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This paper presents the results of numerical stability analysis of the wake of an
elliptical cylinder. Aspect ratios where the ellipse is longer in the streamwise direction
than in the transverse direction are considered. The focus is on the dependence on
the aspect ratio of the ellipse of the various bifurcations to three-dimensional flow
from the two-dimensional Kármán vortex street. It is shown that the three modes
present in the wake of a circular cylinder (modes A, B and QP) are present in the
ellipse wake, and that in general they are all stabilized by increasing the aspect ratio
of the ellipse. Two new pertinent modes are found: one long-wavelength mode with
similarities to mode A, and a second that is only unstable for aspect ratios greater
than approximately 1.75, which has similar spatiotemporal symmetries to mode B but
has a distinct spatial structure. Results from fully three-dimensional simulations are
also presented confirming the existence and growth of these two new modes in the
saturated wakes.
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1. Introduction

The wake formed behind a cylinder of elliptical cross-section can be thought of as
one example of the wider class of bluff-body wake flows. For many phenomena in
this class of flows, the canonical case is that of a circular cylinder. It is well known
that the circular cylinder wake progresses from creeping flow to a steady separated
flow at around Re = 5 (Taneda 1956). The flow then undergoes a transition from a
steady to periodic state at Re' 47 (Dušek, Le Gal & Fraunié 1994; Le Gal, Nadim &
Thompson 2001) apparently governed by a supercritical Hopf bifurcation (Provansal,
Mathis & Boyer 1987; Thompson & Le Gal 2004) where the Reynolds number
Re = UD/ν, and U is the free stream velocity, D is the cylinder diameter and ν is
the kinematic viscosity. Beyond this Re, the wake is characterized by the periodic
two-dimensional vortex shedding of the Kármán vortex street. Excellent overviews of
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the regimes of flow past the circular cylinder are provided by Roshko (1993) and
Zdravkovich (1997).

Further increases in Re see the Kármán wake subsequently become unstable to
three-dimensional perturbations. At approximately Re = 190, the advecting vortex
street becomes unstable to mode A (Williamson 1988; Barkley & Henderson 1996),
characterized by a waviness of the vortex cores and speculated to be caused by a
cooperative elliptic instability of these cores (Landman & Saffman 1987; Leweke
& Williamson 1998; Thompson, Leweke & Williamson 2001; Ryan, Thompson &
Hourigan 2005; Leontini, Thompson & Hourigan 2007). (See also Giannetti, Camarri
& Luchini (2010) for an analysis in terms of structural stability.) Further increases in
Re see the onset of mode B, characterized by fine-scale streamwise vortices growing
in the braid shear layers between the wake vortices. Stability analysis predicts
mode B to begin at Re= 260 (Barkley & Henderson 1996), however in experiments
(Williamson 1996) and direct numerical simulations (Thompson, Hourigan & Sheridan
1996) mode B is observed for Re & 230. The presence of mode A appears to
have a destabilizing influence on mode B (Barkley, Tuckerman & Golubitsky 2000;
Sheard et al. 2003). The three-dimensional numerical study of Henderson (1997)
provides a thorough overview of both modes A and B. A third mode is predicted
by stability analysis to occur around Re= 377 (Blackburn, Marques & Lopez 2005),
known as mode QP (for quasi-periodic), but clear evidence of it has not been found
experimentally, most likely due to the presence and dominance of mode B.

The symmetry group argument presented by Blackburn et al. (2005) states that
there are only three generic three-dimensional spatiotemporal wake states that can
develop from the two-dimensional Kármán wake. The symmetries of modes A, B
and QP each represent one of these states. It might therefore be expected that the
transition to three-dimensional flow in the wake of a cylinder may be taken as
representative of that for any body that produces a Kármán wake. However, a body
of research has been built up regarding three-dimensional transition for flows past
other bodies and modifications to the basic flow past a cylinder. Square cross-sections
(Robichaux, Balachandar & Vanka 1999; Sheard, Fitzgerald & Ryan 2009), elliptical
leading-edge plates (Ryan et al. 2005), transverse-oscillating cylinders (Leontini et al.
2007) and rotational oscillating cylinders (Lo Jacono et al. 2010) are some examples
of such flows where the symmetry of the resulting base flows are the same as the
Kármán vortex street flow past a cylinder, that is spatiotemporally symmetric such
that u(x, y, t) = u(x, −y, t + T/2), where u is the velocity field and T is the period
of the vortex shedding in the wake. Many of these studies show that the order of
inception of modes A, B and QP can change. They also show that other modes can
be found, albeit with one of the same three spatiotemporal symmetries.

Beyond some critical value of Re, the wake of an ellipse is the Kármán vortex street.
The critical value of Re for the onset of vortex shedding is approximately proportional
to the aspect ratio (Jackson 1987). The frequency of vortex shedding, represented by
the Strouhal number St = f D/U, where f is the frequency of vortex shedding and
D is the length of the body across the flow, is also approximately proportional to the
aspect ratio (Kuo & Baldwin 1967; Modi & Dikshit 1975). This is consistent with the
theory of a universal Strouhal curve from Roshko (1955), that states as the separating
shear layers on each side of the body get closer to each other, St should increase.
Given this universality, it should be expected that, at least for small deviations from
the circular cylinder geometry, modes A, B and QP will still exist, albeit perhaps
somewhat modified. The results of this paper confirm that this is the case, but for
larger departures from a circular cylinder, new modes also arise.



