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Abstract. In many geometry processing applications, the estimation
of differential geometric quantities such as curvature or normal vector
field is an essential step. Focusing on multigrid convergent estimators,
most of them require a user specified parameter to define the scale at
which the analysis is performed (size of a convolution kernel, size of local
patches for polynomial fitting, etc). In a previous work, we have proposed
a new class of estimators on digital shape boundaries based on Integral
Invariants. In this paper, we propose new variants of these estimators
which are parameter-free and ensure multigrid convergence in 2D. As
far as we know, these are the first parameter-free multigrid convergent
curvature estimators.

Keywords: Curvature estimation, multigrid convergence, integral in-
variants, digital straight segments, parameter-free estimators

1 Introduction

Estimating differential quantities like curvatures on discrete data is a tricky task
and generally relies on some user supervision to specify some computation win-
dow. Indeed, the user has to balance between a small window which preserves
most likely sharp features and a big window which offer a better accuracy in
flatter smooth zones. Even worse, there may not exist a window size that is
appropriate to the whole data. For digital data, another fundamental issue is
related to the multigrid convergence property of geometric estimators: this prop-
erty holds whenever the geometric estimation on a digitized shape is more and
more accurate as the digitization step gets finer and finer. It is clear that a
user supervision cannot be considered when multigrid convergence is involved.
The question is then: can we design parameter-free curvature(s) estimator on
digital data ? Furthermore, can this estimator be adaptive to the local data
characteristics ?

For 2D digital curves, tangent estimation from maximal digital straight seg-
ments answers these two questions in a nice way. Indeed, it requires no parameter
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and is proven to be multigrid convergent [7, 13]. For curvature estimation, the dig-
itization grid step h is required to get the scale of the shape but is not compulsory
to get relative estimations. Two accurate curvature estimators are parameter-
free and adaptive: one based on maximal digital circular arcs (MDCA) [12], one
based on squared curvature minimization [5]. However, their convergence is not
proven. To get convergence, authors generally define the computation window
as a function of h. Binomial or Gaussian convolution estimators [8, 4] use some

1/hα window size, digital integral invariants [2] use some h
1
3 radius size. The

polynomial fitting of [11] also requires a thickness parameter. For 3D digital sur-
faces, the only multigrid convergent estimator of the curvature tensor that we
are aware of is the digital integral invariant (II for short) of [2, 3]; it relies on a

h
1
3 radius size.

This paper proposes a theoretically sound method to get rid of user specified
parameters. The idea is to use length properties of maximal segments as functions
of h in order to determine automatically a correct computation window. We
show how this approach can set automatically the digital radius size required for
the multigrid convergence of the II curvature estimator, without any knowledge
of the grid step h. By this way, we obtain the first parameter-free multigrid
convergent curvature estimator for 2D contours. This approach is also extensible
to 3D by a careful use of axis-aligned slices in the shape. Although we have hints
of multigrid convergence, still some work is required to prove it fully.

2 Preliminaries

We denote by Z any subset of Z2 (or Z3, depending on the context). In dimension
2, Bd(Z) denotes the topological boundary of Z, seen as a cellular cartesian
complex. It is thus composed of 0− and 1−cells (resp. pointels and linels). By
convention, we decide to map pointels coordinates to Z2.

Definition 1 (Standard Line and Digital Straight Segment). The set
of points (x, y) ∈ Z2 satisfying µ ≤ ax − by < µ + |a| + |b|, with a, b and µ
integer numbers, is called the standard digital line with slope a/b and shift µ.
Any connected subset of pixels of a standard digital line is a digital straight
segment (DSS for short).

Definition 2 (Maximal Segment and Maximal Segment Pencil [7]). A
sequence of pointels {pi, . . . , pj} ⊂ Bd(Z) is a maximal segment iff {pi, . . . , pj}
is a DSS which cannot be extended neither to its front nor to its back while still
being a DSS. At a given pointel p ∈ Bd(Z), the pencil of maximal segment at p
is the set of maximal segments on Bd(Z) containing p.

In the multigrid convergence framework, digital objects Z are given by the dig-
itization of a continuous object for a given scale factor h. More formally, given
a family of Euclidean shapes X, we denote by Dh(X) the Gauss digitization of
X ∈ X in a d−dimensional grid of grid step h, i.e.

