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2D Subquadratic Separable Distance

Transformation for Path-Based Norms⋆

David Coeurjolly

CNRS, LIRIS, UMR5205, F-69621, France

Abstract. In many applications, separable algorithms have demon-
strated their efficiency to perform high performance and parallel vol-
umetric computations, such as distance transformation or medial axis
extraction. In the literature, several authors have discussed about con-
ditions on the metric to be considered in a separable approach. In this
article, we present generic separable algorithms to efficiently compute
Voronoi maps and distance transformations for a large class of met-
rics. Focusing on path based norms (chamfer masks, neighborhood se-
quences, ...), we detail a subquadratic algorithm to compute such vol-
umetric transformation in dimension 2. More precisely, we describe a
O(log2 m · N2) algorithm for shapes in a N × N domain with chamfer
norm of size m.

Keywords: Digital Geometry, Distance Transformation, Path-based
Norms

1 Introduction

Since early works on digital geometry, distance transformation has been play-
ing an important role in many applications [1, 2]. Given a finite input shape
X ⊂ Z

n, the distance transformation labels each point in X with the distance
to its closest point in Z

n \ X. Labeling each point by the closest background
point leads to Voronoi maps. Since such characterization is parametrized by a
distance function, many authors address this distance transformation problem
with trade-offs between algorithmic performances and the accuracy of the digital
distance function with respect to the Euclidean one. Hence, authors have consid-
ered distances based on chamfer masks [2–4] or sequences of chamfer masks [1,
5–7]; the vector displacement based Euclidean distance [8, 9]; Voronoi diagram
based Euclidean distance [10, 11] or the square of the Euclidean distance [12,
13]. For the Euclidean metric, separable volumetric computations have demon-
strated to be very efficient: optimal O(n ·Nn) time algorithms for shapes in Nn

domains, optimal multi-thread/GPU implementation. . . (please refer to [14] for
a discussion). For path-based metrics (chamfer mask, -weighted- neighborhood
sequences,. . . ), two main techniques exist to compute the distance transforma-
tion. The first one considers a weighted graph formulation of the problem and
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Dijkstra-like algorithms on weighted graphs to compute distances. If m denotes
the size of the chamfer mask, computational cost could be in O(m · Nn) using
a cyclic bucket data structure [15]. Another approach consists in a raster scan
of the domain: first the chamfer mask is decomposed into disjoint sub-masks.
Then the domain grid points are scanned in a given order (consistent with the
sub-mask construction) and a local computation is performed before being prop-
agated [1, 3]. Scanning the domain several times (one per sub-mask) leads to the
distance transformation values. Again, we end up with a O(m · Nn) computa-
tional cost.

Beside specific applications which use the anisotropic nature of the chamfer
mask, rotational dependency is usually ensured increasing the mask size m to-
gether with optimizing weights. In this context and for arbitrarily large N , both
Dijsktra-like and raster scan approaches have a quadratic computational cost
with respect to N and m. In practical situations, m ≪ N but m still needs to
be in O(Nn) to have accurate asymptotic DT.

Please note that Dijkstra’s graph approach allows us to defined constrained
distance transformation (i.e. geodesic metric), both separable approaches and
raster-scan for path-based metrics are only dedicated to compact convex domains
(usually hyper-rectangular) distance transformation.

Contributions In this article, we first describe the generic framework for
separable distance transformation and metric conditions to be consistent with
this model. Then, we describe subquadratic and parallel algorithms in dimension
2 to compute error-free distance transformation and Voronoi map for chamfer
norms and other path-based metrics. Overall computational costs can be sum-
marized as follows (see 3.2 for predicate definitions):

Metric Closest HiddenBy Sep. Voronoi Map Reference
L2 O(1) O(1) Θ(n ·Nn) [12]
L∞ O(1) O(1) Θ(n ·Nn) [13]
L1 O(1) O(1) Θ(n ·Nn) [13]