There appears to be little published information regarding the development of
three-dimensional flow in the wakes of elliptical cylinders. Mittal & Balachandar
(1995) reported on two- and three-dimensional simulations of the flow past cylinders
and ellipses with a focus on the Re = 525 case for aspect ratio Γ = 2 (Γ =
major/minor axis ratio). The two-dimensional simulations resulted in a peak lift
almost twice as large as the three-dimensional simulations, indicating the flow is
truly three-dimensional for these conditions. More recently Thompson et al. (2014)
examined the three-dimensional transitions for elliptical cylinders with aspect ratios
less than one, finding transitions similar to those that occur for a normal flat plate at
low aspect ratios, and convergence towards the circular cylinder transition sequence
as the aspect ratio became close to unity.

In this paper, the variations of the various three-dimensional modes as a function of
aspect ratio Γ are studied. Stability analysis of the two-dimensional periodic wakes of
ellipses with 16Γ 6 2.4 is undertaken. The case Γ = 1 corresponds to the canonical
circular cylinder.

Section 2 presents an overview of the techniques employed both for the base flow
simulations and the stability analysis. Section 3.1 first presents results analysing the
onset of vortex shedding and the Kármán wake. Then, §§ 3.2 and 3.3 present results of
Floquet stability analysis of these Kármán wakes. These results show the modification
of modes A, B and QP as Γ is changed, as well as the appearance of two new
modes, Â and B̂. Sections 3.5 and 3.6 present some details of these new modes,
and § 3.7 presents limited results of fully three-dimensional simulations confirming
the existence and growth of these new modes. Finally, some concluding remarks are
presented in § 4.

2. Methodology
2.1. Governing equations and Floquet stability analysis

The two-dimensional base flows for this paper were found by solving the non-
dimensionalized incompressible Navier–Stokes equations,

∂u
∂τ
=−(u · ∇)u−∇P+ 1

Re
∇2u,

∇ · u= 0,

}
(2.1)

where u is the velocity field non-dimensionalized by the free stream velocity U,
τ = tU/D is the non-dimensional time where t is time and D is the length of the
body across the flow, P= p/(0.5ρU2) is the non-dimensional pressure where p is the
pressure and ρ is the fluid density and Reynolds number Re=UD/ν, where ν is the
kinematic viscosity.

Apart from the Reynolds number Re, the only other variable controlling the flow
state is the aspect ratio of the ellipse Γ = L/D, where L is the length of the body in
the streamwise direction.

The stability of two-dimensional periodic solutions of these equations is then
assessed using Floquet stability analysis. Essentially, this consists of solving for the
growth of a three-dimensional periodic perturbation of a given spanwise wavelength λ
from one period to the next. This growth is represented by the Floquet multiplier, µf ,
which can be a complex quantity. The magnitude of µf dictates the stability of the
flow: if |µf |> 1, the flow is unstable, indicating that perturbations will grow. Critical
conditions occur at neutral stability, where |µf | = 1.



The growth of perturbations is governed by the linearized Navier–Stokes equations,

∂u′

∂τ
=−(u · ∇)u′ − (u′ · ∇)u−∇P′ + 1

Re
∇2u′,

∇ · u′ = 0,

 (2.2)

where u′ is the three-dimensional perturbation velocity field, and P′ is the perturbation
pressure field.

In this general form, u′ is a three-dimensional vector field and P′ is a three-
dimensional scalar field. These quantities can be further subdivided by decomposing
into Fourier modes in the z-direction. Following Barkley & Henderson (1996), if the
perturbations are written as

u′(x, y, z, τ )= (û cos(2π/λ)z, v̂ cos(2π/λ)z, ŵ sin(2π/λ)z
)
,

P′(x, y, z, τ )= P̂ cos(2π/λ)z,

}
(2.3)

then the perturbation equations shown in (2.2) can be written as

∂ û
∂τ
=−

(
û
∂U
∂x
+ v̂ ∂U

∂y
+U

∂ û
∂x
+ V

∂ û
∂y

)
− ∂P̂
∂x
+ 1

Re

(
∂2û
∂x2
+ ∂

2û
∂y2
− (2π/λ)2û

)
∂v̂

∂τ
=−

(
û
∂V
∂x
+ v̂ ∂V

∂y
+U

∂v̂

∂x
+ V

∂v̂

∂y

)
− ∂P̂
∂y
+ 1

Re

(
∂2v̂

∂x2
+ ∂

2v̂

∂y2
− (2π/λ)2v̂

)
∂ŵ
∂τ
=−

(
U
∂ŵ
∂x
+ V

∂v̂

∂y

)
− (2π/λ)P̂+ 1

Re

(
∂2ŵ
∂x2
+ ∂

2ŵ
∂y2
− (2π/λ)2ŵ

)
∂ û
∂x
+ ∂v̂
∂y
+ (2π/λ)ŵ= 0.


(2.4)

These equations are explicitly a function of the wavelength λ, meaning the two-
dimensional perturbation field û is a function of the Reynolds number Re and the
wavelength of the perturbation in the z-direction λ.

Floquet stability analysis works by finding the eigenvalues µf of some linear
operator L that maps the perturbation field from one period to the next, i.e.

û(x, y, λ, Re, t+ T)= L(û(x, y, λ, Re, t)). (2.5)

If L has eigenvalues where |µf |> 1, then the perturbation will grow over one period
of oscillation and the flow is unstable. Here, L need never be explicitly formed: its
action is equivalent to integrating equations (2.4) forward in time by one period.

Values of the Floquet multiplier µf and the corresponding eigenvectors (or Floquet
modes, or simply modes) are a function of the flow variables Re and Γ and the
wavelength λ. Therefore, the analysis task becomes a matter of calculating the leading
modes (those with the largest corresponding µf ) for each combination of Re, Γ and λ.
This process is well described in Barkley & Henderson (1996), Tuckerman & Barkley
(2000), Ryan et al. (2005) and Rao et al. (2013b).



