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Crack-free rendering of dynamically tesselated B-Rep models

Frédéric Claux, Loic Barthe, David Vanderhaeghe, Jean-Pierre Jessel, Mathias Paulin

IRIT - Université de Toulouse

Abstract

We propose a versatile pipeline to render B-Rep models interactively, precisely and without rendering-related
artifacts such as cracks. Our rendering method is based on dynamic surface evaluation using both tesselation
and ray-casting, and direct GPU surface trimming. An initial rendering of the scene is performed using dynamic
tesselation. The algorithm we propose reliably detects then fills up cracks in the rendered image. Crack detection
works in image space, using depth information, while crack-filling is either achieved in image space using a simple
classification process, or performed in object space through selective ray-casting. The crack filling method can be
dynamically changed at runtime. Our image space crack filling approach has a limited runtime cost and enables
high quality, real-time navigation. Our higher quality, object space approach results in a rendering of similar
quality than full-scene ray-casting, but is 2 to 6 times faster, can be used during navigation and provides accurate,
reliable rendering. Integration of our work with existing tesselation-based rendering engines is straightforward.

Categories and Subject Descriptors (according to ACM CCS): 1.3.3 [Computer Graphics]: Picture/Image
Generation—Display algorithms 1.3.5 [Computer Graphics]: Computational Geometry and Object Modeling—

Boundary representations

1. Introduction

Computer-Aided Design (CAD) software applications allow
mechanical engineers to reliably design machined parts to
be used in large-scale projects such as building an aircraft
or a car. Software programs usually define parts with an in-
ternal, proprietary model definition but also use a common
representation called B-Rep (for Boundary Representation).
B-Rep has been popular since the 1980s, is the de-facto ex-
port format for manufacturing, and is widely used as an in-
ternal representation of the model in CAD applications for
rendering purposes.

B-Rep models consist of a set of faces, each defined with
a basis surface and a set of trimming curves defined in the
parametric space of each basis surface (Figure 2). This rep-
resentation is obtained by successively applying modeling
operations on the exterior faces of geometric primitives.
Because small gaps may exist between adjacent faces for
the sake of representing shared edges in a relatively simple
fashion [SAG84], manufacturing relies on explicit topologi-
cal information enforcing geometrical continuity to produce
machined parts of good quality. Although these gaps can be
apparent during model visualization, it is only the case at ex-
tremely high zoom levels and, up to a certain extent, CAD
operators usually cope with their presence while designing
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Figure 1: Rendering using dynamic tesselation and direct
GPU trimming produces cracks (in red). Our method fills
them appropriately.

their parts. For this reason, the complex and costly methods
that exist for eliminating them in a post-process on the B-
Rep model [SSZ*04, SFL*08] are yet to be widely adopted.
Rendering B-Rep models as they are strictly geometrically
defined, accurately and at interactive performance is, how-
ever, very largely desired, and is a challenging task that we
address in this paper.



Several approaches exist to fulfill this need (Section 2).
All methods based on full-model micropolygonization or
ray-casting usually offer a great image quality but fail to
provide interactive performance, making tesselation the best
candidate for high-performance rendering. Rendering based
on static, model-wide tesselation suffers from inaccuracies
in the display because of the approximate nature of the
static tesselation and its fixed, predetermined resolution.
Rendering based on dynamic surface tesselation and direct
GPU trimming leaves visual artifacts, denoted as cracks be-
tween adjacent faces, lowering the overall image quality
(Figure 3(a)). While a very fine tesselation can reduce the
amount and size of cracks, it cannot remove them com-
pletely. Existing methods to remove these cracks may them-
selves leave visual artifacts and are complex to implement.

