side of (6.14). We will
always denote Bε,1, Bε,2 and Bε,3 (vε,1, vε,2 and vε,3 respectively) the three components of Bε (vε

respectively) and we also write Bε = (Bε,h,Bε,3) and vε = (vε,h, vε,3).

1. Applying the operator curl to the first two equations of the system (6.10) (we recall that in this
paper, curl only acts on the horizontal components and we already defined curlu = ∂1u

2 − ∂2u1), we
obtain

∂t(curluε)− εα∆h(curluε) +
√

2β (curluε) + uε · ∇ (curluε) = 0.

Let A = (uε1, u
ε
2, curluε). So combining the above equation with the first two equations of (6.10), we

deduce that
∂tA− εα∆hA+

√
2β A+ uε · ∇A = −(∂1p

ε, ∂2p
ε, 0).

Since uε,3 = 0, div vε = 0, ∂3p
ε = 0 and

Bε =M(x3) tA =M(x3)

 uε1
uε2

curluε

 ,

we can write

|〈L1, v
ε〉| = |〈M(x3) (∂tA− εα∆hA+ uε · ∇A) , vε〉|

≤
√

2β ‖M(·)‖L2
x3

‖A‖L2
xh

‖vε‖L2 .

Then, Estimate (6.9), Lemma 3.1 and Young’s inequality imply

(6.15) |〈L1, v
ε〉| ≤ C(u0) ε

1
2 e−t

√
2β
(

1 + ‖vε‖2L2

)
.

2. For the second term, using the divergence-free property of uε, we simply have

(6.16) 〈uε · ∇vε, vε〉 = 0.

3. We decompose the third term into two parts:

〈Bε · ∇Bε, vε〉 =
〈
Bε,h · ∇hBε, vε

〉
+
〈
Bε,3∂3Bε, vε

〉
.
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Due to an integration by parts, the “horizontal” part can be bounded as follows∣∣〈Bε,h · ∇hBε, vε〉∣∣ ≤ ∣∣〈(divh Bε,h)Bε, vε
〉∣∣+

2∑
i=1

∣∣〈Bε,iBε, ∂ivε〉∣∣ .
Hence, the decomposition (6.12) of Bε, Hölder’s inequality, Estimates (6.9), Lemma 3.1 and Young’s
inequality yield ∣∣〈(divh Bε,h)Bε, vε

〉∣∣ ≤ ∥∥divhBε,h
∥∥
L4 ‖Bε‖L4 ‖vε‖L2(6.17)

≤ ‖M(·)‖2L4
x3

(
‖uε‖2L4

xh

+ ‖∇huε‖2L4
xh

)
‖vε‖L2

≤ C(u0) ε
1
2 e−t

√
2β
(

1 + ‖vε‖2L2

)
,

and
2∑
i=1

∣∣〈Bε,iBε, ∂ivε〉∣∣ ≤ ∥∥Bε,h∥∥
L4 ‖Bε‖L4 ‖∇hvε‖L2(6.18)

≤ ‖M(·)‖2L4
x3

(
‖uε‖2L4

xh

+ ‖∇huε‖2L4
xh

)
‖∇hvε‖L2

≤ C(u0) ε
1−2α

2 e−t
√
2β +

εα

16
‖∇hvε‖2L2 .

Likewise, if 0 < α < 1
2 , we have the following estimate for the “vertical” part:∣∣〈Bε,3 ∂3Bε, vε〉∣∣ ≤ ∥∥Bε,3∥∥

L
1
α
‖∂3Bε‖

L
2

1−2α
‖vε‖L2(6.19)

≤ C(u0) e−t
√
2β ‖m(·)‖

L
1
α
x3

‖M′(·)‖
L

2
1−2α
x3

‖vε‖L2

≤ C(u0) ε
1−2α

2 e−t
√
2β
(

1 + ‖vε‖2L2

)
.