Lp (exact pred.) O(log p) O(log p · logN) O(n ·Nn · log p · logN) Lem. 1, [16]
Lp (inexact pred.) O(1) O(logN) O(n ·Nn · logN) Lem. 1, [16]

2D Chamfer norm O(logm) O(log2 m) O(log2 m ·N2) Theorem 1

2D Neig. seq. norm O(log f) O(log2 f) O(log2 f ·N2) Th. 1 and [7]

2 Preliminaries

Definition 1 (Norm and metric induced by a norm). Given a vector space
EV, a norm is a map g from EV to a sub-group F of R such that ∀x,y ∈ EV ,

(non-negative) g(x) ≥ 0 (1)

(identity of indiscernibles) g(x) = 0 ⇔ x = 0 (2)

(triangular inequality) g(x+ y) ≤ g(x) + g(y) (3)

(homogeneity) ∀λ ∈ R, g(λ · x) = |λ| · g(·x) (4)



d(a, b) :=g(b−a) is the metric induced by the norm g. (E,F, d) is called a metric
space if d : E → F (with E such that for a, b ∈ E, (b− a) ∈ EV ).

Note that the above definition can be extended from vector spaces to modules
on a commutative ring (Zn being a module on Z but not a vector space) [17].
Path-based approaches (chamfer masks, -weighted- neighborhood sequences...)
aim at defining digital metrics induced by norms in metric spaces (Zn,Z, d).
Note that (weighted, with wi ≥ 0) Lp metrics

dLp
(a, b) =

(

n
∑

k=1

wk|ak − bk|
p

)
1
p

, (5)

define metric spaces (Zn,R, dLp
) which are not digital. However, rounding up

the distance function (Zn,Z, ⌈dLp
⌉) is a digital metric space [18].

Definition 2 (Distance Transformation and Voronoi Map). The distance
transform DTX associated with a digital metric space (Zn,Z, d) is a map X → Z

such that, for a ∈ X DTX(a) = minb∈Zn\X{d(a, b)}. The Voronoi map is the
map X → Z

n: ΠX(a) = argminb∈Zn\X{d(a, b)}.

Voronoi mapΠX corresponds to the intersection between the continuous Voronoi
diagram for the metric d of points Zn \X and the lattice Z

n. If a digital point
a belongs to a Voronoi diagram d−facet (0 ≤ d < n), a is equidistant to 2 or
more points in Z

n \ X but only one is considered in ΠX(a) this choice has no
influence on DTX .

Definition 3 (Chamfer Mask). A weighted vector is a pair (v, w) with v ∈ Z
n

and w ∈ N
∗. A chamfer mask M is a central-symmetric set of weighted vectors

with no null vectors and containing at least a basis of Zn.

Many authors have proposed algorithmic and/or analytic approaches to con-
struct chamfer masks approximating the Euclidean metric. In the following, we
focus on such chamfer norms which are chamfer metric induced by a norm. To
evaluate distances between two digital points for a given chamfer metric, direct
formulations have been proposed with simple geometrical interpretation:

Definition 4 (Rational ball, minimal H-representation [17, 19]). Given
a Chamfer norm M, the rational ball associated with M is the polytope

BR = conv

{

vk

wk
; (vk, wk) ∈ M

}

. (6)

Rational ball BR can also be described as the H-representation of polytope with
minimal parameter [7]: P = {x ∈ Z

n;Ax ≤ y } such that ∀k ∈ [1 . . . f ], ∃x ∈
P Akx = yk.

1 f is the number of rows in A and the number of facets in BR,
and is thus related to |M|.