2.2. Numerical method
Both the base flow and perturbation equations (2.1) and (2.2) were solved using a
spectral-element code (Karniadakis & Sherwin 2005). The spatial domain is split
into quadrilateral finite elements that employ high-order Lagrange polynomials
as shape and weighting functions. These polynomials are associated with Gauss–
Lobatto–Legendre quadrature points which leads to the efficient calculation of
integrals required for solving the equations in the weak form. Time integration
was executed using a three-step time-splitting scheme (Karniadakis, Israeli & Orszag
1991; Thompson et al. 2006), employing a third-order Adams–Bashforth scheme for
the convective substep, a centred scheme for the pressure correction and an implicit
(theta-modified) Crank–Nicholson scheme (Canuto et al. 1990) for the diffusion term.

In the current implementation, the elements making up the mesh can have straight
or constant-radius curved surfaces. The elements at the body boundary were therefore
curved with a curvature calculated to minimize the difference between the constant-
radius curve and the true elliptical surface. The error was generally imperceptible
(the root mean square (RMS) of the error in the y-position was smaller than 10−4D
for all meshes), and the favourable comparison with previously published results of
Jackson (1987) presented below in § 3.1 confirms this method presents an accurate
representation of an ellipse.

A domain extending 20D upstream, 46D downstream and 30D to either side of the
centre of the body was employed, giving a blockage ratio of less than 2 %. Here D
refers to the length of the body across the flow. For the velocity field of the base flow,
a free stream Dirichlet condition was set at the upstream and transverse boundaries
and a Neumann condition set at the downstream boundary. A no-slip Dirichlet
condition was set at the body surface. A Neumann condition for the gradient normal
to the boundary calculated from the Navier–Stokes equations was set for the pressure
at all boundaries (Karniadakis et al. 1991) except the outflow boundary where the
pressure was set to zero. The perturbation velocity was set to zero at all boundaries
except the outflow boundary where a zero normal gradient condition was imposed on
the perturbation velocity components.

The analysis was conducted by first running the simulation of the base flow only,
until the base flow had saturated to a periodic state (typically after around 40 vortex
shedding cycles). Then, the perturbation velocity field was initialized to random noise
of amplitude 10−3, and the simulation continued, integrating both the base flow and
the perturbation field forward in time. The perturbation field was stored once per
period, and these saved fields used to find the leading eigenvectors and corresponding
eigenvalues.

This was done using a Krylov subspace method, and an Arnoldi decomposition
employed to resolve the full complex leading multipliers. The saved perturbation fields
(typically five to eight successive fields) formed the Krylov subspace. The Arnoldi
decomposition was then used to project these vectors into an orthonormal space.
The resulting orthonormal vectors approximate the eigenvectors (or Floquet modes)
of the system, and the coefficient matrix associated with the orthonormalization has
eigenvalues that approximate the leading eigenvalues associated with the Floquet
modes. The implementation here is given by Mamun & Tuckerman (1995) and
Tuckerman & Barkley (2000), and has been successfully applied in previous
studies of bluff-body wakes such as stenotic pipes (Griffith et al. 2009), rotationally
oscillating cylinders (Lo Jacono et al. 2010), sphere-wall impact (Thompson, Leweke
& Hourigan 2007) and constantly rotating cylinders (Rao et al. 2013a,b).



Γ Re St Re (Jackson 1987) St (Jackson 1987)

1.0 46.559 0.11885 45.503 0.13626
1.2 50.970 0.11974 50.586 0.13766
1.4 56.247 0.12116 56.478 0.13943
1.6 62.174 0.12305 — —
1.8 68.877 0.12582 — —
2.0 75.793 0.12768 76.794 0.14644

TABLE 1. Values of Re and St at the onset of periodic vortex shedding from the current
study, compared with those of Jackson (1987).

A resolution test on this mesh was conducted by varying the order of the shape
functions p. The maximum lift force on the ellipse of Γ = 2 at Re= 400 was found to
vary by less than 0.5 % when varying p from 5 to 8. All of the subsequent simulations
were performed using p= 8.

3. Results
3.1. Characteristics of the base flows

The primary focus of this paper is the loss of stability of the Kármán wake to
three-dimensional perturbations at a given Re. This assumes that the flow has already
undergone transition from a steady flow to the periodic Kármán wake.

Data for the onset of this periodic shedding are provided in table 1. The value
of Re, as well as the value of St at the onset of vortex shedding are provided, and
compared to the values presented in Jackson (1987). To find the value of Re at the
onset of vortex shedding, a series of simulations was run at increments of Re of 1, and
it was observed whether small perturbations grew or decayed. Growth was measured
by monitoring the lift force coefficient Cl = FL/(1/2)ρU2D on the body, where FL

is the lift force per unit length, and ρ is the fluid density. It was then assumed that
the transition to periodic flow could be adequately modelled as a supercritical Hopf
bifurcation (Provansal et al. 1987; Dušek et al. 1994; Thompson & Le Gal 2004),
governed by the normal form equation

dA
dτ
= σA+ lc|A|2A, (3.1)

where A is the amplitude of the oscillation (here taken as the amplitude of the lift
force coefficient), τ is the non-dimensional time tU/D where t is time, σ is the initial
linear growth rate and lc is the Landau coefficient, which governs the saturation of the
oscillation to a stable periodic state. This amplitude equation is often referred to as a
Stuart–Landau model (Stuart 1958). By dividing by A, (3.1) can be written as

d log(A)
dτ

= σ + lc|A|2. (3.2)

The values of σ and lc for a given simulation were then determined from a least-
squares fit to the amplitude data of the form shown in (3.2). The values of σ as a
function of Re were then fitted and the fit extrapolated to find the value of Re where
σ = 0.