4. For the fourth term, taking into account the fact that uε is independent of x3, Estimates (6.9) and
Lemma 3.1 imply

|〈Bε · ∇uε, vε〉| ≤ ‖Bε‖L4
xh

L2
x3

‖∇huε‖L4
xh

‖vε‖L2(6.20)

≤ ‖M(·)‖L2
x3

(
‖uε‖2L4 + ‖∇huε‖2L4

)
‖vε‖L2

≤ C(u0) ε
1
2 e−t

√
2β
(

1 + ‖vε‖2L2

)
.

5. The fifth term is the most difficult to treat. First, we decompose this term as follows

〈vε · ∇Bε, vε〉 =
〈
vε,h · ∇hBε,h, vε,h

〉
+
〈
vε,h · ∇hBε,3, vε,3

〉
+
〈
vε,3 ∂3Bε,3, vε,3

〉
+
〈
vε,3 ∂3Bε,h, vε,h

〉
.

For the first term on the right-hand side, Hölder’s inequality implies that∣∣〈vε,h · ∇hBε,h, vε,h〉∣∣ ≤ C ∥∥vε,h∥∥L2

∥∥∇hBε,h∥∥L∞ ∥∥vε,h∥∥L2 ≤ C ‖M(·)‖L∞x3 ‖∇hu
ε‖L∞xh ‖v

ε‖2L2 .

Then, using Estimates (6.9) and Lemma 3.4, we obtain

(6.21)
∣∣〈vε,h · ∇hBε,h, vε,h〉∣∣ ≤ C(u0) e−t

√
2β ‖vε‖2L2 .

Next, by integrating by parts and using Hölder’s inequality, we deduce that∣∣〈vε,h · ∇hBε,3, vε,3〉∣∣ ≤ C ‖∇hvε‖L2

∥∥Bε,3∥∥
L∞
‖vε‖L2 .

So, Estimates (6.9), Lemmas 3.1 and 3.4 and Young’s inequality imply∣∣〈vε,h · ∇hBε,3, vε,3〉∣∣ ≤ C ‖m(·)‖L∞x3 ‖curl uε‖L∞xh ‖∇hv
ε‖L2 ‖vε‖L2(6.22)

≤ C(u0) ε2−αe−t
√
2β ‖vε‖2L2 +

εα

16
‖∇hvε‖2L2 .

Performing an integration by parts, we can control the third term in the same way as the second one:

(6.23)
∣∣〈vε,3 ∂3Bε,3, vε,3〉∣∣ = 2

∣∣〈Bε,3vε,3, ∂3vε,3〉∣∣ = 2
∣∣〈Bε,3vε,3,divhv

ε,h
〉∣∣

≤ C(u0) ε2−αe−t
√
2β ‖vε‖2L2 +

εα

16
‖∇hvε‖2L2 .
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In order to estimate the last term of the right-hand side, we decompose it into two parts, the first
part corresponding to the boundary layer near {x3 = 0} and the other part corresponding to the one
near {x3 = 1}:〈

vε,3 ∂3Bε,h, vε,h
〉

=

∫
R2
h×[0, 12 ]

(vε,3 ∂3Bε,h) · vε,hdx+

∫
R2
h×[ 1

2 ,1]
(vε,3 ∂3Bε,h) · vε,hdx

For the fisrt part, since vε vanishes on {x3 = 0}, using Hölder’s inequality and Hardy’s inequality, we
get ∣∣∣∣∣

∫
R2
h×[0, 12 ]

(vε,3 ∂3Bε,h) · vε,hdx

∣∣∣∣∣ ≤ sup
x3∈[0, 12 ]

∣∣x23M ′(x3)
∣∣ ‖uε‖L∞xh

∥∥∥∥vε,3x3
∥∥∥∥
L2

∥∥∥∥vε,hx3
∥∥∥∥
L2

≤ sup
x3∈[0, 12 ]

∣∣x23M ′(x3)
∣∣ ‖uε‖L∞xh ∥∥∂3vε,3∥∥L2

∥∥∂3vε,h∥∥L2 .