1 Ak being the kth row of A.



An important result for distance computation can be formalized as follows:

Proposition 1 (Direct Distance Computation [19]). Given a chamfer
mask M induced by a norm and (A, y) its minimal parameter H-representation,
then for any a ∈ Z

n, the chamfer distance of a from the origin is

dM(O, a) = max
1≤k≤f

{Aka
T } . (7)

Among path-based digital metric, (weighted) neighborhood sequences have been
proposed to have better approximation of the Euclidean metric from sequences
of elementary chamfer masks [1, 5–7]. A key result have been demonstrated in
[7] stating that for such distance functions, a minimal parameter polytope rep-
resentation exists and that distances can be obtained from a expression similar
to (7):

d(O, a) = max
1≤k≤f

{fk(Aka
T )} , (8)

fk being some integer sequence characterizing the neighborhood sequence metric.
In the following and for the sake of simplicity, we describe our algorithms focusing
on chamfer norms but similar results can be obtained for more generic path-based
metric such as neighborhood sequences.

3 Separable Distance Transformation

3.1 Voronoi Map from Separable Approach and Metric Conditions

In [12, 10, 13, 11], several authors have described optimal in time and sepa-
rable techniques to compute error-free Voronoi maps or distance transforma-
tions for L2 and Lp metrics. Separability means that computations are per-
formed dimension by dimension. In the following, we consider Voronoi Map ap-
proach as defined in [10]: Let us first define an hyper-rectangular image IX :
[1..N1]× . . .× [1..Nn] → {0, 1} such that IX(a) = 1 for a ∈ [1..N1]× . . .× [1..Nn]
iff a ∈ X (IX(a) = 0 otherwise). In dimension 2, each row of the input image
are processed to create independent 1D Voronoi maps along the first dimension
for the metric. Then, for each further dimension, the partial Voronoi map ΠX

is updated using one dimensional independent processes on image spans along
the ith dimension. Algorithm 1 describes the 1D processes to perform on each
row, column and higher dimensional image span2. In this process, metric infor-
mation are embedded in the following predicates (see Fig. 1): Closest(a, b, c),
given three points a, b, c ∈ Z

n this predicate returns true if d(a, b) < d(a, c).
HiddenBy(a, b, c, S), given three points a, b, c ∈ Z

n such that ai < bi < ci
3 and

a 1D image span S, this predicates returns true if there is no s ∈ S such that

d(b, s) < d(a, s) and d(b, s) < d(c, s) . (9)

2 An image span S along the ith direction is a vector ofNi points with same coordinates
except at their ith one.

3 Subscript ai denotes the ith coordinate of point a ∈ Z
n.



Algorithm 1: Voronoi map construction on 1D image span S along the
ith dimension.
Data: Input binary map IX if i = 1 or partial Voronoi map ΠX obtained for

dimensions lower than i, and a 1D span S with points {s1, . . . , sNi}
sorted by their ith coordinate.

Result: Updated partial Voronoi map ΠX along S.
1 if i == 1 ; // Special case for the first dimension

2 then

3 k = 0;
4 foreach point s in S do

5 if IX(s) == 1 then

6 LS [k] = s;
7 k ++;

8 else

9 LS [0] = ΠX(s1);
10 LS [1] = ΠX(s2);
11 k = 2 , l = 3;
12 while l ≤ Ni do

13 w = ΠX(sl);
14 while k ≥ 2 and HiddenBy(LS [k − 1], LS [k], w, S) do

15 k −−;

16 k ++ ; l ++;
17 LS [k] = w;

18 foreach point s in S by increasing ith coordinate do

19 while (k < |LS |) and not(Closest(s, LS [k], LS [k + 1])) do

20 k ++;

21 ΠX [s] = LS [k];
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a
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Fig. 1. Geometrical predicates for Voronoi map construction: HiddenBy(a, b, c, S) re-
turns true in (a) and false in (b) (straight segments correspond to Voronoi diagram
edges). (c) illustrates the Closest(a, b, c) predicate for c ∈ S.