To find the frequency at the onset of vortex shedding, the frequency of the saturated
state of the same set of simulations was measured, giving St as a function of Re. A
curve was then fitted to these data, and the curve extrapolated to find the frequency
at the value of Re corresponding to σ = 0.

The comparison between the current results for the value of Re at the onset of
shedding and those of Jackson (1987) is good, differing by a maximum of only 2.3 %.
Whilst there is a larger discrepancy in the predicted frequencies, with differences of
up to 15 %, it should be noted that the simulations of Jackson (1987) were performed
on a small domain, and so are affected by substantial blockage, artificially raising St.
Support for this comes from more recent studies (e.g. Thompson & Le Gal 2004; Sipp
& Lebedev 2007) based on global stability analyses of the steady circular cylinder
wake (Γ =1). These studies report values of Rec=46.6 and 46.4 at the onset of vortex
shedding, and global mode frequencies of St=0.11777 and 0.1182, respectively. These
values are very close to those found here, again with the small differences consistent
with different domain blockage ratios, so providing some confidence in the results
obtained for this study.

3.2. Variation of the growth rate of modes as a function of Γ , Re= 300
In this section, results for a fixed Re=300 are presented as a function of Γ . The value
Re= 300 is chosen as both of modes A and B in the wake of a circular cylinder are
known to be unstable at this value. Figure 1 presents |µf | as a function of spanwise
wavelength λ for six aspect ratios ranging from Γ = 1 (a circular cylinder) to Γ = 2.

For wavelengths λ 6 5, the Γ = 1 case shows the familiar picture for a circular
cylinder; the flow is unstable to mode A over a band of wavelengths focused at λ'
3.5D and unstable to mode B for wavelengths of λ ' 0.8D. Mode QP is found at
λ' 1.8D, but it is not unstable at this Re, achieving a maximum |µf | ' 0.7.

For longer wavelengths, 5 < λ 6 10, two other modes can be identified. The first
of these modes, here named Â, appears to be a continuation of the mode A branch.
It has the same spatiotemporal symmetries as mode A, and a purely real Floquet
multiplier, yet has a slightly different spatial structure, as will be discussed in more
detail later. The second of these modes is a quasi-periodic mode with a complex
Floquet multiplier, and is here named mode QPL (for long-wavelength quasi-periodic).
It has a maximum growth rate for λ' 9D.

With moderate increases in Γ , this picture remains more or less the same. These
same five modes are the only relevant modes up to Γ = 1.4. Increases in Γ over
this range see |µf | for mode A and mode B decrease. However, |µf | for mode QP
increases, indicating an increase in growth rate. Despite this, |µf | for mode QP
remains below |µf | = 1, indicating it does not become unstable at this Re. The
maximum growth rate for mode Â changes little with Γ , however the range of
λ over which it is unstable increases, extending to higher λ with increasing Γ .
The growth of mode QPL remains largely untouched, with a maximum |µf | ' 0.8
occurring at λ' 9D.

Further increases in Γ up to Γ = 2 show similar behaviour for modes A and B.
Increases in Γ see a reduction in |µf |. Mode B is stabilized (µf < 1) at Γ ' 1.4;
mode A is stabilized at Γ ' 1.8. The |µf | for mode QP also reduces, and this mode
is not resolved for Γ > 1.8. A clear distinction between modes A and Â is seen for
Γ > 1.8; mode Â shows a clear local maximum in growth rate at λ' 8 for Γ = 1.8,
further delineating it from mode A. Mode QPL is again practically unchanged.
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FIGURE 1. Floquet multiplier, µf , as a function of wavelength λ, at Re= 300 for: (a) Γ =
1.0 (circle); (b) Γ = 1.2; (c) Γ = 1.4; (d) Γ = 1.6; (e) Γ = 1.8; ( f ) Γ = 2.0. Each symbol
designates a mode: mode A (u); mode B (p); mode QP (E); mode B̂ (×); mode Â (f);
mode QPL (♦).

An important feature is that at Γ = 1.6, another mode with wavelengths around
λ = 2.8, a purely real µf and spatiotemporal symmetry the same as for mode B is
found. This mode, here named mode B̂, sees |µf | increase with increasing Γ . Mode
B̂ is shown to be unstable for Γ > 1.8.

Figure 2 shows images of each of the modes, all at Re= 300, in order of increasing
characteristic wavelength λ. All of the modes except mode B are shown at Γ = 1.8.
Mode B is shown at Γ = 1.4 as µf becomes so low at Γ = 1.8 that the mode is
no longer identifiable. The images show the spanwise perturbation vorticity as filled
colour contours, overlaid with black contour lines showing the positions of the base
flow vortex cores.

The structures of modes A, B and QP are the same as the structures found in the
wake of a circular cylinder (Barkley & Henderson 1996; Blackburn et al. 2005). It
should be noted that mode QP has a complex µf which introduces a second frequency,
and as such the image shown in figure 2 is at an arbitrary phase.

