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1. INTRODUCTION

This paper presents a multilayer snowpack Electromagnetic

Backscattering Model (EBM), based on Dense Media Radia-

tive Transfer (DMRT). This model is capable of simulating

the interaction of electromagnetic waves (EMW) at X-band

and Ku-band frequencies with multilayer snowpack. The air-

snow interface and snow-ground backscattering components

are calculated using the Integral Equation Model (IEM), Fung

et al. [1], whereas the volume backscattering component is

calculated by the solution of Vector Radiative Transfer (VRT)

equation at order 1. We have applied these models using

measurement data from NoSREx report [2], which includes

SnowScat data in X-band and Ku-band, TerraSAR-X acqui-

sitions and snowpack stratigraphic profiles. The results of

model simulations show consistency with the radar observa-

tions, and therefore allow the EBM to be used in various ap-

plications, such as data assimilation [3],

2. DENSE MEDIA RADIATIVE TRANSFER FOR

MULTILAYER SNOWPACK

The DMRT model simulates the multilayer snowpack backscat-

tering coefficient in three components:

σ0 = σas + σv + σg (1)
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where:

- σas and σsg represent respectively the air-snow and the

snow-ground interfaces backscattering, calculated using the

Integral Equation Model (IEM) Fung et al. [1].

- σv represents the snowpack volume backscattering, calcu-

lated by resolving the VRT equation, Tsang et al. [4].

The physical parameters of a multilayer snowpack such as

thickness, snow density and optical diameter of each layer are

considered in the calculation of each layer’s effective permit-

tivity εeff , which is based on the Strong Fluctuation The-

ory (SFT). Detailed equations can be found in Huining et

al. [5]. Next, the extinction coefficient κe can be derived:

κe = 2k0Im
(√

εeff
)

. This factor is then used in the calcu-

lation of various scattering mechanisms occurring during the

propagation of EMW through a multilayer snowpack, which

is categorized into 4 types: (1) transmission between two lay-

ers, (2) attenuation by the snow particles, (3) scattering and

(4) coherent recombination.

Considering a snowpack made of n distinct layers, where

θk is the incidence angle and dk is the thickness of layer k, the

total contribution of the volume backscattering mechanism σv

can be written as follows:

σv = 4π cos θ0

n
∑

k=1

Attup(k − 1)T(k−1)k

1− exp
(

−
2κk

e
dk

cos θk

)

2κk
e

PkTk(k−1)Attdown(k − 1) (2)



where Att represents the attenuation matrix, T represents the

Fresnel trasmission matrix and P represents the phase matrix.

The expressions of these factors can be found in Phan et al.

[3].

3. VALIDATION OF MODEL USING DATA FROM

NOSREX REPORT

In this study, data from NoSREx report [2] are used to evalu-

ate the EBM (Electromagnetic Backscatter Model). In the fol-

lowing comparisons, it is worth mentioning that the snowpack

stratigraphic profiles are not taken directly at the SnowScat

radar footprint and the spatial variability of the snow stratig-

raphy is high. Consequently, the observations can only be

used as a global reference of the evolution of snowpack and

not as a precise reference of the snowpack conditions, which

are measured by the radar.

In a first part, for comparing EBM model, we consider

a single layer snowpack. The snow density is equal to

200 kgm−3, mean density for the whole period in study

and the effective snow grain radius is equal to 0.5 mm.

We use the snow water equivalent measured by the gamma

wave instrument (GWI) [2]. The ground roughness is fixed

σsg = 1 cm and lsg = 8 cm.

Fig. 1. Time series of measured by SnowScat [2] and sim-

ulated backscatter using EBM at Ku-(blue) and X-band(red),

VV polarized, 40o incidence angle.

Figure 1 shows the time series of simulated backscat-

ter at Ku- and X-band using the EBM in comparison with

the SnowScat measurements from Sodankyla in winter

2010/2011. For both cases, Ku- and X-band, the EBM

calculations are consistent with SnowScat measurements.

However, it is important to note that the model is very sensi-

tive to the grain radius, therefore if we take another value, the

results will be changed.

Fig. 2. Example of snowpack stratigraphic profiles measure-

ments [2].

In a second part, we take account the snowpack strati-

graphic profiles (Figure 2). The snow grain size is measured

using visual analysis, which can be subject to human errors.

In order to obtain the optical diameter to be used in the EBM,

we have divided the measured snow grain size by a factor

equal to 2.2 (experimental value, in future studies, we will

prefer to use the optical diameter). The ground roughness is

fixed σsg = 0.7 cm and lsg = 8 cm.