In other words, HiddenBy returns true if and only if the Voronoi cells of
sites a and c hide the Voronoi cell of b along S. For L1, L2 and L∞ metrics,



Closest andHiddenBy predicates can be computed in O(1) [10, 12, 13]. Hence,
Algorithm 1 is in O(Ni) for dimension i, leading to an overall computational time
for the Voronoi map and distance transformation problem in Θ(n · Nn) (if we
assume that ∀i ∈ [1 . . . n], Ni = N).

In [12] or [11], authors discussed about conditions on the metric d to ensure
that Algorithm 1 is correct. The key property can be informally describe as
follows: given two points a, b ∈ Z

n such that ai < bi and a straight line l along
the ith direction and if we denote by vl(a) (resp. vl(b)) the intersection between
the Voronoi cell of a (resp. b) and l, then vl(a) and vl(b) are simply connected
Euclidean segments and vl(a) appears before vl(b) on l (so called monotonicity
property in [11] and is related to quadrangle inequality in [12]). To sum up these
contributions, we have the following sufficient conditions on the metric:

Proposition 2 (Metric conditions [12]). Let d be a metric induced by a
norm whose unit ball is symmetric with respect to grid axes and if
distance comparison predicate is exact, Algorithm 1 is correct and returns a
Voronoi map ΠX .

When implementing Algorithm 1, the distance comparison predicate is exact if
we can compare two distances, e.g. Closest predicate, without error.

For Lp norms Algorithm 1 provides exact Voronoi map computation. In-
deed, distance comparison predicate can be error-free implemented from integer
number comparisons considering the p power of the distance function

(

dLp

)p
.

Proposition 2 also implies that most chamfer norms and neighborhood se-
quence based norms can also be considered in separable Algorithm 1 (see Fig. 2).
We just need algorithmic tools to efficiently implement both Closest and Hid-

denBy predicates.

Fig. 2. Balls for different metrics satisfying Proposition 2: (from left to right) L1, L1.4,
L2, L4, L43.1, M3−4 and M5−7−11.

3.2 A First Generic Adapter

We first detail the overall computational cost of Algorithm 1:

Lemma 1. Let (Zn, F, d) be a metric space induced by a norm with axis sym-
metric unit ball. If C denotes the computational cost of Closest predicate and
H is the computational cost of the HiddenBy predicate, then Algorithm 1 is in
O(n ·Nn · (C +H)).

From [10, 13], C = H = O(1) for L1, L2 and L∞ norms. For given norm d, we first
define generic Algorithms 2, 3 and 4: From some evaluations of d, HiddenBy



predicate is obtained by a dichotomic search on the 1D image span S to localize
the abscissa of Voronoi edges of sites {a, b} and {b, c} (see Fig. 3).

Algorithm 2: Generic Closest(a, b, c ∈ Z
n).

1 return d(a, b) < d(a, c);

Algorithm 3: Generic VoronoiEdge(a, b, si, sj ∈ Z
n), ai < bi.

1 if (j − i = 1) then
2 if i = 1 and Closest(si, b, a) then
3 return −∞;

4 if i = Ni and Closest(si, a, b) then
5 return ∞;

6 return i;

7 mid = i+ (j − i)/2;

8 if Closest(smid, a, b) then
// smid closer to a

9 return VoronoiEdge(a, b, smid, sj)

10 else

// smid closer to b

11 return VoronoiEdge(a, b, si, smid)

Algorithm 4: Generic HiddenBy(a, b, c ∈ Z
n;S in the ith direction) ai < bi <

ci.

1 vab = VoronoiEdge(a, b, s1, sNi);

2 vbc = VoronoiEdge(b, c, s1, sNi);
3 return (vab > vbc);

Lemma 2. Let (Zn, F, d) be a metric space induced by a norm with axis sym-
metric unit ball, from Algorithms 2 and 4, we have H = O(C · logN).