We propose an algorithm to get a rendering of high visual
quality, with no crack, and interactive performance. Our al-
gorithm is broken down into successive steps (Figure 4). A
first step performs an initial model rendering through dy-
namic surface tesselation and direct GPU trimming, using
a carefully chosen error tolerance keeping the generation
of cracks under control (Section 3.1). Following the initial
rendering step, a second step (Section 3.2) detects crack-
induced pixels and flags them for later crack filling. Sub-
sequent steps are where the crack filling and final image ren-
dering are performed. During model navigation, we propose
a simple single-step image space crack-filling method based
on neighboring surface and color information around crack
pixels (Section 3.3). For still images, or if higher quality is
desired during navigation, we also propose a 3-step object-
space crack filling method. With this method, a third step
(Section 3.4.1) builds a depth buffer to limit GPU work done
in a fourth step (Section 3.4.2) that performs the actual crack
filling by ray-casting the model at the flagged pixel locations
only. Our key idea is to leverage the efficient GPU model tes-
selation and rasterization in this step to limit the quantity of
ray-casting, reducing the impact on rendering performance,
while also guaranteeing that cracks will be effectively filled.
A final step (Section 3.4.3) eventually writes color and depth
data obtained from both the first and fourth steps out to the
render buffer, and produces the final image.

Our contributions reside in the image-space crack detec-
tion, image-space crack filling for interactive rendering and
object-space crack filling for either interactive or static, still
image rendering. Our tests (Section 4) show that our image-
space crack-filling method has acceptable quality and lim-
ited runtime cost. Our object-space crack-filling method sig-
nificantly reduces the gap in image quality between dynamic
tesselation and ray-casting, does not suffer from the render-
ing imperfections that can be observed with full-scene ray-
casting (Figure 18), and is comparatively 2 to 6 times faster.
Our crack filling algorithms can be plugged into existing ren-
dering engines based on dynamic tesselation and do not re-
quire dedicated crack-filling geometry to be sent alongside
model data, making them convenient to implement.

B-Rep basis surface

B-Rep face

Trimming curves

~__|

Figure 2: Anatomy of a B-Rep model face.

2. Related work

The techniques used in interactive B-Rep model rendering
can be divided into two categories, using either model-wide
tesselation or direct trimming approaches. We quickly go
over model-wide tesselation and concentrate this section on
methods based on direct trimming, which our algorithm is
based on.

Model-wide tesselation rendering strategies rely on the
tesselation of individual B-Rep faces [PRO5]. A set of tri-
angles approximating as closely as possible a B-Rep face is
generated based on the geometrical definition of the face (eg.
the B-Rep basis surface and associated trimming curves, il-
lustrated in Figure 2). Special care must be taken to make
sure that cracks do not exist between independently tesse-
lated faces, in the vicinity of trimming curves [SKO3]. It
is generally done by using the topological information that
links adjacent faces together. Model-wide, watertight, face-
based tesselation is heavy on resources and cannot be done
on the fly during rendering. As a consequence, models are
pretesselated using a fixed error tolerance and the resulting
mesh is used as input in the rendering system. Because the
tesselation of the model can create a significant amount of
geometry and hamper rendering performance, many meth-
ods also propose the definition of Level-Of-Details (LODs)
schemes [Hop96, HSH10]. The highest achievable visual
precision of the rendering is therefore bound to the origi-
nal world-space error tolerance the highest-level LOD mesh
has been built with. This encourages LODs of very high
precision to be defined, occupying a sometimes prohibitive
amount of memory.

More recently, with the advances in GPU hardware, meth-
ods based on dynamic surface tesselation with direct trim-
ming have gained attention. Rendering based on direct trim-
ming follows the trim definition of the B-Rep faces for ren-
dering purposes in that every basis support surface is ren-
dered then dynamically trimmed, independently. Rendering
the basis surface can be done using either tesselation or
ray-casting, while the trimming is usually done on a frag-
ment basis, using a representation of the trimming space in
a trim structure. This structure can either be a discretiza-
tion [GBKOS5] or a vectorial representation [SF09,CVB*12].
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Figure 3: (a) result of step 1 after dynamic model tesselation, with numerous cracks in the rendering. (b) step 2 crack identifi-
cation, with crack pixels in red. (c) step 4 crack filling achieved using our selective ray-casting. (d) reference rendering using

full-scene ray-casting.

Schollmeyer and Frohlich [SFO9] propose a method to do the
trimming of parametric surfaces efficiently and accurately. A
pixel-precise B-Rep rendering can be achieved when their
method is combined with ray-casting, though occasional,
parasite pixels may show up around face boundaries (Fig-
ure 18, bottom-left). These pixels can be observed because
of the limitations of the iterative Newton method used for
root finding [FP79], which they implement to calculate ray-
patch intersections. Rendering performance is mainly lim-
ited by the systematic ray-casting that needs to be done for
each fragment of every input, untrimmed B-Rep basis sur-
face, and by the trimming that follows. When tesselation
is used to render basis surfaces, cracks between adjacently
rendered trimmed B-Rep faces appear. These cracks are the
manifestation of the gaps artificially created at the junction
of trimming curves between two faces by the tesselation pro-
cess.