Mode B̂ is shown to have a distinct structure. While the symmetry of this mode
is the same as mode B, the mode shares many features with mode A, particularly
the fact that it seems mainly focused in the wake vortex cores (although there is



FIGURE 2. Images of the different modes at Γ = 1.8 (except for mode B shown at Γ =
1.4) shown in order of increasing characteristic wavelength. The white and black contours
represent spanwise perturbation vorticity over normalized levels of ±0.1. The solid lines
show contours of the base flow vorticity at levels ±1. The structure of modes A, B
and QP is very similar to their counterparts found in the wake of a circular cylinder.
Mode B̂ has a distinct structure, but shares the same spatiotemporal symmetries as mode B.
Mode Â has a similar structure to mode A in the two vortices closest to the body, but is
distinct from the third vortex (circled with a dashed line) and further downstream. Note
that modes QP and QPL are shown at an arbitrary phase as they have a complex µf .

also significant amplitude in the braid shear layers that connect the wake vortices).
However, mode B̂ has a finer structure on these vortex cores than mode A. An
example of this is found by focusing on the negative vortex formed from the top
of the body that is about to be shed into the wake immediately behind the body.
Traversing across the centre of this approximately elliptical vortex along the short
axis sees the sign of the perturbation vorticity change twice in mode B̂ (black–white–
black); for mode A, it changes sign once (white–black). This is, of course, consistent
with the shorter preferred wavelength of mode B̂ relative to mode A.

A mode found in the wake of elliptic leading-edge plates (Ryan et al. 2005),
named mode B′, shares many of the characteristics of mode B̂. It too has the same
spatiotemporal symmetries as mode B, with a critical wavelength in the vicinity of
λ= 2. The spatial structure of the two modes near the body is also quite similar in
topology. These facts make it likely that mode B̂ found here and mode B′ found in
the wake of elliptic leading edge plates are due to the same physical mechanisms.

Exactly what these mechanisms are is not completely clear, and given the
complicated structure of this mode it is possible that there are a number of cooperative
mechanisms that contribute to its growth.

Mode Â has a structure very similar to mode A near the body. In the images shown
in figure 2, the structure of modes A and Â are almost the same in the two vortices
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closest to the body. However, there is a distinct difference from the third vortex and
further downstream. For instance, figure 2 shows mode A has one white lobe and
one black lobe in the lower portion of the third vortex, and a white lobe in the upper
portion of this vortex. Mode Â instead has a white lobe and a black lobe, both of
which extend over the entire vortex (the vortices in question are circled with a dashed
line in figure 2). Further downstream in the wake (but not shown here), mode Â
displays a spanwise perturbation vorticity distribution strongly characteristic of elliptic
instability. i.e. positive and negative lobes aligned at approximately 45◦ to the main
axis of the base flow vortices. This is not as apparent in the downstream wake for
the shorter wavelength mode A.

The structure of mode QPL is not dissimilar to mode QP. However, comparison of
this mode’s structure is more difficult as it is dependent on the phase at which images
are obtained. Over the parameter space tested, mode QPL was never seen to become
unstable, and therefore further investigation of its structure does not seem warranted.

3.3. Variation of critical Re and wavelength for all modes as a function of Γ
Expanding on the results at a single Re= 300 presented in § 3.2, this section presents
the critical values of Reynolds number Rec and wavelength λc for all four modes as
a function of Γ . Rec is the value of the Reynolds number at which a given mode is
predicted to first become unstable (where |µf | first exceeds |µf | = 1 at some value of
wavelength); λc is the wavelength at which this occurs. For a given Γ , calculations
at a series of λ in steps of 0.2 for a fixed Re were run to find the maximum |µf |
for a given mode, similar to the data presented in figure 1. The value of Re was then
incremented in steps of 20, finding a maximum |µf | and associated value of λ for
each Re. This process was repeated until the maximum |µf | exceeded |µf | = 1. The
values of Rec and λc were then found by quadratic interpolation of the surrounding
values. Figures 3 and 4 present the results of these calculations. This same process
was then performed for each aspect ratio.
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Figure 3 shows a number of features that warrant discussion. First, Rec is almost
a linear function of Γ for both modes A and B over the entire range tested. It also
shows that, regardless of Γ , the onset of mode A always precedes mode B.

This same figure shows that the relationship is more complicated for mode QP, as
Rec first decreases with Γ (for Γ <1.5) and then increases with Γ . Regardless, Rec for
mode QP is always well beyond Rec for mode A, and so it is difficult to predict the
influence this mode will have in a physical flow.

For Γ > 1.2, mode Â is found to be unstable. Below this value of Γ , mode Â
coalesces with mode A. Figure 3 shows that Rec is almost equal for modes A and Â
at Γ = 1.2, and figure 4 shows that the critical wavelengths of the two modes are also
the same at this Γ , both providing evidence of the mode coalescence at this Γ .

For Γ > 1.4, mode Â is clearly unstable at lower Re than mode A. In fact, with
respect to increasing Re, mode Â is the first mode to become unstable until Γ = 1.9,
where mode B̂ becomes the first to become unstable.

For Γ > 1.75, mode B̂ is found to be unstable. Unlike the other modes, an upper
limit is found, such that mode B̂ is only unstable over a finite range of Re. Of course,
this is based on a linear analysis that fails to hold once the wake has undergone
three-dimensional transition, changing the base flow state. In any case, mode B̂ is the
leading instability mode, i.e. it is the first to become unstable with increasing Re, for
Γ > 1.9.

The prevalence of these two new modes, Â and B̂, means that for moderate aspect
ratios Γ > 1.5, the three-dimensional structure of the flow should be controlled by
these modes, at least at Re just above the first onset of three-dimensionality. This is
further investigated in § 3.7.

The values of λc presented in figure 4 show that the change in Γ has the
greatest impact on the wavelengths of modes A and B̂. Figure 4(a) shows that
the λc for mode A first increases mildly, then decreases with increasing Γ , falling
to approximately λc = 3.5 at Γ = 2, from λc = 4 for the circular cylinder (Γ = 1).
Once it is resolved, λc for mode B̂ decreases with increasing Γ . The value of λc for
mode B is essentially unchanged, and that for mode QP only varies slightly.