Proof. First, the generic VoronoiEdge is dichotomic with O(logN) steps and
each step is in O(C). VoronoiEdge is in O(C · logN). To prove the correctness
of VoronoiEdge (and thus Alg. 1), we use the convexity of the metric and the
quadrangle property: since ai < bi, all grid points closer to a than b in S (if
exist) are lower than all pixels on S closer to b than to a (if exist too). Thanks
to the test in line 8, recursive call maintain this invariant. Note that tests on
lines 2− 5 handle the fact that the edge may not belong to S.�

If we consider a chamfer norm with a rational ball of f facets, Eq. (7) suggests
that C = O(f). Hence, we have the following corollary:

Corollary 1. Let M be a chamfer norm whose rational ball has f facets, sepa-
rable exact Voronoi map ΠX can be obtained in O(n ·Nn · f · logN).

Please remember that naive implementation of chamfer mask distance transfor-
mation using raster scan approach would lead to a O(f ·Nn) computational cost.
In the following sections, we use the convex structure of BR to design a parallel
subquadratic algorithm for chamfer norms.



3.3 Subquadratic Algorithm in Dimension 2

Let us consider a 2D chamfer norm M with m weighted vectors (note that
f := |BR| = m in 2D). We suppose that vectors {vk}k=1...m are sorted counter-
clockwise. We define a wedge as a pair (vk,vk+1) of vectors. To each wedge is
associated a row Ak in the minimal H-representation of A (Ak can also be seen
as a –non-unitary– normal vector to BR facets [19]). Using similar notations, [17,
6] demonstrate that the distance evaluation of point a can be obtained in two
steps: First, we compute the wedge (vk,vk+1) a belongs to. Then,

dM(O, a) = Ak · aT (10)

Lemma 3. Given a chamfer norm M in dimension 2 with m vectors, the dis-
tance computation and thus the Closest predicate are in O(logm).

Proof. Since vectors are sorted counter-clockwise, (vk,vk+1) wedge can be ob-
tained by a dichotomic search with O(logm) steps. At each step, we compute the
local orientation of point a w.r.t. a direction which is in O(1). Once the wedge
has been obtained, Eq. (10) returns the distance value in O(1).�

Please note that in practical implementations, we can use symmetries in M

to only work on restrictions of chamfer mask directions, so called generator in the
literature. To optimize theHiddenBy predicate, we focus on theVoronoiEdge

function. Given two points a and b (ai < bi) and a 1D image span S along the ith

dimension, we have to find the lowest abscissa ei of the point e on S such that
d(a, e) < d(b, e) and d(a, e′) ≥ d(b, e′) for any e′ with e′i > ei. Let us first suppose
that we do not know e but we know the wedge (vk,vk+1) (resp. (vj ,vj+1)) to
which the vector (e − a)T (resp. (e − b)T ) belongs to (see Fig. 3−(c)). In this
situation, we know that e is the solution of

Ak · (e− a)T = Aj · (e− b)T . (11)

(since e ∈ S, we have one linear equation with only one unknown ei). As
a consequence, if we know the two wedges the Voronoi edge belongs to, we
have the abscissa in O(1) (see Algorithm 5 and Fig. 3−(c)). To obtain both

Algorithm 5: 2D chamfer norm VoronoiEdge(a, b, si, sj ∈ Z
2).

1 (vk,vk+1) = VoronoiEdgeWedge(a, b,v1,vm, S);

2 (vj ,vj+1) = VoronoiEdgeWedge(b, a,v1,vm, S);

3 Compute the abscissa ei of the point e such that Ak · (e− a)T = Aj · (e− b)T ;
4 return ei;

wedges, we use a dichotomic search similar to Algorithm 3: Algorithm 6 re-
turns the wedge associated with a containing the Voronoi edge with respect
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Fig. 3. VoronoiEdgeWedge and VoronoiEdge: (a) initial problem, we want to
compute the intersection between S and the Voronoi edge of a and b (in red). (b) an
internal step of VoronoiEdgeWedge to reduce the set of directions of M at a (here
the next recursive call will be on (vi,vmid)).(c) final step of VoronoiEdge where both
wedges have been obtained and thus e can be computed.