Dh(X)
def
=

(
1

h
·X
)
∩ Zd (1)
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Fig. 1. Integral invariant computation (left) and notations (right) in dimension 2.

Similarly to [3] we denote ∂hX the h−boundary of X, i.e. a d − 1-dimensional
subset of Rd corresponding to the geometrical embedding of the boundary of the
Gauss digitization of X at grid step h. In our multigrid convergence framework,
quantities are estimated on ∂hX and then compared to associated expected
values on ∂X (see Fig. 1). Note that a discrete/combinatorial view of ∂hX is
given by Bd(Z) with Z = Dh(X). In many situations, maximal segments and
maximal segment pencils play a very important role in multigrid digital contour
geometry processing [6, 13]. For the purpose of this paper, let us focus on the
asymptotic properties of lengths of maximal segment:

Lemma 1 (Asymptotic Laws of Maximal Segments [6, 13]). Let X be
some convex shape of R2, with at least C3-boundary and bounded curvature. The
discrete length of maximal segments in Bd(Z) for Z = Dh(X) follows:

– the shortest is lower bounded by Ω(h−
1
3 );

– the longest is upper bounded by O(h−
1
2 );

– their average length, denoted LD(Z), is such that:

Θ(h−
1
3 ) ≤ LD(Z) ≤ Θ(h−

1
3 log

(
1

h

)
) . (2)

In [2, 3], we have proposed convergent curvature estimators based on Integral
Invariants [10, 9]. For short, the idea is to move a geometrical kernel (ball with
radius R) at each surface point and to compute integrals on the intersection be-
tween the ball and the digital shape. In dimension 2, the estimator κ̂R(Z, x̂, h) is
defined as a function of the number of grid points in (h ·Z)∩BR(x̂), BR(x̂) being
the ball with radius R centered at x̂. In dimension 3, mean curvature estimation
can be obtained from the number of points in (h ·Z)∩BR(x̂). Instead of simply
estimating the measure (volume) of X ∩BR(x) by discrete summation, we esti-
mate in 3D the covariance matrix of (h ·Z)∩BR(x̂). Its eigenvalues/eigenvectors
give us quantitative and directional information from which we can design esti-
mators κ̂1R(Z, x̂, h) and κ̂2R(Z, x̂, h) of principal curvatures κ1 and κ2 for x ∈ ∂X.
Their multigrid convergence properties are summed up below.

Theorem 1 (Uniform multigrid convergence of κ̂R, κ̂1R, and κ̂2R [2, 3]).
Let X be some convex shape in R2 or R3, with at least C3-boundary and bounded



curvature. Then, there exist positive constants h0, k and K, for any h ≤ h0,
setting R = kh

1
3 , we have: ∀x ∈ ∂X, ∀x̂ ∈ ∂hX, ‖x̂− x‖∞ ≤ h,

|κ̂R(Dh(X), x̂, h)− κ(X,x)| ≤ Kh 1
3 (3)

and more specifically for X in R3, ∀i ∈ {1, 2}:

|κ̂iR(Dh(X), x̂, h)− κi(X,x)| ≤ Kh 1
3 (4)

A key point in Theorem 1 is that the radius R of the ball has to be in Θ(h
1
3 ) to

get the convergence result. In the following, we use geometrical characteristics
of Bd(Z) (its maximal segment length distribution) to automatically select the
appropriate local or global radius R while keeping the multigrid convergence
property.

3 Multigrid convergence of 2D parameter-free curvature

Let us first define our new curvature estimator on digital objects Z ⊂ Z2:

Definition 3. Given Z ⊂ Z2, the parameter-free digital curvature estimator κ̂∗

at a pointel p ∈ Bd(Z) is defined as:

κ̂∗(Z, p)
def
=

3π

2ρ(Z)
− 3A(Z, p)

ρ(Z)
3 (5)

where ρ(Z) = L2
D(Z) and A(Z, p) = Card(Bρ(Z)(p) ∩ Z).

To rephrase the definition, we first compute the average discrete length of all
maximal segments of Bd(Z). Then the symbol ρ is the square of this length. The
estimation κ̂∗(Z, p) is a function of the number of digital points in Z intersected
with the ball of radius ρ centered at p. In the following, we fill the gap between
the parameter-free estimator κ̂∗ and 2D II curvature estimator as described in
[2, 3].