These changes naturally reflect the changes in the base flow. With increasing
Γ , the body becomes more streamlined, allowing the flow to remain attached for
longer, reducing the wake width and the lateral spacing between vortices. The size



and shape of these wake vortices will also be changed, becoming smaller. This is
also caused by the reduced acceleration of the boundary-layer fluid as it advects
over the ellipse prior to separation, leading to a lower vorticity flux into the wake.
As outlined in § 1 (see also Leweke & Williamson 1998; Thompson et al. 2001),
the mode A spanwise perturbation vorticity distribution shows strong characteristics
associated with elliptic instability of shed near-wake vortices, and so it seems likely
that its growth and preferred wavelength will be influenced by changes in the base
flow (vorticity) configuration. The images presented in figure 2 show that mode B̂
also retains a high perturbation amplitude in the advecting vortex cores, and so it
seems logical to assume that it too will be dependent on their configuration. On the
other hand, mode B scales on the braid shear layers between vortices (Leweke &
Williamson 1998), and this scale apparently is not as susceptible to changes in the
body aspect ratio as the wake vortex size and strength.

Figure 4(b) shows that λc for mode Â increases almost linearly with increasing Γ .
It also shows that the λc for mode Â can become very long, approaching λc= 28D at
Γ = 2.4. However, the wavelength of highest growth for mode Â is a strong function
of Re. Therefore, as Re is increased beyond Rec, the wavelength of mode Â typically
becomes much shorter than λc. This fact is further investigated and highlighted
in § 3.6.

3.4. Behaviour of mode A in terms of elliptic instability theory
Leweke & Williamson (1998) employed the elliptic instability theory developed
by Landman & Saffman (1987) to the vortices in the wake of a circular cylinder.
Even though the original theory was based on the instability of a single vortex with
constant vorticity and a constant strain rate causing elliptical streamlines, Leweke &
Williamson (1998) showed that the behaviour of the instability leading to mode A
was at least consistent with this theory. Here, we take the same theory, and show
that it predicts both the decrease in λc with increasing Γ , and the increase in Rec.

The theory developed by Landman & Saffman (1987) predicts the growth rate of
perturbations to an elliptic vortex, given the eccentricity and size of the vortex. The
eccentricity β = ε/(2|ω|), where ε is the strain rate and ω is the vorticity. For a two-
dimensional flow, the local strain rate in Cartesian coordinates is given by

ε =
√√√√∣∣∣∣∣∂u

∂x
∂v

∂y
− 1

4

(
∂u
∂y
+ ∂v
∂x

)2
∣∣∣∣∣, (3.3)

which is the square root of the determinant of the symmetric part of the velocity
gradient tensor.

For a purely elliptic vortex, both ω and ε are constant, however both can vary in
space in a more complicated flow such as a bluff-body wake, and hence the local
eccentricity β can also vary. Figure 5 shows images of the wake for a series of Γ , at
Rec for each case, where contours of vorticity are marked with solid lines, and values
of the eccentricity are marked with greyscale contours. All of the images are shown
at the instant where the lift force on the body is a maximum.

Figure 5 shows that regardless of Γ (and the variation of Re for each case), the
eccentricity β is basically constant with a value of around β = 0.6 at the centre of
the shed vortices. The eccentricity is not constant over the entire vortex but there is
a region at the centre of each vortex where β is not strongly varying.



FIGURE 5. The wake at the instant of maximum lift force as a function of aspect ratio,
at Rec for each case. Contours of non-dimensional vorticity at levels ±1 are marked with
solid lines. Greyscale colour contours represent the local eccentricity β at levels from
0 (black) to 1 (white). The white and black arrows on the example at Γ = 1 show the
measurement of the lengths of the minor and major axes lminor and lmajor of the wake
vortices, respectively. The point of intersection of these lines indicates the point where β
of each vortex was measured. The vortices are shown to decrease in size with increasing
Γ , while the eccentricity at the centre of the vortices remains around a value of β ' 0.6.
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where lmajor and lminor are the lengths along the major and minor axes of the vortex as
indicated in figure 5. Points are measurements, the dashed line is a linear fit.

The figure also shows that as Γ increases, the size of the vortices in the wake
decreases. To quantify this decrease, the vortex furthest from the body in each of the
images in Figure 5 was measured along its major and minor axes (where the boundary
of the vortex was defined, reasonably arbitrarily, as the contour of |ω| = 1), and a

length scale L =
√

l2
major + l2

minor defined, where lmajor and lminor are the lengths along
the major and minor axes, respectively. This length scale L is plotted as a function of
Γ in figure 6, and it is shown the L decreases approximately linearly with Γ .



Leweke & Williamson (1998) showed that the elliptic instability theory of Landman
& Saffman (1987) predicts wavelengths along the vortex core of

λ= L

√
2

1− β tan θ, (3.4)

where θ is the initial angle of incidence of the wavevector which results in the largest
growth. For β6 0.6, figure 3 of Landman & Saffman (1987) shows that θ is basically
a constant, and for β = 0.6 (as measured at the centre of the vortices here) θ '
7π/24' 53◦.

If both β and θ are constant, (3.4) shows that λ is proportional to L. Figure 6 shows
that L decreases linearly with Γ , so it is expected that λ should also decrease linearly.
Figure 4 shows that this is indeed the case, at least over the range 1.2<Γ < 2.4.