We recall that ∂3v
ε,3 = −divhv

ε,h. Then, Lemmas 3.1 and 3.4, Estimates (6.9) and Young’s inequality
imply ∣∣∣∣∣

∫
R2
h×[0, 12 ]

(vε,3 ∂3Bε,h) · vε,hdx

∣∣∣∣∣ ≤ C(u0) ε e−t
√
2β
∥∥divhv

ε,3
∥∥
L2

∥∥∂3vε,h∥∥L2(6.24)

≤ C(u0) ε ‖∇hvε‖2L2 +
βε

4
‖∂3vε‖2L2 .

For the second part concerning the boundary layer near {x3 = 1}, since vε = (vε,h, vε,3) vanishes on
{x3 = 1}, Hardy’s inequality implies that

Iv =

∫
R2
h

(∫ 1

1
2

∣∣∣∣vε,3(xh, x3)

1− x3

∣∣∣∣2 dx3
)
dxh =

∫
R2
h

(∫ 1
2

0

∣∣∣∣vε,3(xh, 1− x3)

x3

∣∣∣∣2 dx3
)
dxh

≤ C
∫
R2
h

(∫ 1
2

0

∣∣∂3vε,3(xh, 1− x3)
∣∣2 dx3) dxh

≤ C
∥∥∂3vε,3∥∥2L2 = C

∥∥divhv
ε,h
∥∥2
L2 .

Likewise,

Ih =

∫
R2
h

(∫ 1

1
2

∣∣∣∣vε,h(xh, x3)

1− x3

∣∣∣∣2 dx3
)
dxh ≤ C

∥∥∂3vε,h∥∥2L2 .

Thus, using Hölder’s inequality, we get∣∣∣∣∣
∫
R2
h×[ 1

2 ,1]
(vε,3 ∂3Bε,h) · vε,hdx

∣∣∣∣∣ ≤ sup
x3∈[ 1

2 ,1]

∣∣(1− x3)2M ′(x3)
∣∣ ‖uε‖L∞xh √Iv√Ih(6.25)

≤ C(u0) ε e−t
√
2β
∥∥divhv

ε,3
∥∥
L2

∥∥∂3vε,h∥∥L2

≤ C(u0) ε ‖∇hvε‖2L2 +
βε

4
‖∂3vε‖2L2 .

6. The sixth term on the right-hand side of (6.14) can be treated using Hölder’s inequality and Lemma
3.4. We have

(6.26) |〈vε · ∇uε, vε〉| ≤ C ‖∇huε‖L∞(R2
h)
‖vε‖2L2 ≤ C(u0) e−t

√
2β ‖vε‖2L2

7. We will evaluate the seventh term as in [22] or [30]. We have

〈L2, v
ε〉 =

〈
βε∂23Bε, vε

〉
−
〈
e3 ∧ Bε

ε
, vε
〉

+
〈√

2β uε, vε
〉
.

We recall the definition (6.11) of Bε

Bε = Bε1 + Bε2 + Bε3 + Bε4,

and for any i ∈ {1, 2, 3, 4}, we set Bεi = (Bε,hi ,Bε,3i ), where Bε,hi and Bε,3i denote the horizontal and vertical
components of Bεi respectively. We also recall that Bε = (Bε,h,Bε,3). Then, the following identities are
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immediate
∂23B

ε,h
3 = 0,

βε∂23B
ε,h
1 − e3 ∧ Bε1

ε
= 0,

βε∂23B
ε,h
2 − e3 ∧ Bε2

ε
+
√

2β uε = 0.

For the remaining terms, we have

βε
∣∣〈∂23Bε,3, vε,3〉∣∣ ≤ βε

∥∥∂3Bε,3∥∥L2

∥∥∂3vε,3∥∥(6.27)

≤ βε
∥∥∇hBε,h∥∥L2 ‖∇hvε‖L2

≤ βε ‖M(x3)‖L2
x3

‖∇huε‖L2
xh

‖∇hvε‖L2

≤ C(u0) ε3−αe−t
√
2β +

εα

16
‖∇hvε‖2L2 ;∣∣∣∣〈e3 ∧ Bε3ε

, vε,h
〉∣∣∣∣ ≤ Cε−1e−

1
ε ‖uε‖L2 ‖vε‖L2 ≤ C(u0) ε e−t

√
2β
(

1 + ‖vε‖2L2

)
.(6.28)

We recall that

Bε,h4 = f(x3)

(
uε,2

−uε,1
)
,

where f is defined in (6.7),

f(x3) = a

[
exp

(
− x3

ε
√

2β

)
+ exp

(
−1− x3
ε
√

2β

)]
+ b,

and that, if ε > 0 is small enough, we have

|a| < 4(β +
√
β)ε and |b| < 32βε2.