Hanniel and Haller [HH11] ray-cast trimmed CAD mod-
els in a watertight fashion. Fragments that are in the vicinity
of trimming curves are projected onto the surfaces adjacent
to these curves. A test based on which side of the surfaces the
fragment lies on is then done to determine whether to keep
it for display. Their rendering yields no tesselation-related
cracks and automatically removes topological gaps between
faces. Their trimming algorithm suffers from weaknesses
where trimming curve endpoints are tangential to neighbor-
ing curves, or when these trimming curves define a tangen-
tial transition across two adjacent surfaces, which create vi-
sual artifacts. Based on full-scene ray-casting, their method
has limitations in terms of performance when dealing with
larger models.

Yeo et al. [YBP12] propose pixel-accurate rendering of

untrimmed NURBS models. Their method is based on the
dynamic tesselation of rational Bézier surfaces. They use
SLEFEs [Pet03] to calculate the optimal tesselation factors
to be used when rendering a surface. Cracks between adja-
cent patches are avoided by defining the tesselation factors
at the shared edges level. When used with trimmed models,
cracks do appear however as nothing is done to fill up the
space left unrasterized between trimming curves of adjacent
faces — only the transition between untrimmed surfaces is
taken care of.

Some methods propose to address the crack problem in-
troduced by the individual, independent rendering of B-Rep
faces by creating additional geometry to be rendered along
the trimming curves. The geometries are either lines or tri-
angle strips that overlap neighboring faces, and that are ren-
dered to fill up the space artificially created by the tesse-
lation. Balazs et al. [BGKO04] concentrate on tesselation-
induced cracks, and render two-pixel thick primitives along
trimming curves. Pavanaskar and McMains [PM13] dynam-
ically adjust the thickness of triangle strip geometries with
respects to the curvature of matching trimming curves. Their
method can fill topological gaps between faces in addition
to rendering-related cracks. Both methods can suffer from
minor artifacts caused by the additional geometry to be ren-
dered, and are limited by the discretization of crack-filling
primitives.

Image-based methods such as morphological and bilateral
filtering [S0i03,KTD09] are unlikely to provide the accuracy
we are looking for and which can be offered by geometri-
cal approaches. Nevertheless, we introduce in Section 3.3
a dedicated image-space crack-filling method that has good
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Figure 4: Overview of our rendering pipeline. Boxes with
a gray background represent rendering steps. Note that fi-
nal crack-filling steps are commonly numbered for the ob-
Jject space (steps 3,4 and 5, left) or image space (step 3,
right) methods. Dashed boxes perform full-model render-
ing, other boxes operate on a screen-sized quad. Boxes with
white background represent storage data buffers. Arrows in-
dicate whether step boxes read and/or write the data.

performance but shows the limitations of this family of al-
gorithms.

3. Our algorithm

Prior to being given to our renderer, the input model needs to
be converted. This conversion, done once in a CPU prepro-
cess, is a standard lossless transformation of the input model.
Each B-Rep basis surface is transformed into a NURBS sur-
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Figure 5: The red triangle is a k-pixel approximation of the
B-Rep surface (green) section it represents. The k-pixel cov-
ering accuracy defined by Yeo et al. guarantees that the B-
Rep surface footprint on screen is located within the k-pixel
sized ring (dashed line) around the triangle.

face, which is then decomposed into multiple rational Bézier
patches [CLR80]. Trimming curves are also similarly trans-
formed into NURBS curves and split up into multiple ratio-
nal Bézier curves, which are finally gathered in a trim struc-
ture [SFO9]. The trim structure is used to do the trimming of
individual fragments every time this is needed.

An overview of our pipeline, which entirely runs on the
GPU, and the different buffers used is given in Figure 4.
Figure 3 illustrates a result of the crack detection and filling
operations. Individual rendering steps are detailed onwards.

