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Abstract: As part of the second phase of the OptiEnR research project, the present work
deals with improving the operation of a multi-energy district boiler by adding to the plant an
optimally designed and controlled thermal storage tank. Previous study focused on both a design
approach, based on a parametric analysis, and a non-predictive control strategy. The aim of the
present work was to develop a Model Predictive Controller (MPC) to improve the management
of the tank in real time. The proposed controller generates optimal command sequences dealing
with the amount of thermal energy to be stored or released. As a result, both the fossil energy
consumption and CO2 emissions are significantly reduced while the economic gain is increased.
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1. INTRODUCTION

According to the International Energy Agency (2013), 31.6
billion tons of carbon dioxide were emitted worldwide last
year, what represents an increase of 1.4%. As a result, the
organisation has made three main recommendations: (i)
efforts should be focused on improving energy efficiency in
buildings, transport and industry, (ii) fossil fuels must be
replaced by low-emission sources of energy, (iii) the release
of methane has to be reduced (unburned natural gas with
high greenhouse effect) in oil and gas industries.

Because of the global energy crisis, the French govern-
ment supports renewable energy production. As buildings
account for about 40% of total final energy consumption
(more than half of this consumption is used for heating),
France makes a specific effort in this sector. In addition,
using biomass materials such as wood in industrial and
residential heating can significantly reduce the reliance on
fossil fuels and limit CO2 emissions (Kitzing et al., 2012).
In financial terms, biomass is cheaper than many fossil
fuels commonly used for heating. As a key point, advanced
control techniques and management strategies are needed
to improve the operation of multi-energy district boilers.
In this sense, the OptiEnR research project focuses on
optimizing the performance of the plants operated by
Cofely GDF-Suez, our industrial partner, by adding ther-
mal storage systems.

Thermal energy storage is an attractive technology used in
several industrial plants such as Combined Heat and Power

(CHP) plants (Taljan et al., 2012), Central Solar Heating
(CSH) plants (Rodŕıguez-Hidalgo et al., 2012) or multi-
energy district boilers (Eynard et al., 2011a, 2012). It has
been highlighted in a previous work (Labidi et al., 2013)
that once optimally designed and managed (we proposed
a non-predictive strategy), a storage tank can improve in
a significant way the overall efficiency of a plant.

So, the present paper deals with the optimal management
of a thermal storage tank using a Model Predictive Con-
troller (MPC). We focused on the analysis of the energy
savings one can achieve thanks to such an advanced con-
trol approach. First, the multi-energy district boiler we
selected is described (section 2). Next, the reliable (non-
predictive) management strategy which was presented in
the above-mentioned work is presented. The advantages
and limitations are outlined (section 3). They account for
the use of a predictive strategy. Then, the design of the
MPC controller allowing the thermal storage tank to be
efficiently managed is carried out (section 4). Lastly, a
comparison between both strategies is performed (section
5). As a result, it can be highlighted that the way the
tank is controlled is a key factor. Indeed, the efficiency of
such a system is mainly related to its design and the way
it is managed. The paper ends with a conclusion and an
outlook to future work (section 6).

2. MULTI-ENERGY DISTRICT BOILER

We selected as a case study a multi-energy district boiler
managed by Cofely GDF-Suez and located in the northeast



of France, in the Alsace region (Haut-Rhin). Alsace has a
semi-continental climate with cold and dry winters and
hot summers. In addtion, there is little precipitation. The
plant is connected to a heat network for thermal energy
distribution (Fig. 1).
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Fig. 1. Synoptic of the multi-energy district boiler.

The biomass (wood) boiler (WB) is characterized by a
minimum (Pmin

WB ) and a maximum heat power (Pmax
WB ) as

well as a variable efficiency (η). Efficiency, for each oper-
ation point, can be defined using interpolation. Usually,
Pmin
WB is higher or equal to 25% of Pmax

WB . The biomass
boiler is designed in order to meet the major part of the
power demand but is not able to cover the peak loads. As
a result, a 7000 kW gas boiler (GB1) is used as a backup
unit. In addition, a 9000 kW gas boiler (GB2) is switched
on in case of malfunction or during maintenance phases.
Unlike biomass boilers, efficiency is the same whatever the
power. Pmin

GB is about 2% of Pmax
GB . Table 1 summarizes

the characteristics of the boiler units:

Table 1. Characteristics of the boiler units.