Concerning the critical Reynolds number, Landman & Saffman (1987) showed that
the growth rate of the elliptic instability is made up of two components; an inviscid
growth rate σi and a viscous decay rate (effectively a negative growth rate) σv. When
time is non-dimensionalized by D/U, this viscous decay rate is given by

σv = 1
Re

2π

λ

1− β cos2 θ

(1− β) cos2 θ
. (3.5)

At neutral stability, the overall growth rate is zero, such that σi= σv. It therefore also
seems reasonable to assume that at neutral stability, the viscous decay rate is constant.
If σv is constant, and since both β and θ have been shown to be constant, then from
(3.5) Rec ∝ λ−2 ∝ (1 − ζΓ )−2, where ζ is a constant. It is therefore expected that
Rec should increase with Γ , which seems consistent with the trend of Rec observed
and plotted in figure 3.

The fact that the elliptic instability theory presented by Landman & Saffman (1987)
seems to at least be consistent with the trends in λc and Rec observed during the
Floquet stability analysis is further evidence that an elliptic instability plays a role
in the development of mode A.

3.5. Calculation of the upper limit of instability for mode B̂

The upper limit of instability for mode B̂ is difficult to compute. figure 3 shows
that this upper limit occurs at much higher Re than the Rec of mode A. The
Floquet multiplier of mode A can therefore be quite large, while by definition the
Floquet multiplier for mode B̂ at the upper limit is |µf | = 1. This means that it can
become very difficult to isolate mode B̂ when searching for leading eigenvalues and
eigenvectors using a Krylov subspace-based method such as that employed here. Of
course, if the flow is already three-dimensional through amplification and saturation
of other three-dimensional modes, as is the case here, the upper limit of positive
growth for mode B̂ will not have strong physical relevance, since the base flow for
the stability analysis is no longer two-dimensional.

To estimate the location of this upper limit, the maximum Floquet multipliers have
been calculated for mode B̂ at lower values of Re, and the trend extrapolated to find
where |µf | = 1. The data for aspect ratios 1.86Γ 6 2.4 are presented in figure 7. The
figure plots the maximum value of |µf | for all wavelengths for mode B̂ as a function
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FIGURE 7. The magnitude of the maximum Floquet multiplier for mode B̂ as a function
of Re, for different Γ . Dashed lines show extrapolation to |µf | = 1 for Re where mode B̂
cannot be resolved due to the much higher Floquet multiplier of mode A.

of Re. For all values of Γ , it is clear that there is a turning point, and that beyond this
turning point the maximum |µf | decreases with further increases in Re. For the lower
values of Γ , e.g. Γ = 1.8, it is possible to resolve mode B̂ beyond the upper limit,
and the value of Re at this upper limit can be found from interpolation. However, for
higher values of Γ this upper limit needs to be estimated by extrapolating the data.

3.6. The relationship between modes A and Â

As highlighted in § 3.3, modes A and Â appear to coalesce for Γ < 1.2. Figure 2
shows that they are quite similar in spatial structure, especially in the vortices that
are close to the body. Only in the vortices further downstream do they differ enough
to be identified as distinct modes. As such, care needs to be taken when performing
the stability analysis to ensure the two modes are successfully distinguished.

Figure 8 shows the magnitude of the Floquet multiplier |µf | as a function of
wavelength λ for modes A and Â at Γ = 1.4 and Γ = 2.0, at a series of values of
Re. The change in character of the curves with increasing Re for the Γ = 1.4 case is
clear.

At Re = 220, modes A and Â have clearly defined ‘branches’. Mode A shows a
peak in |µf | at λ' 3.5, and |µf | for mode Â increases with increasing λ beyond this.

At Re = 240, modes A and Â have clearly defined branches, and there is a peak
for |µf | for mode Â around λ= 7.

By Re = 260, the distinction between the branches of mode A and Â disappears,
and there seems to be a single curve of |µf | as a function of λ. Modes A and Â
in this case can only be (weakly) distinguished by inspecting the perturbation fields
similar to those presented in figure 2. This also means that, like the case at Re= 220,
there is no value of λ at which a peak in |µf | occurs.

The data for Γ = 2 presented in figure 8(b) show similar issues. While the branches
of mode A and Â are clearly defined for all of the values of Re shown, lower values
of Re result in curves that do not have a clearly defined peak for mode Â.
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FIGURE 8. Magnitude of the Floquet multiplier |µf | as a function of wavelength λ for
(a) Γ = 1.4 and (b) Γ = 2.0. Symbols mark mode A (u) and mode Â (f). The Re for
each curve is indicated on the figure. For Γ = 1.4 shown in (a), a peak in the curves for
mode Â is difficult to discern and the mode A and Â curves appear to merge at higher
Re. For Γ = 2.0, the two modes are more clearly delineated.

Implicitly, figure 8 also shows how the characteristic wavelength of mode Â varies
with Re. It is shown for both values of Γ that the maximum value of growth changes
from occurring at very large wavelengths at lower Re, to relatively small wavelengths
at higher Re. In particular, this means that the wavelength of the mode which is
actually observed in a flow at a value of Re beyond Rec may be markedly shorter
that λc. This point is shown explicitly in the three-dimensional simulations presented
in § 3.7.

The usual method of finding the critical values Rec and λc involves finding |µf |max
at specified values of λ as a function of Re, and then interpolating for the value of
Re where |µf |max = 1. As |µf |max is not defined with a distinct peak, applying this
method is more difficult for mode Â. Instead, for a given value of λ, the value of Re
where |µf | = 1 is found via interpolation. These values are then plotted as a function
of λ. The minimum value of Re where |µf | = 1, and the corresponding value of λ, are
identified, and these are Rec and λc, respectively. An example of the data from this
process, for Γ = 1.4, is shown in figure 9.

The exact physical mechanism that leads to instability of mode Â is not clear. Due
to its structural similarity to mode A near the body, it seems fair to assume that the
mechanisms that cause mode A (which is at least partially due to an elliptic instability)
also play a role in mode Â. However, the wavelength selection and modification in
the wake away from the body is possibly due to a number of cooperative mechanisms,
and at this stage any description of them is only speculative.