3.1. Step 1: initial rendering

In the first step, the whole model is rendered using the
programmable graphics pipeline. For basis surface render-
ing, dynamic tesselation is performed using the method de-
scribed by Yeo et al. [YBP12]. Following their work, rational
Bézier surface patches are tesselated and rendered in such a
way that the tesselated primitives never deviate more than
k pixels from their corresponding projected footprint as de-
fined by their analytical representation. This concept is de-
fined by Yeo et al. as a k pixel covering accuracy. A para-
metric accuracy also guarantees that fragments of a given
u,v coordinate never get rendered further than k pixels away
from the corresponding location on the footprint of the ana-
Iytically defined surface (Figure 5). We set k to 0.5 pixel to
make sure all projected fragments end up being within a 1
screen pixel neighborhood ring of their real pixel location. k
can be set to a lower value, which results in the appearance
of less cracks at the end of step 1 — changing the value of k
is discussed in Section 4.

Each rendered fragment goes through the trimming pro-
cess [SF09], and off-face fragments are discarded. For on-
face fragments, alongside the fragment color, we store in a
framebuffer-sized metadata buffer the Bézier patch ID, the
parent B-Rep face ID, as well as the u,v coordinate of the
fragment in the parametric space of the Bézier patch.

3.2. Step 2: crack pixel detection

Step 2 operates in screen space. For each pixel of the frame-
buffer area, we decide whether to flag it as a crack or not



Figure 6: The four (pi, p,,p(i)) pixel pairs around p are ex-
amined. Top-right inset: p is a crack, as the world-space dis-
tance between the B-Rep surface points defined by p and p;
is greater than dpin, the same is true between p and p, (),
and p does not have the same B-Rep face ID as either p;
Or Popp(i)- This latter condition is not met in the boitom-left
inset, causing p to not be classified as a crack.

depending on the information of the 1-ring, 8-pixel neigh-
borhood. Crack detection results in the creation of boolean
values in a framebuffer-sized crack flag buffer (see Figure 4),
where a value set to true means the corresponding pixel has
been identified as a crack.

The crack detection routine scans through the neighbor-
ing pixels. The central pixel p is flagged as a potential crack
when both a neighboring pixel p; and its opposite counter-
part p, () on the neighborhood ring are closer to the ob-
server by an offset of at least d,,;,, expressed in world units
(Figure 6, top-right inset). The value of d,,;, should be set
to the minimum distance between two points on the surface
of the model over any possible intersecting ray (o, ?), and
where the dot product between the ray and the two corre-
sponding model normals ]Vf and ]V% is negative (see Fig-
ure 7). This precalculated value is difficult to come by in
practice. For the models we tested, we set it to 1.0 millime-
ter in world-space allowing a safe, conservative crack detec-
tion to take place, regardless of the camera position and view
angle. The pixel is not flagged as a crack if p and a neigh-
boring pixel (p; or p,pp(;)) have the same associated B-Rep
face ID, suggesting we are in a high-perspective rendered
area of the same B-Rep face. Testing p; and p,,,,(;) simulta-
neously against p is needed so that only crack-induced pix-
els are really identified as cracks, and that pixels in contour
edge areas are left out undetected (Figure 8 and bottom-left
inset of Figure 6). Note that our crack detection being con-
servative, flagged pixels identify cracks but may also include
non-crack pixels.

In the two next sections we describe two different meth-
ods to fill cracks. The method described in the next section
exclusively works in image space and targets frame render-
ing during navigation. The method that follows works in ob-
ject space and benefits from the geometrical accuracy of ray-
casting. Even though slower, it performs fast enough to be
used during navigation and provides accurate, reliable ren-
dering.

Figure 7: Calculation of d,;,,, which holds the minimum dis-
tance between surface points bound to two adjacent pixels
to be used for crack pixel detection. B-Rep models identify
solid models and only their exterior, front-facing faces are
visible and therefore rendered. d,;,, can be set to the mini-
mum possible distance travelled by a single ray (dotted line)
intersecting the B-Rep model at front-facing locations (red)
with respects to the observer (left).

Figure 8: Our algorithm isolates crack-induced pixels (in
red, right) by comparing the depth value of neighboring
screen pixels. The "opposite fragment" test makes sure pix-
els nearby contour edges are not taken into account. The left
screenshot has the opposite fragment test disabled, causing
all silhouette pixels to be flagged as cracks.