Boiler unit P [kW] η

WB

1050 0.7

2100 0.75

3150 0.88

4200 0.95

GB1
140 0.97

7000 0.97

GB2
180 0.97

9000 0.97

3. NON-PREDICTIVE STRATEGY (NPS)

3.1 Overview of the strategy

Usually, the biomass power is modulated between Pmin
WB

and Pmax
WB to meet the demand. When it is lower than

Pmin
WB , the biomass boiler is switched off and the backup

boiler (GB1) is used. During the coldest periods of winter,
both boilers (WB and GB1) operates jointly. In this case,
WB operates at full load.

The main purpose of the previous study we carried out
(Labidi et al., 2013) was to optimize the operation of multi-
energy district boilers by adding optimally-sized thermal
storage tanks and proposing an adequate (sequential)
management strategy. As a key point, the main goal of
thermal energy storage is to avoid switching on the gas
boiler (GB1) as far as possible. Such a process leads to

significant changes in fossil and renewable energy con-
sumption. So, a multi-energy district boiler equipped with
a thermal storage tank can be operated using the strategy
described as follows, on the basis of an estimate of the
power demand (Pnet) and the characteristics of the boiler
units:

● During the coldest months of winter (Pnet < Pmax
WB ),

instead of modulating its power, the biomass boiler
operates at full load to meet the power demand and
charge the thermal storage tank. Once such a demand
is upper than Pmax

WB , the stored energy is released. In
this way, the gas boiler is only switched on when the
tank is empty and the power demand still exceeds
Pmax
WB .

● During the hottest months of summer (Pnet < Pmin
WB ),

most of the buildings do not need to be heated and, as
a consequence, only domestic hot water is required.
Generally, biomass boilers are oversized in order to
be able to operate during this period of the year and
a gas boiler is used to meet low power requirements.
A biomass boiler combined with a thermal storage
tank can be used during such a period as follows: first
the biomass boiler operates at minimum power and
allows both the power demand to be met and the tank
to be charged. Once the storage tank is completely
filled, the boiler is shut down and the stored energy
is released to afford domestic hot water. The boiler
is switched on again when the tank is empty. This
operating mode prevents the use of gas and favours
the use of renewable energy.

3.2 Advantages and limitations

The main advantages of such a strategy are listed below.
First, it is based on logical conditions and, as a result,
no complex algorithm involving extensive calculation is
needed. Secondly, it allows the specificities of each plant
(through profiles of power demand and technical charac-
teristics) to be taken into account. As a result, this strategy
can be applied to any (existing or under-construction)
multi-energy district boiler.

The main drawback of the strategy lies in not taking
into account the future power demand. Consequently, the
thermal storage tank cannot be used in an optimal way
and, in some cases, it is unable to cope with peak loads.
In addition, it can be sometimes full and not used for a
long time. In this case, thermal losses occur. That is why
a predictive strategy based on a MPC controller is likely
to improve operation and performance.

4. MODEL PREDICTIVE CONTROL (MPC)

4.1 Principles of MPC

It is somewhat curious to note that the concept of Model-
based Predictive Controller (MPC) has a long history
that began during the 1970’s when Engineers at Shell Oil
developed their own dependent MPC technology with an
initial application in 1973 (Garćıa et al., 1989). Nowadays,
this concept is widely used in the control of industrial
processes. Its popularity in industry is mainly due to the
possibility it offers to treat operating specifications and



constraints jointly during the development phase of the
controller. MPC is commonly used to manage thermal
comfort (Castilla et al., 2013; Pravara et al., 2011) and
energy resources (Ma et al., 2012; Kim, 2013) in buildings.
Eynard et al. (2012) developed a predictive controller in
order to optimize the operation of a multi-energy district
boiler located in northwest France.