3.7. Three-dimensional simulations confirming the existence of modes Â and B̂
The data from the stability analysis, particularly those shown in figure 3, indicate
that for higher values of Γ , the two new modes B̂ and Â should be the first modes
observed with increasing Re.

Full three-dimensional simulations at Γ = 2 have been conducted to investigate this
at two values of the Reynolds number: Re= 300 and Re= 350. These simulations are
based on extending the two-dimensional spectral-element code and meshes into the
spanwise direction using a Fourier series representation as described by Karniadakis
& Triantafyllou (1992) and Thompson et al. (1996). The simulations were initialized
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FIGURE 9. Plot of Re where |µf | = 1 for mode Â, Γ = 1.4. Points represent values
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FIGURE 10. (Colour online) Visualization of the flow calculated from three-dimensional
direct numerical simulation at (a) Γ = 2, Re= 300 and (b) Γ = 2, Re= 350. Isosurfaces
show the λ2 = −0.001 criterion from Jeong & Hussain (1995). The total length of the
domain, and one wavelength of the dominant mode, are marked for both cases.

using the two-dimensional periodic base flow, with low-level random noise (amplitude
O(10−4)) added to initiate the development of the three-dimensional flow. In both
simulations, 128 Fourier planes were used to represent the flow in the spanwise
direction.

Visualizations of the flow using isosurfaces of the λ2 criterion defined by Jeong &
Hussain (1995) for vortex identification are shown in figure 10.

The image in figure 10(a) corresponds to Re= 300, which figure 3 indicates should
result in both modes Â and B̂ being unstable. However, figure 4 indicates that λc for
mode Â for Re= 300 occurs at λc ' 20. Therefore, to isolate the modes, the domain
for this simulation was restricted to 9.6D so that only mode B̂ could exist within the
domain and thus grow. The spanwise domain size was chosen to allow four mode B̂
wavelength to fit within the domain. The image shows that indeed a mode with a



wavelength λ = 2.4D grows, which is very close to the wavelength predicted for
mode B̂ by the stability analysis as shown in figure 4.

At this Reynolds number, the saturated state of mode B̂ shown in figure 10(a)
shows that it manifests as a relatively weak modulation of the forming vortices. This
modulation attenuates as the vortices progress downstream.

The simulation at Re= 350 was conducted on a longer domain of 22D. The larger
domain was used in this case to allow modes with a wider range of wavelengths
to develop, and to observe which modes would naturally dominate the saturated
state. Figure 3 shows that modes A, B̂ and Â are all linearly unstable at this
Reynolds number. As the flow evolves towards saturation, figure 10(b) shows
the emergence of a mode with a wavelength λ ' 7.5D. This is mode Â. The
wavelength of the mode in the three-dimensional simulation (λ = 7.5D) is much
shorter than the critical wavelength for mode Â (λc = 20D). However, mode Â first
becomes critical at Re = 290, and the three-dimensional simulation was conducted
at Re = 350. Stability calculations beyond the critical the critical Re show that
the fastest-growing wavelength of mode Â rapidly reduces with increasing Re.
In fact, stability calculations at Re = 350 predict a wavelength of around 7.5D,
similar to that measured in the three-dimensional simulation. The image shows that
mode Â results in an initial sinuous modulation of the wake vortices, and the rapid
development of a complicated series of streamwise vortices at a distance of only
a few diameters. Further downstream again, there appears to be complicated vortex
pairing and nonlinear interactions occurring.

Interestingly, even though mode B̂ is unstable first with respect to increasing Re, it
appears that the wake is dominated by a wavelength attributable to mode Â at Re=
350. This is not entirely inconsistent with the predictions from the stability analysis.
Figure 7 shows that the Floquet multiplier of mode B̂ never reaches large values, and
actually begins to decrease with further increases in Re. Therefore, beyond the initial
transition the Floquet multiplier of mode Â can exceed that of mode B̂ and dominate
the wake.

4. Concluding remarks
Floquet stability analysis of the flow past an elliptical cylinder has shown that for

aspect ratios Γ < 1.4, the three-dimensional transition sequence (mode A, B, QP) is
the same as for the circular cylinder, albeit occurring at higher Re with increasing Γ .
At Γ > 1.2, the mode A stability branch effectively splits into two segments with two
distinct peaks in the Floquet multiplier curves. In fact, the longer-wavelength branch
gives mode Â, which is the most unstable mode for 1.4D . λ. 1.9D. For Γ > 1.75,
another new mode, named mode B̂, is found. This mode has the same spatiotemporal
symmetry as mode B, but maintains high amplitude in the advecting wake vortex
cores, similar to that found for mode A. In terms of structure, mode B̂ has an
apparent higher radial wavenumber on the wake vortices than mode A, consistent
with its shorter preferred wavelength. A similar mode called mode B′ was previously
found for elongated cylinders with elliptical noses and a flat base (Ryan et al. 2005).
Here, this mode is the first occurring for Γ & 1.9D.

Based on the stability analysis at a given aspect ratio, at higher Reynolds numbers
the mode A and Â Floquet branches merge, with the mode A Floquet multiplier
regaining dominance. In addition, the maximum value of the mode B̂ multiplier is



limited and indeed decreases as the Reynolds number is further increased beyond
some point. Thus, beyond the initial transition, it is not clear how strong the influence
of the two new modes will be on the fully developed wake state. But in any case,
while the circular cylinder transition sequence is maintained for aspect ratios close to
unity, further away, this scenario is altered considerably.
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