First of all, the multigrid convergence framework implies we have a scale fac-
tor h between maximal segment lengths on Bd(Z) and distances in the Euclidean
space on which ∂hX is defined. Hence, for Z = Dh(X), inserting ρ(Z) = L2

D(Z)
into Lemma 1 implies

Θ(h
1
3 ) ≤ hρ(Z) ≤ Θ(h

1
3 log2(

1

h
)) . (6)

In [2, 3], we have define a 2D II digital curvature estimator κ̂R that depends
on a ball radius R. Its multigrid convergence is guaranteed whenever the radius
is in Θ(h

1
3 ). The quantity ρ(Z) relies only on the digital contour geometry of Z.

Except for the log2(·) term, hρ(Z) is thus an excellent candidate for parameter

R, since it follows approximately Θ(h
1
3 ), to design a parameter free curvature

estimator.



Theorem 2 (Uniform convergence of curvature estimator κ̂∗). Let X be
some convex shape of R2, with at least C3-boundary and bounded curvature. Let
Z = Dh(X). Then, there exist a positive constant h0, for any 0 < h ≤ h0, we
have, ∀x ∈ ∂X and ∀p ∈ Bd(Z)

‖hp− x‖∞ ≤ h⇒
∣∣∣∣ 1hκ̂∗(Z, p)− κ(X,x)

∣∣∣∣ ≤ O(h
1
3 log2(

1

h
)) . (7)

Note that p ∈ Bd(Z) implies hp ∈ ∂hX. The parameter-free curvature is rescaled
by h in order to compare comparable shapes.

Proof. First, we expand 1
h κ̂
∗(Z, p) as

1

h
κ̂∗(Z, p) =

3π

2hρ(Z)
− 3A(Z, p)

hρ(Z)
3 =

3π

2hρ(Z)
− 3 Card(Bρ(Z)(p) ∩ Dh(X))

hρ(Z)
3

=
3π

2hρ(Z)
− 3 Card(B(hρ(Z))/h( 1

h · (hp)) ∩ Dh(X), h)

hρ(Z)
3

= κ̂R(Dh(X), x̂, h) (with R
def
= hρ(Z) and x̂

def
= hp and [2]) .

It suffices now to bound |κ̂R(Dh(X), x̂, h) − κ(X,x)| according to the asymp-

totic behavior of R
def
= hρ(Z). According to Eq.(6), R is contained between two

bounds:
If R = Θ(h

1
3 ), we are in the hypothesis of Theorem 2, so the error term is in

O(h
1
3 ).

If R = Θ(h
1
3 log2( 1

h )), we expand the error term in Theorem 2 using Eq. (18)
of [2] (with α′ = 1 and β = 1 in general case):

|κ̂R(Dh(X), x̂, h)− κ(X,x)|

≤ O(hρ(Z)) +O

(
h

(hρ(Z))2

)
+O

(
h

(hρ(Z))2

)
(1 +O((hρ(Z))2) +O(h))

(8)

≤ O(h
1
3 log2(

1

h
)) +O

(
h

1
3

log4( 1
h )

)
+O(h) +O

(
h

4
3

log4( 1
h )

)
(9)

O(h
1
3 log2( 1

h )) is the dominant error term in the latter expression. Gathering the
two cases and recalling that 1

h κ̂
∗(Z, p) = κ̂R(Dh(X), x̂, h), we conclude that the

error in Eq.(7) is exactly O(h
1
3 log2( 1

h )). �

The previous curvature estimator is thus convergent. It requires the scale
parameter h only to determine the unity used for measuring curvatures. But all
curvatures are correct relatively. A possible drawback of the previous estimator
is that the ball radius is not adaptive to shape features (for instance sharp
features). Instead of using the same ball radius for the whole shape, we can use
the maximal segment pencil at each pointel to detect a local size for the radius.
We will denote by ρ(Z, p) the square of average length of the maximal segment
pencil at pointel p.



Definition 4. Given Z ⊂ Z2, the local parameter-free curvature estimator κ̂∗l
at a pointel p ∈ Bd(Z) is given by:

κ̂∗l (Z, p)
def
=

3π

2ρ(Z, p)
− 3A′(Z, p)

ρ(Z, p)
3 (10)

where A′(Z, p) = Card(Bρ(Z,p)(p) ∩ Z).