As it is well known, the philosophy of MPC is down to
use a model to forecast the behavior of the system to
be controlled and choose the best decision in the sense
of some objective function (J) while satisfying the con-
straints. Usually, the aim is to ensure the desired set-point
regardless of disturbances with minimal effort. Constraints
deal with physical limitations and are introduced for eco-
nomic or security reasons. The forecast horizon is the time
interval during which the objective function is minimized
thanks to an optimization algorithm (Manenti, 2011).

4.2 Design of the model predictive controller

In this section of the paper, the MPC problem is formu-
lated. The aim is to optimize the control input that min-
imizes the consumption of energy (or operational costs)
while meeting power demand requirements. The proposed
model predictive controller defines the amount of energy to
be stored or released through the storage tank at each time
step. The architecture of the predictive control approach
we propose to manage the amount of thermal energy stored
in the tank is depicted by Fig. 2:

PTS (k/k,…, k + 23/k)

Boiler 
model

Pnet (k/k,…, k + 23/k) Pwood (k/k,…, k + 23/k)

Boiler
(real/model)

Optimization

Forecast
unit

Model-based predictive controller

ETS (k) PTS
∗ (k)

Pgas (k/k,…, k + 23/k)

Pnet (k ‒ 23,…, k)

Fig. 2. Structure of the model-based predictive controller.

Model of the multi-energy district boiler. The MPC
controller we designed uses the global model of the multi-
energy district boiler described in section 2 (Labidi et al.,
2013). The gas power (Pgas) as well as the wood power
(Pwood) (i.e. the model outputs) are defined as functions
of both the tank charging/discharging power (PTS) and
the power demand (Pnet) (i.e. the model inputs). Pnet is
forecasted using a wavelet-based multi-resolution analysis
and feedforward artificial neural networks (Eynard et al.,
2011b). The main idea behind such an approach is to
replace the forecasting of an original time series whose
variability can be high by the forecasting of its wavelet
coefficients (of lower variability). We decided for a forecast
horizon (Hf ) of 24 hours, as an interesting compromise
between forecasting accuracy and periodicity in power
demand. In addition, such an horizon is well adapted to
the charging and discharging cycles of the tank.

Optimization variables. The proposed controller defines
at each time step k the optimal values of the tank charg-
ing/discharging power (PTS), along the forecast horizon.

Let us note that a positive value (i.e. PTS(k) > 0) stands
for the “charging (storage) mode” while a negative value
(i.e. PTS(k) < 0) is for the “discharging (release) mode”.

Objective function. The main goal of the control ap-
proach is to minimize the use of fossil energy by optimiz-
ing the storage of renewable energy during low-demand
periods and releasing the energy stored when the power
demand is high. Thus, the objective function J is defined
as the quadratic sum of the gas power consumed at each
time step k along the forecast horizon. J is depicted by
equation 1:

J =
Hf

∑
k=1

Pgas(k)2 (1)

Constraints. Equations 2 and 3 allow the optimization
constraints to be formulated. Such constraints ensure that
thermal energy is stored or released adequately. The first
one (2) is introduced in order to limit the interval of the
possible values for PTS . This constraint is related to the
characteristics of the storage tank feed pumps. The second
constraint (3) makes reference to the design of the tank.
In other words, it is related to the capacity of the tank
(Emax). Emax = ρ ⋅ Cp ⋅ V ⋅∆T with ρ (kg/m3) the water
density, Cp (kJ/kg⋅K) the specific heat of water, ∆T (K)
the difference in temperature between cold and hot water
and V the volume of the tank (m3). At each time step k,
the amount of energy stored has to be positive and lower
than Emax:

−Pmax
TS ≤ PTS(k + j/k) ≤ Pmax

TS ∀j ∈ J0;Hf − 1K (2)

0 ≤ Einit +
j

∑
i=0
PTS(k + i/k) ≤ Emax ∀j ∈ J0;Hf − 1K (3)