Fig. 3. Comparison of σ0 observed by SnowScat at X-band

frequency, TerraSAR-X and simulation of the EBM using in-

situ snowpack stratigraphic measurements [2].



Figure 3 represents the comparison of the backscatter-

ing coefficients σ0 observed by SnowScat at X-band fre-

quency, TerraSAR-X and simulation of the EBM using in-situ

snowpack stratigraphic measurements [2]. One can see that

the simulated backscattering coefficients (red cross) varies

around the backscattering coefficients measured by SnowS-

cat. The high variations in the value of simulated backscat-

tering coefficients are due to the high sensitivity of the EBM

model in the grain size. The tendencies of EBM simulations

and SnowScat measurements seem consistent in the period

of early March. However, we cannot reach a conclusion with

respect to SnowScat and TerraSAR-X data, due to the large

spatial variation of snowpack conditions.

Fig. 4. Comparison of σ0 measured by SnowScat at X-band

and Ku-band frequencies and simulation of the EBM using

in-situ snowpack stratigraphic measurements [2], at incidence

angles of 30o (top) and 40o (bottom).

Figure 4 shows the comparison of the backscattering coef-

ficients σ0 observed by SnowScat at X-band and Ku-band fre-

quencies and simulation of the EBM using in-situ snowpack

stratigraphic measurements. By observing the X-band simu-

lations and observations (red cross and red line), we can see

that the values of simulated backscattering coefficients at in-

cidence angle of 30 o are higher than measurements, whereas

at 40o the values of simulations are more scattered around

the values of measurements. This may due to the simulation

value of snow-ground interface backscattering σg is higher

when the incidence angle is low. In Ku-band, the simulations

and the measurements seem to show a similar tendency, espe-

cially on the period of January 2011 and early March 2011,

where the tendencies are almost identical.

At this point, we assume that measurements of snow

stratigraphy are wrong due to human error. We attempt to

improve these measures using a data assimilation process

Phan et al. [3] (not described in this paper).

Figure 5 shows the modifications of grain sizes produced

by the assimilation process. The initial profiles come from

in-situ snowpack stratigraphic measurements [2] (before ver-

tical white line) and the final profiles result from assimilation

(after vertical white line). One can see an overall decrease in

grain size, which seems consistent with the finding that visual

analysis tends to overestimate this value.

Fig. 5. Modification of grain sizes profiles (color blue − >

red, corresponding to 0 mm − > 2 mm) produced by the

assimilation process to converge to SnowScat measurement

at X-band (incidence angle of 30o).

Figure 6 shows changes in density produced by the assim-

ilation process. The initial profiles come from in-situ mea-

surements [2] (before vertical white line), thus the final pro-

files result from assimilation (after vertical white line) . On

observation, there is very little change in the density. We have



done the assumption that the density measurement errors are

low, therefore we have taken a low value in the error covari-

ance matrix.

Fig. 6. Modification of density profiles produced by the as-

similation process to converge to SnowScat measurement at

X-band (incidence angle of 30o).

Fig. 7. Comparison of σ0 measured by SnowScat at X-band

frequencies (red line) and simulation with EBM at incidence

angle of 40o(red circle) using snowpack assimilated profiles

at incidence angle of 30o.

Finally, we used the snowpack modified profiles by as-

similation at 300 to compare the σ0 measured by SnowScat

at X-band and simulated by EBM at incidence angle of 40o.

Figure 7 shows that the EBM simulations with assimilation

process (red circle) are very consistent with SnowScat mea-

surements (red line).

4. CONCLUSION

In conclusion, the EBM simulations of backscattering coef-

ficients and measurements from ground-based radar SnowS-

cat as well as TerraSAR-X satellite show the same tenden-

cies at certain sequences of measurement. The validation of

this EBM model establishes a relationship between SAR ob-

servations and snow stratigraphic measurements (or physical

model of snowpack evolution), which allows the development

of different approaches, such as data assimilation of SAR data

into a detailed snowpack model Phan et al. [3]. Changes are

then made to the initial profiles through a process of assimi-

lation to take into account human error measurement. These

promising results also suggest the necessity of an experimen-

tal platform that allows automatic and continuous measure-

ments of ground-based radar, coupled with regular observa-

tion of the snowpack evolution and SAR satellite acquisitions,

in order to validate the electromagnetic model as well as phys-

ical models of snowpack and the assimilation process.
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