3.3. Image-space crack filling

For each crack pixel p of the framebuffer area, we update
its color depending on the information of the 8 neighboring
pixels. We first determine the Bézier patch B), that covers the
highest number of neighboring pixels around p. The pixel p
then receives the average color of the pixels that relate to B,.

Image-space crack filling does not rely on local geometric
information beyond the patch IDs and may fill topological
gaps and small features such as tiny holes viewed at very
low zoom level. We discuss image quality in Section 4.

3.4. Object-space crack filling

In this section we detail an algorithm to fill cracks in a robust
and reliable way. It works by precisely detecting which B-
Rep model face is visible at the crack pixel locations.



3.4.1. Step 3: depth mask construction

Aiming at minimizing the number of fragments that we pro-
cess in the crack filling step, we first need to construct an ad-
equate depth buffer that allows early Z tests to be performed
by the GPU. The objective is to early cull all fragments that
are known to have no possible impact on subsequent crack
filling.

Step 3 works in screen space. It outputs a depth buffer
value for every screen pixel computed as the maximum of
the depth of the pixel created in step 1 and the depth of
neighboring crack pixels. For pixels that neither define nor
are in the vicinity of cracks, this value is the original depth
buffer value created in step 1. For crack pixels or those in 1-
ring vicinities, this depth buffer value holds the maximum
depth beyond which step 4 fragments should be ignored.
Fragments having higher depths are occluded by the crack
pixel and therefore have no impact on the crack filling. The
depth buffer created in step 3 is referred to as the depth mask
in Figure 4.

Finally, this step also constructs a ZRGB value for each
pixel on screen. This value is an unsigned integer value, ob-
tained by combining the depth and primary color buffer val-
ues of the associated pixel produced in step 1, and storing
them as a single value that can be atomically accessed by
the GPU. The depth value is converted into an unsigned in-
teger and stored in the upper bits, while the R,G and B color
component values are stored in the lower bits. Thanks to this
layout, a minimum or maximum operation carried out using
two ZRGB values will act as if depth values were compared
and updated, with the RGB value being updated alongside
its corresponding depth value.

3.4.2. Step 4: object-space crack filling

The rasterization of the k pixel tolerant tesselation done in
step 1 may have missed the rendering of fragments located
within a k pixel ring (so essentially a ring of 1 pixel) around
each triangle primitive (Figure 5), potentially leaving cracks.

Step 4 carries out the crack filling properly speaking.
What we want to do now is ray-cast surfaces that can po-
tentially fill the cracks. We define these surfaces as those
being in a 1-ring neighborhood of a crack and located in
front of it. Our algorithm cannot just work out of the B-
Rep face ID and u, v coordinates created during step 1. This
data is only available for the frontmost fragment in the Z
order and therefore only enables to do the ray-casting on
the corresponding surface, which is insufficient to fill many
cracks. For each pixel around a crack that is either fully or
partly covered by a tesselation primitive, we want the GPU
to generate a corresponding fragment. In order to do this,
we render the model twice, successively using filled triangle
and wireframe modes. The wireframe mode makes sure that
fragments are generated for thin triangles (Figures 10 and
13). Thanks to early Z rejection offered by the depth mask
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Figure 9: Green: actual B-Rep surface footprint. Red tri-
angle: footprint on screen representing a k = 0.5 pixel ap-
proximation of a B-Rep surface section. Red squares: filled-
mode triangle fragments. Blue squares: wireframe-mode tri-
angle fragments. Gray squares: pixels located on a I-pixel
ring around red and blue fragments are candidate for crack

filling. Gray background squares: pixel locations flagged as

cracks for which crack filling is done.

and adequate GPU pipeline setup, step 4 only processes frag-
ments that are in the 1-ring neighborhood of a crack (Fig-
ure 9), and have a lower depth.