Optimization problem. The optimization problem comes
down to find, at each time step k (t = k × Ts with Ts the
sampling time), the value of the manipulated variable PTS

such that the function J is minimized and the constraints
are satisfied (4 and 5):

min (J)
[PTS(k/k),...,PTS(k+Hf−1/k)]

(4)

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

District boiler model with thermal storage tank
−Pmax

TS ≤ PTS(k + j/k) ≤ Pmax
TS

0 ≤ Einit +∑j
i=0 PTS(k + i/k) ≤ Emax

∀j ∈ J0;Hf − 1K and Hf = 24

(5)

MPC algorithm. Fig. 3 depicts the MPC algorithm
used. At each time step k, a simulation over the forecast
horizon based on the non-predictive strategy, the current
amount of energy stored in the tank and the forecasted
values of Pnet is performed in order for the values of
[PTS(k/k), . . . , PTS(k +Hf − 1/k)] to be initialized. These
values are then optimized using both the non-linear op-
timization algorithm “fmincon” from Matlab® and the
developed model of the multi-energy district-boiler. The
first optimized value is applied to the model which stands
for the real system and so on until the end of the simulation
process. Then, various performance criteria are computed
for an off-line analysis of the results.



Simulate the internal model (24 hours)
with PTS (k/k,…, k + 23/k)

Set 24 values for command Pstc (if not just initialized)

Save the first value of the command sequence (PTS
∗ (k))

Initialize the command sequence (PTS , 24 hours)
using the non-predictive strategy

Forecast the power demand (Pnet , 24 hours)

Yes

No Optimum
reached?

Start the simulation k = 1

Compute the objective function J (PTS)

k = k +1

k = end?

Yes

No

Simulate the internal model (1 hour) with PTS
∗ (k)

Optimization process

Compute the performance indicators

Fig. 3. MPC algorithm.

5. RESULTS

This section of the paper deals with the control results we
obtained. Three different scenarios are considered in order
to check performance:

● Scenario 1: District boiler without thermal storage
tank. This is the “Reference Scenario” (RS).

● Scenario 2: District boiler with thermal storage tank
managed with the “Non-Predictive Strategy” (NPS)
discussed in section 3 of the paper.

● Scenario 3: District boiler with thermal storage tank
managed with the MPC strategy discussed in sec-
tion 4 of the paper.

Energy, economic and environmental criteria are proposed
as performance indicators. Thanks to these indicators and
considering a thermal storage tank whose size can vary
from 0 m3 to 1000 m3, one can evaluate the performance
of the proposed strategies (predictive and non-predictive)
as well as the impact of the volume of the tank on the
multi-energy district boiler operation.

5.1 Performance indicators and simulation parameters

Because the main purpose of thermal energy storage
is to decrease gas consumption in multi-energy district
boilers, the gas coverage rate (Cgas) is proposed as an
energy indicator. It is calculated from the thermal energy
produced from the combustion of gas (Egas) and wood
(Ewood) during the considered period (6).

Cgas =
Egas

Ewood +Egas
(6)

The wood coverage rate (Cwood) is computed in the same
way than Cgas and is subject to contract (7):

Cwood =
Ewood

Ewood +Egas
(7)

With the aim of highlighting the economic benefits of
energy savings, a criterion (Ec) is defined from Egas,
Ewood, UPgas (the unitary price of gas), and UPwood (the
unitary price of wood) (8):

Ec = Egas ×UPgas +Ewood ×UPwood (8)

In order to put in perspective the economic benefits of
energy savings, the economic gain G is evaluated (9). It
is defined as the difference between Ec (V ), the economic
cost related to energy consumption, considering a storage
volume V , and Ec (V = 0), the economic cost related
to energy consumption without storage of thermal energy
(V = 0 m3):

G(V ) = Ec (V ) −Ec (V = 0) (9)

The environmental impact of such a technology is evalu-
ated thanks to criterion LCO2, which is about CO2 emis-
sions (10). LCO2 is expressed from Ecgas, Ecwood and the
Life-Cycle Assessment of CO2 emissions from gas (Ugas

CO2
)

and wood (Uwood
CO2

):

LCO2 = Ecgas ×Ugas
CO2

+Ecwood ×Uwood
CO2

(10)

It should also be noted that new buildings connected to
the heat network as well as future expansions of existing
buildings are factors to be taken into account in order
to evaluate the proposed strategy accurately. As a result,
we considered an increase in the power demand (Pnet) up
to 30% and studied the impact of such an increase on
the plant operation. Finally, table 2 summarizes the main
simulation parameters.