to b. Applying this algorithm to obtain the wedge associated with b with re-
spect to a defines Algorithm 5. The dichotomic search shrinks the set of vectors
{vi, . . . ,vj} to end up with a wedge (vk,vk+1) such that the intersection point
between the straight line (a + v

k) and S is in the Voronoi cell of a and such
that the intersection between (a + v

k+1) and S is in the Voronoi cell of b (see
Fig. 3−(c)). Algorithm 6 thus first computes the intersection points associated
with a wedge (vi+(j−i)/2,vi+(j−i)/2+1) (lines 5 − 6); evaluates the distances at
these points (lines 7 − 8) and then decides which set {vi, . . . ,vi+(j−i)/2} or
{vi+(j−i)/2, . . . ,vj} has to be considered for the recursive call (lines 14− 20 and
Fig. 3−(b)).

Theorem 1. Let M be a 2D chamfer norm with axis symmetric unit ball and m

weighted vectors, then we have: (i) Algorithm 5 is in O(log2 m); (ii) Algorithm
1 (with predicates from Algorithm 5 and Lemma 3), computes a Voronoi map
ΠX and thus the distance transformation of X for metric dM in O(log2 m ·N2).

Proof. Let us first consider (i). As described above, Algorithm 6 performs logm
recursive calls and each step is in O(logm). Indeed, pmid and pmid+1 are given
by the intersections between two rational slope straight lines plus a rounding
operations on rational fractions, which are assumed to be O(1). Then, line 8
requires two O(logm) computations by Lemma 3. Hence, Eq. (11) leads to O(1)
computations, O(log2 m) is required for Algorithm 5. (ii) is a direct consequence
of (i) and Lemma 2 with n = 2.�

4 Implementation Details and Experimental Analysis

In this section, we give some implementation details and experimental results
for chamfer norm Voronoi map in dimension 2. First of all, most algorithms
presented here are available in the DGtal library [16]. For Lp metrics, we have



Algorithm 6: VoronoiEdgeWedge(a, b ∈ Z
2;vi,vj in M; S along the ith

direction).

1 if (j − i = 1) then
2 return (vi,vi+1);
3 else

4 mid = i+ (j − i)/2;

5 Let pmid be the intersection point between (a+ v
mid) and S;

6 Let pmid+1 be the intersection point between (a+ v
mid+1) and S;

// O(1) evaluation of distances w.r.t. a da
pmid = Amid · (pmid − e)T ;

7 da
pmid+1 = Amid+1 · (p

mid+1 − e)T ;

// O(logm) evaluation of distances w.r.t. b db
pmid = dM(b, pmid);

8 db
pmid+1 = dM(b, pmid+1);

9 Let bmid be true if da
pmid < db

pmid ; false otherwise;

10 Let bmid+1 be true if da
pmid+1 < db

pmid+1 ; false otherwise;

11 if bmid 6= bmid+1 ; // we have the Voronoi edge wedge

12 then

13 return (vmid,vmid+1);

14 if bmid = bmid+1 = true ; // Both points are in a’s cell

15 then

16 if ai < bi then

17 return VoronoiEdgeWedge(a, b,vmid,vj , S);
18 else

19 return VoronoiEdgeWedge(a, b,vi,vmid, S);