3.4.2.a. Ray-casting B-Rep faces at crack locations

For each incoming fragment passing the early Z test, we pro-
ceed with the ray-casting of the related surface at the lo-
cation of the neighboring flagged pixel. Ray-casting only
takes place if the current fragment has a lower Z value in
the ZRGB buffer than the neighboring pixel identified as
a crack, otherwise the fragment is ignored. Using the sur-
face and the u,v coordinate of the incoming fragment as
the starting point for successive Newton root finding itera-
tions [FP79], we determine if a ray actually intersects the
surface at the crack pixel location. If it does, we look up
the u, v coordinate resulting from the Newton iteration in the
trim structure to determine if the intersection actually lies
on the B-Rep face. This follows the fragment classification
method of Schollmeyer and Frohlich [SF09]. If the Newton
iterations do not converge, or if the trim structure lookup
reveals the fragment is off the face, execution continues on
to the next neighboring fragment. Otherwise, the depth and
color values of the ray-casted surface fragment are updated
in the ZRGB buffer, but only if the Z value is lower than the
one already in the buffer. An integer atomicMin operation is
done for this purpose against the ZRGB value considered as
an integer and the ZRGB buffer value, keeping Z (and asso-
ciated color data) of always lower values.

Fragment classification is reported to be on-face only if the
location of the u,v coordinates associated with the center of
each fragment is classified as such. Some fragments may be
classified as off-face, not be rendered in step 1, and not be
processed in the current step, even though they do partially
cover an on-face area of the surface. For thin triangles in
silhouette areas, a single off-face classification might lead to
missed, but nonetheless critical opportunities to fill nearby
crack pixels. Having trimming disabled for wireframe mode



Figure 10: Failure to render the model using both filled and
wireframe modes results in cracks. The horizontal lines in
the inset are background pixels that do not get filled when
wireframe rendering is disabled.

<> 4

Figure 11: With back-face culling enabled, this red, back-
facing triangle is discarded. The corresponding B-Rep sur-
face section (green and turquoise) it approximates is not en-
tirely back-facing though. The green surface part is front-
facing. This situation happens mostly with very thin trian-
gles.

in step 4 ensures that all triangle edge fragments are always
processed by our fragment shader (Figure 12).

We do want to generate fragments for back-facing trian-
gles that have their associated analytic B-Rep surface section
partially front-facing over the definition domain of the sup-
porting primitive (Figure 11). These triangles may be gen-
erated around silhouette edges, and if back-face culling is
enabled, they are ignored. We therefore disable back-face
culling when rendering the model in wireframe mode.

At the end of step 4, all pixels flagged in step 2 have their
ZRGB buffer value updated so that this value reflects the
closest ray/surface intersection for the model at the associ-
ated screen pixel location, effectively filling cracks.

3.4.2.b. Patch mailboxing

The GPU rasterizer tends to naturally group fragments in
primitive order, and process fragments of the same primitive
concurrently. To improve performance, we propose a mail-
boxing mechanism to prevent fragments of the same triangle
primitive from exceedingly trying to ray-cast the same patch,
at the same pixel location, through the same ray. For each
flagged pixel we maintain in a buffer the last Bézier patch
ID for which a ray-casting and trimming operation has been

O
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Figure 12: Left: trimming structure. Right: footprint of the
corresponding B-Rep surface on the screen, as approxi-
mated by a single tesselated quad (1 quad = 2 triangles in
red). When trimming is enabled, the red triangles get raster-
ized as only 2 fragments (1 and 2). Fragments 3, 4, 5 and
6 do not get rasterized as the result of their classification is
off-face, their center being off the B-Rep face. Fragments 7
and 8 are likely to be identified as cracks. While fragment
7 is within the neighborhood ring of fragment 2 and thus
can potentially be crack-filled, fragment 8 cannot, as it is
the neighbor of neither 1 nor 2.

Figure 13: Footprint of a B-Rep surface tesselated into a
set of triangles, rendered by the GPU. Left: filled polygon
mode. The fragments affected by the rasterization leave a
discontinuous footprint on screen, as only 4 fragments have
their centerpoint actually lying within the boundaries of the
tesselated primitives. The rendering obtained is illustrated in
Figure 10. Middle: 4x multisampling. The footprint left out
by the surface on the screen still is non-continuous. Right:
wireframe mode provides a suitable result.

successful. Prior to initiating the ray-casting at a given pixel
location, we check the patch ID and discard the processing
if the value is the same as in the patch ID buffer. Because ad-
jacent fragments of the current primitive being processed by
the GPU affect the filling of common nearby flagged pixels,
this process ensures the first fragment shader invocation to
fill a specific crack pixel can relieve other invocations relat-
ing to the same patch from doing expensive ray-casting and
trimming work at this location.