Table 2. Simulation parameters.

Parameter Value

Simulation period From September 21 to April 16

Sampling time (Ts) 1 hour

Forecast horizon (Hf ) 24 hours

Pmax
TS

Emax
2

[kW]

UPgas 40e⋅MWh−1

UPwood 17e⋅MWh−1

Ugas
CO2

234kgCO2⋅MWh−1

Uwood
CO2

13kgCO2⋅MWh−1

5.2 Simulation results

First, simulation results show that the biomass boiler is
sized to ensure around 85% of the power demand dur-
ing the simulation period without thermal storage tank
(V = 0 m3). Fig. 5 depicts the way the gas coverage rate
evolves according to the volume of the storage tank and
the strategy used (NPS or MPC). Let us remember that
NPS is for “Non-Predictive Strategy” while RS stands for
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Fig. 4. Weekly dynamics of the multi-energy district boiler.
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Fig. 5. Impact of the size of the tank on Cgas.

“Reference Scenario”. One can highlight that, regardless of
the strategy used, adding to a plant a thermal storage tank
reduces the use of the gas boiler significantly. Moreover,
whatever the size of the tank, the predictive strategy is
always more efficient. For example, when adding to the
plant a 200 m3 thermal storage tank managed using the
non-predictive strategy, the gas coverage rate decreases
down to 7.3%. The same tank managed using the pre-
dictive strategy allows this rate to be decreased until 6%.

Fig. 4 presents the dynamics of the district boiler during
one week. Taking a look at the figure, it can be high-
lighted that the predictive controller anticipates very well
the storage of thermal energy even if the current power
demand is very low, knowing 24 hours in advance that such
a demand will increase sharply. Figures 6 and 7 depict, for
both strategies, the way the size of the tank impacts on Ec
and G, respectively. One can highlight that Ec decreases
with the size of the thermal storage tank. Furthermore,
in comparison to the non-predictive strategy, the MPC
strategy allows a considerable economic gain to be realized.

With the non-predictive strategy, the optimal volume of
the tank is about 200 m3. A more important volume

is not reflected by a bigger economic gain. With the
MPC strategy, the optimum is reached for a volume of
about 300 m3. This highlights that such a strategy takes
advantage of an increase in the size of the tank and
demonstrates its ability in managing energy resources.
From an environmental point of view, Fig. 8 clearly shows
for the same thermal storage tank that the MPC strategy
allows a higher decrease in CO2 emissions than the non-
predictive strategy.
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A possible increase in power demand is also considered
in order to complete the analysis. Regarding the ability
of the thermal storage tank to cope with such an increase,
one can observe (Fig. 9) that the predictive strategy allows
the wood coverage rate to be about 2 points higher than
with the non-predictive strategy, for a volume of 200 m3,
and from 4 to 10 points higher than with the reference
scenario (i.e. no thermal storage tank).

6. CONCLUSION

The present paper deals with optimizing the operation of
a multi-energy district boiler by adding to the plant an
optimally-sized thermal storage tank. First, we proposed
a non-predictive strategy in order to manage the plant,
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on the basis of the power demand and the characteristics
of the different boiler units. Next, a model predictive
controller has been developed in order to optimize, over
a forecast horizon, the use of the storage tank. As a key
point, one can highlight that the control scheme allows
both the fossil energy consumption and CO2 emissions to
be significantly reduced. In addition, the economic gain is

increased. Ongoing research activities will now focus on
improving the tool used to forecast the power demand.
Other multi-energy district boilers and configurations will
also be considered in order to validate the predictive
approach. Future work will also deal with implementing
in situ the developed algorithm.
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