20 if bmid = bmid+1 = false; // Both points are in b’s cell

21 then

22 if ai < bi then

23 return VoronoiEdgeWedge(a, b,vi,vmid, S);
24 else

25 return VoronoiEdgeWedge(a, b,vmid,vj , S);

implemented several Closest and HiddenBy predicates: If p = {1, 2}, ex-
act computations are proposed and all predicates are in O(1) with only integer
number computations [12, 11, 13]; If p ∈ R, p ≥ 1, we have approximated com-
putations on real numbers (double) and we consider the Generic HiddenBy

predicate in O(logN) (Alg. 4). Since predicates are based on floating point
computations, numerical issues may occur. If p ∈ Z, p ≥ 3, we use exact in-
teger number based computations of distances storing sum of power p quantities
(which can be computed in O(log p) thanks to exponentiation by squaring). The
HiddenBy predicate is also based on Algorithm 4. Beside these predicates for
Lp metrics, DGtal also contains a generic metric adapter: if the user specifies
a distance function (taking two points and returning a value) corresponding to
a norm with axis symmetric unit ball, generic Closest and HiddenBy pred-



icates can be automatically constructed. Please note that since all algorithms
are separable, the generic framework provided in DGtal allow us to have a free
multi-thread implementation [14].

To implement efficient predicates leading to subquadratic algorithm in di-
mension 2 (Alg. 5 and 6), we store the chamfer norm weighted vectors M in
a random access container sorted counterclockwise to be able to get the mid-
vector vmid in O(1). When implementing Algorithms 5 and 6, few special cases
have to be taken into account. For instance, we have to handle situations where
a, b or c belong to S in Alg. 5 and 6. Furthermore, Eq. (11) has a solution iff
Ak 6= Aj . Thanks to the geometrical representation of the dichotomic process
(Fig. 3), such special cases are easy to handle. Fig. 4-(a) illustrates some results
on a small domain.

To evaluate experimentally the computational cost given in Theorem 1, we
use the following setting: given a mask size m, we generate m distinct random
vectors (x, y)T with gcd(x, y) = 1 (extracted from Farey series for instance).
For a general mask of size m, we do not optimize the weights to approximate
as best as possible the Euclidean metric. Indeed, weights do not play any role
in the computational analysis, we just use trivial ones that ensure that M is
a norm with axis symmetric unit ball. In Fig.4-(b − c), we have considered a
2D domain 20482 with 2048 random sites. First, we observe that fixing N , the
log2 m term is clearly visible in the computational cost of the Voronoi map
(single thread curve). Bumps in the single thread curve may be due to memory
cache issues. Please note that if we consider classical chamfer norm DT from
raster scan (and sub-masks), the computational cost is in O(m · N2) and thus
has a linear behavior in Fig. 4-(c). Since we have a separable algorithm, we can
trivially implement it in a multi-thread environment. Hence, on a bi-processor
and quad-core (hyper-threading) Intel(R) Xeon(R) cpu (16 threads can run in
parallel), we observe a speed-up by a factor 10 (blue curve in Fig. 4-(b)). Please
note that on this 20482 domain with 2048 sites, Euclidean Voronoi Map (L2) is
obtained in 954.837 milliseconds on a single core and 723.196 msec on 16 cores.

5 Conclusion and Discussion

In the literature, several authors discussed about the fact that a large class of
metrics can be considered in separable approaches for volumetric analysis. In this
article, we have proposed several algorithms to efficiently solve the Voronoi map
and distance transformation: given a user-specified distance function (induced
by a norm with some properties) a first generic separable algorithm can be used.
Focusing on chamfer norms, geometrical interpretation of this generic approach
allows us to design a first subquadratic algorithm in dimension 2 to compute the
Voronoi map. Thanks to separability, parallel implementation of the distance
transformation leads to efficient distance computation.

In higher dimensions, it turns out that most results are still true: distance
function can be evaluated in O(n · logm) and the dichotomic search described in
VoronoiEdgeWedge can also be extended to n-dimensional chamfer norms.
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Fig. 4. (a) Separable Voronoi map and distance transformation for M5−7−11 and L2:
on a 2562 domain with 256 and 2 random seeds, the first row corresponds to M5−7−11

and the second one to L2. (b) and zoom in (c): Experimental evaluation of subquadratic
chamfer norm Voronoi map computation.
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