Note that due to inaccuracies of the Newton method for
root finding, convergence may occur when the ray-casting is
done using the u,v coordinate of some fragments, but may
not occur when being initiated from the u,v coordinate of
other nearby fragments of the same patch. Similarly, when
a convergence occurs, the resulting u, v coordinate may lead
the fragment to being classified as on or off the face if the
u,v coordinate is very close to a trimming curve. Therefore,
we only store the patch ID if the Newton iterations actually
converge and trimming yields a classification as on-face. If
these conditions are not met, other primitive fragments can
still contribute to the crack filling for a specific pixel.



3.4.3. Step 5: output to renderbuffer

Step 5 works in screen space. Flagged pixels receive color
and depth information stored in the ZRGB buffer value,
while other pixels receive the original rendering color and
depth information. This is to make sure the ZRGB value,
which may only be 32 bit wide on some hardware and hence
offers lower precision than the original separate color and
depth buffers, is only used when ray-casting has actually
taken place.

4. Results

We compare rendering performance and quality of our two
crack filling methods. We also compare our object-space
crack filling method with full-scene ray-casting. Full-scene
ray-casting is implemented using the convex hull of the con-
trol polygon of Bézier patches, used to construct bounding
volumes in which the ray-casting is to take place. Ray-patch
intersections are calculated using the Newton iterative root
finding method.

4.1. Rendering quality
4.1.1. Comparaison of the two crack filling methods

Comparing the image quality of the two methods is done by
evaluating our crack detection routine, and by analyzing how
cracks are effectively filled. To do this we compare crack-
filled pixels with corresponding pixels in a reference image
rendered by full-scene ray-casting.

The crack detection routine is mainly affected by the value
of the d,,;; parameter. An implementation should estimate
dmin accurately (see Section 3.2) or set it to a lower bound
value, in order for all crack pixels to be detected. Either
way, pixels that are not identifiable as cracks are occasion-
ally flagged, i.e. crack detection is conservative. Thus, we
need to assess how our two crack filling methods actually be-
have with extraneously detected crack pixels. For our object-
space method, more crack-filling attempts linked to false
positives means reduced performance and a marginal impact
on image quality. We can observe here the limitations associ-
ated with our image-space crack filling strategy that fills all
flagged pixels with neighboring color information, which it
is not supposed to do for false positives. This leads to notice-
able artifacts as shown in Figure 14. Increasing d,,;, beyond
its accurate estimate as defined by our calculation method
(Section 3.2) would result in the missed detection of an in-
creasing number of cracks (Figure 15).

When performing an analysis of the image quality, with
the image-space method, we can point out artifacts that can
be seen across surface junctions where many aligned crack
pixels show up. This method does not reliably choose the
best surface to fill crack pixels with, as both the surfaces
above and below the cracks comprise 3 pixels neighboring
the crack (Figure 16). Other artifacts can be seen in some

Figure 14: Object-space versus image-space crack filling
with safe, conservative crack detection (dpyin, = 1.0). Crack
pixels are filled based on neighboring color data with the im-
age space crack filling algorithm, which may create visual
artifacts (upper-right inset). Our object-based crack filling
method produces a rendering of good quality as crack pixels
are ray-casted against nearby model surfaces (left).

Figure 15: Influence of dyin on crack detection. dy,;, set to
1.0 (left) and 5.0 (right). With d,i, = 5.0, some cracks have
not been detected and will not be filled (bottom-right inset).
When d,i, = 1.0, all cracks are detected, but some pixels are
wrongly reported as cracks (upper-left inset).

situations where there is a large discrepancy in the depth of
the viewing space (Figure 17).

4.1.2. Comparaison with full-scene ray-casting

The visual quality of the image obtained with our render-
ing pipeline is on par with ray-casting, offers smooth dis-
play and has no cracks. There does exist a discrepancy be-
tween the rendering of tesselated fragments and neighboring
ray-casted fragments. However, considered the deviation be-
tween the analytical surface and its tesselation only is k = 0.5
or less pixels, normals interpolated through tesselation are
similar to those obtained from ray-casting the surface. The
same shading model is used for both ray-casted and raster-
ized fragments.