Then,

βε
∣∣∣〈∂23Bε,h4 , vε,h

〉∣∣∣ = βε
∣∣〈f ′′(x3)uε, vε,h

〉∣∣(6.29)

≤ Cε
1
2 ‖uε‖L2 ‖vε‖L2

≤ C(u0) ε
1
2 e−t

√
2β
(

1 + ‖vε‖2L2

)
.

Finally, we have∣∣∣∣〈e3 ∧ Bε4ε
, vε,h

〉∣∣∣∣ ≤ C

[(∫ 1

0

∣∣∣e− x3
ε
√

2β + e
− 1−x3
ε
√

2β

∣∣∣2 dx3) 1
2

+ βε

]
‖uε‖L2

∥∥vε,h∥∥
L2(6.30)

≤ C(u0) ε
1
2 e−t

√
2β
(

1 + ‖vε‖2L2

)
.

End of the proof: Summing all the inequalities from (6.15) to (6.30), we deduce from (6.14) that

d

dt
‖vε‖2L2 + εα ‖∇hvε‖2L2 + βε ‖∂3vε‖2L2

≤ C(u0) ε
1−2α

2 e−t
√
2β + C(u0) e−t

√
2β ‖vε‖2L2 + C(u0) ε ‖∇hvε‖2L2 .

Since α < 1
2 , there exists ε0 = ε0(u0) ∈]0, 1[ such that, for any 0 < ε < ε0, we have C(u0) ε < εα.

Therefore, for any ε ∈]0, ε0[ small enough, by integrating the above inequality with respect to the time
variable, we get

(6.31) ‖vε(t)‖2L2 ≤ ‖vε(0)‖2L2 + C(u0)ε
1−2α

2 + C(u0)

∫ t

0

e−s
√
2β ‖vε(s)‖2L2 ds.

We recall that vε = uε − uε − Bε. Thus,

‖vε(0)‖2L2 ≤ ‖uε(0)− uε(0)‖2L2 + ‖Bε(0)‖2L2

≤ ‖uε0 − u0‖
2
L2 + ‖M(·)‖2L2

x3

‖u0‖2L2 ≤ ‖uε0 − u0‖
2
L2 + Cε

1
2 ‖u0‖2L2 .

According to the Gronwall lemma, it follows from (6.31) that

‖vε(t)‖2L2 ≤
(
‖uε0 − u0‖

2
L2 + Cε

1
2 ‖u0‖2L2 + C(u0)ε

1−2α
2

)
exp

{
C(u0)√

2β

}
.
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Since α < 1
2 and

lim
ε→0
‖uε0 − u0‖L2 = 0,

we obtain

lim
ε→0
‖vε‖L∞(R+,L2) = 0,

and Theorem 6.1 is proved. �
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36, 1986, 39-82.

[39] W.J. Schmitz, Weakly depth-dependent segments of the North Atlantic circulation, Journal of Marine Research, 38,
111-133.

[40] S. Schochet, Fast singular limits of hyperbolic PDEs, Journal of Differential Equations, 114, 1994, 476-512.

[41] R. Strichartz, Restrictions of Fourier transforms to quadratic surfaces and decay of solutions of wave equations, Duke
Mathematical Journal, 44, 1977, 705-714.

[42] R. Temam, Navier-Stokes Equations, Theory and Numerical Analysis Amsterdam, North Holland, 1984.
[43] F. Weissler, The Navier-Stokes Initial Value Problem in Lp, Archiv for Rational Mechanics and Analysis, 74, 1980,

219-230.

[44] V. Yudovitch, Non stationnary flows of an ideal incompressible fluid, Zh. Vych. Math., 3, 1963, 1032-1066.
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