In this local version, some maximal segments may have a too long length which
prevents us to have multigrid convergence proof. Indeed, if, in the maximal
segment pencil, lengths are in the global range of Eq. (2), good multigrid behavior
of this local estimator can be expected. Issues arise for maximal segments with
longest length in O(h−

1
2 ) in Lemma 1. In this pathological case, no convergence

can be expected. In Sect. 5, we experimentally show very good convergence
properties on this estimator.

4 3D parameter-free curvature tensor estimators

In this section, we present parameter-free curvature tensor estimators in 3D. To
sum up, we use the lengths of maximal segments in object slices to automatically
set the integral invariant radius parameter. Let us first start with a proposition
on smooth manifolds. Let X be any object in R3 with C2-smooth boundary
∂X whose absolute principal curvatures are bounded by some constant K. The
normal to ∂X at x is denoted by n(x). The principal curvatures at x are denoted
by κ1(x) and κ2(x).

Proposition 1. For any x ∈ ∂X, let πe(x) be the plane containing x and or-
thogonal to vector e ∈ {x,y, z}. Let ∂Xe(x) be the set that is the intersection
X ∩πe(x). Then at least two of the sets ∂Xx(x), ∂Xy(x) and ∂Xz(x) are locally
curves whose curvatures are bounded by

√
2K in absolute value.

The proof is available in Appendix A.1. The radius ρ′(Z) of integral invariant
computation will be defined as the square of some average of lengths of maximal
segments for a digital object Z in Z3, a more formal definition will be given just
after. We may define now our parameter-free curvature estimators in 3D:

Definition 5. Given Z ⊂ Z3, the parameter-free mean curvature estimator Ĥ∗

at a pointel p ∈ Bd(Z) is defined as:

Ĥ∗(Z, p)
def
=

8

3ρ′(Z)
− 4Vρ′(Z)(Z, p)

πρ′(Z)
4 , (11)

where Vρ′(Z)(Z, p) = Card(Bρ′(Z)(p) ∩ Z).

As discussed in [9, 3], directional curvature information and thus curva-
ture tensor can be estimated from the eigenvalues of the covariance matrix3

of Card(Bρ′(Z)(p) ∩ Z).

3 The covariance matrix of Y ⊂ R3 is defined by J(Y )
def
=

∫
Y

(p−Y )(p−Y )T dp where
Ȳ is the centroid of Y .



Definition 6. Let Z be a digital shape in Z3, we define the parameter-free prin-
cipal curvature estimators κ̂1∗ and κ̂2∗ of Z at point p ∈ Bd(Z) as

κ̂1∗(Z, p) =
6(λ̂2 − 3λ̂1)

πρ′(Z)
6 +

8

5ρ′(Z)
, κ̂2∗(Z, p) =

6(λ̂1 − 3λ̂2)

πρ′(Z)
6 +

8

5ρ′(Z)
, (12)

where λ̂1 and λ̂2 are the two greatest eigenvalues of the covariance matrix of
Bρ′(Z)(p) ∩ Z.

Let us now precise what is the ρ′(Z) parameter. We provide one global definition
ρ′(Z) and one local definition ρ′(Z, p) for p ∈ Bd(Z):

Definition 7. Given a digital object Z, each surfel p ∈ Bd(Z) is orthogonal
to two slices πe1(p) and πe2(p). For each slice πei(p) ∩ Z, the pencil of maximal
segments covering p determines a set of integers li(p), formed by the lengths of
these maximal segments. Finally, we number by M(p) the slice containing the
longest maximal segment (i.e. the slice i whose set li(p) contains the biggest
integer). Then, we define

– ρ′(Z) is the square of the average of maximal segment lengths for all slices
πei(p) ∩ Z of Z;

– ρ′(Z, p) is the square of the average value of lM(p)(p).

As in 2D, some pathological cases may appear leading to the fact that hρ′(Z, p) ∈
Θ(1). In which case, nothing could be expected in terms of multigrid convergence.
Again, experimental analysis shows that this bad behavior is not observed. Un-
like the 2D case, we do not have a complete knowledge about the multigrid
behavior of hρ′(Z). Let use first express it as a conjecture.