Comparatively with our method, full-model ray-casting
exhibits a few artifacts (Figure 18). The main reason for
this is that the ray-casting of a surface may be done mul-
tiple times with our method for a single screen pixel identi-
fied as a crack, using different starting parameters. The ray-
casting process only stops for a specific surface if the New-
ton root finding convergence is effective, and if the u, v coor-
dinate resulting from the iteration is effectively classified as
on-face. Our tests show that having multiple ray-casting at-
tempts does have a positive impact on the rendering quality.



Figure 16: Top: a large number of crack pixels can some-
times be aligned (bottom crack line). Middle: when these
cracks are filled, the wrong surface may be chosen by our
image-space algorithm, leading to visually disturbing ap-
pearance. Bottom: our object-space algorithm leaves no ar-
tifact.

Figure 17: Top: cracks detected in the rendered image, in
red. Bottom-left: image-space crack filling wrongly attempts
to fill the space between two silhouette edges not related to
each other (left red inset). Averaging color values along sur-
face junctions leaves minor but frequent imperfections (right
red inset). Bottom-right: object-space method provides the
expected result.

See Figure 18 for a quality comparison between our method
and full-scene ray-casting.

4.2. Performance

We evaluate the performance of our method on a Intel Core
17-860 processor at 2.8 Ghz and a GeForce GTX 780 graph-
ics card. The resolution used for the tests is 1655x988 in all
cases.

Rendering performance is evaluated for each step in Ta-
ble 1. Because cracks are detected in image space using

Figure 18: Image quality comparaison between full-model
ray-casting and dynamic tesselation with object-space crack
filling. Bottom-left: full-model ray-casting leaves imperfec-
tions. Bottom-right: our object-space crack filling method
does not. In both cases, the Newton algorithm is set to the
same error tolerance (0.001 millimeter) and a maximum al-
lowable number of iterations high enough for convergence
to always take place when appropriate.

depth information, the number of cracks detected does not
linearly increase with the number of primitives, where there
typically is a lot of overdraw and therefore occluded cracks
pixels, which we do not need to fill. Our performance is
limited by the number of actual cracks that are visible on
screen. Our algorithm efficiently minimizes the amount of
ray-casting to be done through early Z cull in step 4. Also,
the Newton iterative method used for root finding starts with
a u;,v; coordinate that is relatively close to the final uy,vy
coordinate resulting from convergence, which helps reduce
the cost of step 4.

According to our tests, increasing the tesselation factors
so that a parametric accuracy of less than k with k£ < 0.5 pixel
is honored does not generally affect performance, though it
can occasionally have a slight, negative impact. k has an im-
pact on wireframe rendering with regards to the number of
generated fragments potentially falling into the 1-ring neigh-
borhood of crack pixels, negatively impacting the perfor-
mance.

5. Conclusion and future work

‘We have presented an algorithm that renders accurately B-
Rep models typically 2 to 6 times faster than the speed of
ray-casting the same scene. Our method detects cracks arti-
ficially created by the tesselation process, and fills them out
using two different methods. Our image-space approach has
a low impact on performance and acceptable image qual-
ity. Our object-space approach uses color and depth data
obtained through ray-casting and trimming to fill cracks,
providing similar image quality than full-scene ray-casting



and faster rendering speed. Our algorithm is implemented
as add-on stages that can be plugged into rendering systems
based on dynamic tesselation. Our crack filling techniques
can be switched at runtime depending on the need for speed
or image quality during navigation.

Even though our implementation works with tensor-
product Bézier patches and uses Bézier patches-specific
SLEFEs [Pet03] to calculate tesselation factors, our algo-
rithm can work with any kind of parametric patches, as long
as the tesselation factors can be calculated so that a 0.5
pixel covering and parametric accuracy, as defined by Yeo et
al. [YBP12], is guaranteed for the projection of the patches
on screen.

Our method guarantees watertight appearance only as far
as the B-Rep geometrical definition permits. Junctions be-
tween some faces may not be topologically watertight, even
though this is only visible at very high zoom levels. In partic-
ular, this may be the case for NURBS faces that are adjacent
to one another. One way to modify our algorithm in order
to remove these topological gaps could be to carry out the
ray-casting and let some fragments be rendered out of the
trimming area, slightly beyond the trimming curves, or even
out of the surface domain for parametric patches mathemat-
ically defined beyond it.

Thanks
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