Conjecture 1 Let X be some convex shape of R3, with C3-boundary and bounded

curvature. Let Z
def
= Dh(X), then there exists a positive constant h0,

∀0 < h ≤ h0, Θ(h
1
3 ) ≤ hρ′(Z) ≤ Θ(h

1
3 log2(

1

h
)) . (13)

The rationale behind this conjecture can be sketched as follows. Slicing the
objects in all directions, from Proposition 1, we know that at least two third of
the slices define convex curves with bounded local curvature information. Since
two slices go through one surfel, at least one slice per surfel provides a convex
curve with bounded curvature. We thus expect that the lengths of more than
half of the maximal segments follow Eq.(13) bounds. Hence, computing the mean
of all these lengths provides a stable and consistent quantity which would also
follow Eq. (13). In Sect 5, we provide a complete experimental evaluation which
supports this conjecture. Assuming Conjecture 1, we can prove the two following
observations:

Observation 1 (Uniform convergence of Ĥ∗.) Let X be some convex shape

of R3, with at least C3-boundary and bounded curvature. Let Z
def
= Dh(X), then



there exists a positive constant h0, for any 0 < h ≤ h0, we have ∀x ∈ ∂X and
∀p ∈ Bd(Z),

‖hp− x‖∞ ≤ h⇒
∣∣∣∣ 1hĤ∗(Z, p)−H(X,x)

∣∣∣∣ ≤ O(h
1
3 log2(

1

h
)). (14)

Assuming Conjecture 1, the proof is similar to the proof of Theorem 2.

Observation 2 (Uniform convergence of κ̂1∗ and κ̂2∗) Let X be some con-
vex shape of R3, with at least C3-boundary and bounded curvature. For i ∈ {1, 2},
recall that κi(X,x) is the i-th principal curvature of ∂X at boundary point x.

Let Z
def
= Dh(X), then, there exists a positive constant h0, for any 0 < h ≤ h0,

we have ∀x ∈ ∂X and ∀p ∈ Bd(Z),

‖hp− x‖∞ ≤ h⇒
∣∣∣∣ 1hκ̂i∗(Z, p)− κi(X,x)

∣∣∣∣ ≤ O(h
1
3 log2(

1

h
)). (15)

Proof is available in Appendix A.2.

5 Experimental evaluation

We present an experimental evaluation of our parameter-free curvature estima-
tors described before, in 2D and 3D (mean and principal curvatures). All these
estimators are implemented in the open-source C++ library DGtal [1]. DGtal
provides us a way to construct parametric and implicit 2D and 3D shapes for
a given grid step h. Furthermore, DGtal holds a collection of estimators and
several tools to facilitate the comparison between estimators. In dimension 2, we
compare our estimators with a parameter-free curvature estimator called Most-
centered Digital Circular Arc curvature estimator (MDCA) [12], which gives
good results but whose multigrid convergence — although observed — is un-
fortunately not proven. In dimension 3, there is no parameter-free estimator
which provides some multigrid convergence. Therefore, considering an implicit
or parametric shape on which the exact curvature is known, we present two dif-
ferent global curvature error measurement for a shape at a given grid step h: the
l∞ norm measures the average of the absolute error between estimated and true
curvature (it corresponds to the uniform convergence in previous theorems), and
the l2 norm is the square root of the average of squared errors (it better reflects
an average behavior of the estimator).

As described in Sect. 3, we build our estimators by moving a geometrical
kernel (an Euclidean ball in dD) of radius hρ in 2D and hρ′ in 3D, and centering
it on each surface elements (surfels). The volume or the covariance matrix of the
intersection of the kernel and the digital object is then estimated by simple pixel
or voxel enumeration. Since the radius of the kernel is hρ or hρ′, we first need
to estimate them.

In Fig. 2, we study hρ′. We see that experimentally it follows the expected
asymptotic behavior of Conjecture 1, i.e. they are bounded between Θ(h

1
3 ) and

Θ(h
1
3 log2( 1

h )). Hence, they define a consistent kernel radius for curvature esti-
mators. In Fig. 3 we present asymptotic error measurements for the proposed
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Fig. 2. Clustering of squared length statistics using K−means mapped to “flower” con-
tour points (left). Comparison of asymptotic behavior (in log-space) of hρ′(Z) (center)
and mapping of length of hρ′(Z, p) on an ellipsoid (right).

parameter-free curvature estimators κ̂∗ and κ̂∗l . These graphs also display error
measurements for MDCA [12] and our former non parameter-free version of this
estimator κ̂R (setting R = kh1/3 for some constant k) [2]. We observe that all

estimators are convergent with convergence speed at least in O(h
1
3 ) except for

the local parameter-free estimator on the multigrid ellipse.
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Fig. 3. Comparison in log-space of l∞ curvature error on multigrid ellipses (left) and
flowers (right).

In Fig. 4, we present an experimental evaluation of local estimator κ̂∗l which
adapts the kernel size for each point of the digital contour. The main argument
for this estimator is to offer an adaptive estimation, for instance to better handle
sharp features. As depicted in Fig. 4 for a “flower” shape, we first observe that
the local estimator κ̂∗l has a similar behavior to the global estimator κ̂∗ for
the l∞ norm. We also note that, thanks to the adaptive nature of κ̂∗l , the l2
error is lower for κ̂∗l than κ̂∗. For high resolution objects (i.e. small h), κ̂∗l is very
time consuming (we need to create a new kernel at each point and we cannot use
differential masks as described in [2]). To speed up its computation, we introduce
K−means variants: we distribute the lengths of maximal segments into K bins



by K-means clustering, in order to have a limited number of kernels. Hence
mask precomputations are possible. Fig. 2 shows the distribution of K-radii in
2D and 3D. In Fig. 4, we tested curvature estimators based on this clustering
with K ∈ {5, 10, 20}. We first observe very good multigrid accuracy, even for a
small K, w.r.t. κ̂∗l and κ̂∗. In addition, the timing graphs of Fig. 4−(c) highlight
the interest of considering K−means clustering to get an efficient and accurate
local estimator. To better understand the local and global length properties of
maximal segments, we display on Fig 5 a scale-space view of curvature estimation
on the classical “flower” shape and the ball radii respectively used by κ̂∗, κ̂∗l and
κ̂∗K=5.
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Fig. 4. Comparison in log-space of l2 curvature error on multigrid ellipses (a) and
multigrid flowers (b) with the local κ̂∗l estimator and with different number of pre-
computed kernels. (c) Computational efficiency of local estimators.

Fig. 6 presents 3D result on parameter-free curvature tensor estimators Ĥ∗

and κ̂i∗. We also observe the expected O(h
1
3 ) convergence speed. Similarly to

2D, local estimators (with or without K-means clustering) on Fig. 6 (second
column) show good multigrid convergence.



Fig. 5. Curvature scale-space analysis of a flower: x−axis is the curvilinear abscissa,
y−axis is the kernel radius, curvature values are mapped between the blue (lowest
curvature) and the yellow color (highest curvature). In black are drawn the radius
ρ(Z) for global estimator κ̂∗ (first row), radii ρ(Z, p) for local estimator κ̂∗l (second
row), and radii ρ(Z, p) after K−mean clustering for local estimator κ̂∗K=5. (last row).

6 Conclusion

In this article, we have proposed variants of integral invariant estimator to ob-
tain parameter-free curvature estimators in 2D and 3D. In dimension 2, we have
demonstrated that the parameter-free curvature estimator is also multigrid con-
vergent. As far as we know, this is the first parameter-free curvature estimator
with this multigrid property. In dimension 3, we have defined several parameter-
free curvature tensor estimators with very good multigrid convergence behaviors.
However, convergence proofs rely on an interesting open conjecture on the length
distribution of maximal segment in object slices.
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Ĥ∗l
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Ĥ∗K=10
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Fig. 6. Comparison in log-space of l∞ (first column) and l2 (second column) mean cur-
vature (top), principal curvatures (middle and bottom) errors on a multigrid ellipsoid.



Fig. 7. (Left) Mean curvature mapped on “bunny” at different resolution using Ĥ∗l
(yellow color is the highest curvature, blue the lowest). (Right) First principal direction
on “bunny” using k̂∗l estimator.
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recherches, Université Bordeaux 1, Talence, France (2006)

7. Lachaud, J.O., Vialard, A., de Vieilleville, F.: Fast, accurate and convergent tan-
gent estimation on digital contours. Image and Vision Computing 25(10), 1572–
1587 (Oct 2007)

8. Malgouyres, R., Brunet, F., Fourey, S.: Binomial convolutions and derivatives es-
timation from noisy discretizations. In: Discrete Geometry for Computer Imagery.
LNCS, vol. 4992, pp. 370–379. Springer (2008)

9. Pottmann, H., Wallner, J., Huang, Q., Yang, Y.: Integral invariants for robust
geometry processing. Computer Aided Geometric Design 26(1), 37–60 (2009)

10. Pottmann, H., Wallner, J., Yang, Y., Lai, Y., Hu, S.: Principal curvatures from the
integral invariant viewpoint. Computer Aided Geometric Design 24(8-9), 428–442
(2007)

11. Provot, L., Gérard, Y.: Estimation of the derivatives of a digital function with
a convergent bounded error. In: Discrete Geometry for Computer Imagery. pp.
284–295. LNCS, Springer (2011)

12. Roussillon, T., Lachaud, J.O.: Accurate curvature estimation along digital contours
with maximal digital circular arcs. In: Combinatorial Image Analysis. vol. 6636,
pp. 43–55. Springer (2011)

13. de Vieilleville, F., Lachaud, J.O., Feschet, F.: Maximal digital straight segments
and convergence of discrete geometric estimators. Journal of Mathematical Image
and Vision 27(2), 471–502 (2007)

A Proofs

A.1 Proof of Proposition 1

Proof. Since no ambiguity may arise, we remove (x) from all notations. Please
also consider Fig. 8 for illustrations. First of all, if one of the πx, πy and πz is
the tangent plane at x, then the two other planes are normal planes to ∂X at x
(they contains the normal n). In this case, Euler’s theorem tells that any curve
defined by the intersection of a normal plane and the surface ∂X has a curvature
κ equals to κ1 cos2 θ + κ2 sin2 θ for some angle θ. It is then immediate that |κ|
lies in-between [min(|κ1|, |κ2|),max(|κ1|, |κ2|)], and is therefore bounded by K
on these two planes.
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Fig. 8. Notations for Proposition 1.

Otherwise, for each e ∈ {x,y, z}, the set ∂Xe is locally a 3D curve that
crosses x on the surface ∂X. First remark that there is at most one e ∈ {x,y, z}
such that n · e ≥

√
2
2 . Indeed, let n = ax+ by+ cz and for instance n ·x ≥

√
2
2 ,

then b2 + c2 = 1− a2 = 1− (n ·x)2 < 1
2 . Hence both b = n · y and c = n · z are

smaller than
√
2
2 . We only consider a vector e ∈ {x,y, z} such that n · e ≤

√
2
2 .

Let χ be the curve defined by the intersection of ∂X and the plane πn×t
containing n and the tangent t at x of ∂Xe. From Meusnier’s theorem, we have
the following relationship between the curvature of κχ of χ and the curvature
κ of ∂Xe at x: κχ = κ · cosα, α being the angle between planes πe and πn×t.

Since cosα = n · e and
√
2
2 ≤ cosα ≤ 1, we finally have:

|κχ| ≤ |κ| ≤
√

2|κχ|. (16)

Again, since |κχ| lies in-between [min(|κ1|, |κ2|),max(|κ1|, |κ2|)], it is bounded
by K and we have the final result.

A.2 Proof of uniform multigrid convergence of κ̂1∗ and κ̂2∗

Proof. As in 2D, we need to check the convergence of both error bounds of ρ′.
Assuming that Conjecture 1 is true, we have: If hρ′(Z) = Θ(h

1
3 ), we are in the

hypothesis of Theorem 1, the error term is in O(h
1
3 ). If hρ′(Z) = Θ(h

1
3 log2( 1

h )),
we can decompose the error term using Equation (28) of [3] (setting µi = 1 in
Eq.(28)):

| 1
h
κ̂1∗(Z)− κ1(X,x)| = |κ̂1R(Dh(X), x̂, h)− κ1(X,x)|

≤ O(R) +O(
h

R2
) (17)

≤ O(h
1
3 log2(

1

h
)) +O(

h
1
3

log4( 1
h )

) (18)

The upper bound error term is O(h
1
3 log2( 1

h )). Proof for κ̂2∗ follows simi-

larly. Finally, Θ(h
1
3 ) ≤ hρ′ ≤ Θ(h

1
3 log2( 1

h )) implies | 1h κ̂i∗(Z) − κi(X,x)| ≤
O(h

1
3 log2( 1

h )).�


