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Tensor decomposition exploiting diversity of propagation velocities;
application to localization of icequake eventsI

Francesca Raimondi1, Pierre Comon1, Olivier Michel1, Souleymen Sahnoun1, Agnes Helmstetter2

Abstract

The problem of direction of arrival (DoA) estimation of seismic plane waves impinging on an array of sensors is considered from
a new deterministic perspective through tensor decomposition techniques. In addition to temporal and spatial sampling, further
information is taken into account, based on the different propagation speed of volume waves (P and S) through solid media.
Performances are evaluated through simulated data in terms of the Cramér-Rao bounds and compared to other reference methods
such as ESPRIT and MUSIC, in the presence of additive Gaussian circular noise. The proposed approach is then applied to real
seismic data recorded at Argentière glacier, occurring at the interface between the ice mass and the underlying bedrock.

Keywords: localization, DoA estimation, antenna array processing, tensor, seismics, elastic waves, propagation, icequakes

1. Introduction

In many cases, the superimposition principle applies in prac-
tical problems, provided the nonlinearity domain is not reached
(turbulence, saturation, etc). This allows us to model the phys-
ical phenomena as linear combinations of simpler ones. In this
paper, we are interested in the decomposition of a multivariate
function into a sum of functions whose variables separate. In
particular, this simplified model is relevant in narrow-band an-
tenna array processing in the far-field, which we consider in the
present framework.

In the context of seismic monitoring, seismology aims at
studying waves generated by rupture phenomena taking place
within the volume of interest (earth, ice, etc.). Although the
most interesting events take place at a certain depth - mostly un-
known - within the analyzed volume, acquisition systems and
sensor arrays are most often situated at a given distance from
the surface, given the difficulty of accessing to deeper layers.
The main quantity to be measured is ground displacement (in
the form of its derivative - velocity - or its second derivative -
acceleration), produced by impinging elastic waves. The local-
ization of the sources forms the first requirement of data analy-
sis, in order to prevent damage provoked by seismic events, and
to monitor the activity of complex structures such as glaciers
or volcanos. In wider terms, direction of arrival (DoA) estima-
tion is a central problem in array signal processing, concern-
ing several areas of engineering including telecommunications,
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speech, astronomy, seismology, and medical applications. Ar-
ray processing requires a set of multiple sensors placed at dif-
ferent positions in space, receiving source signals from different
directions [1], [2]. The techniques aiming at estimating the di-
rection of arrival of narrowband sources can be grouped in two
categories: the algorithms based on exhaustive search (includ-
ing beamforming and MUSIC [3]) and the algebraic approaches
(including root-MUSIC [4] and ESPRIT [5]). Whenever prop-
agation speed is considered as a constant v, traditional array
processing only relies on a temporal and spatial sampling of the
propagating wavefield. MUSIC (multiple signal classification)
algorithm is based on the spectral decomposition of the sample
covariance matrix under the spatially white noise assumption
(to be presented in Appendix B). This method has the advan-
tage of being statistically efficient, unlike beamforming tech-
niques, despite a serious sensitivity to SNR and resolution lim-
itations for correlated or closely spaced sources [2]. Moreover,
the algorithm requires the perfect knowledge of the position of
each sensor. ESPRIT (estimation of signal parameters via ro-
tational invariance techniques) applies to an array composed of
two identical subarrays displaced one from the other according
to an unknown translation vector, whereas the calibration of the
array is needed otherwise. The concept of signal-subspace pro-
cessing embodied by MUSIC and ESPRIT can be generalized
to the wide-band case [6, 7, 38].

A deterministic approach based on tensor decomposition has
been introduced in [8], through the extension of the rotational
invariance principle to more than one displacement. It pro-
vides the localization of more sources than sensors, with less
restrictive requirements for signal stationarity than the afore
mentioned statistical methods. The advantage of tensor decom-
positions lies in the need for shorter data records, since the es-
timation of statistical quantities from available samples is not
a requirement anymore. Furthermore, like ESPRIT, it allows
to estimate the impinging signals up to a scale factor, without
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resorting to a spatial matched filter. The tensor model puts for-
ward parsimony and separability [9]:

1. Parsimony expresses a function f as a finite sum of simpler
constituents:

g =

R∑
r=1

ςrhr (1)

2. Separability decouples a function h that depends on mul-
tiple factors into a product of simpler constituents φd, d =

1, . . . ,D, each one depending only on one factor xd:

h(x1, ..., xD) =

D∏
d=1

φd(xd)

In the field of array processing for source separation and DoA
estimation, R refers to the number of sources impinging on an
array, and D to the tensor order, i.e. the dimension of multilin-
earity within the model:

g(x1, ..., xD) =

R∑
r=1

ςr

D∏
d=1

φrd(xd)

Tensor decomposition derives from the need to solve the in-
verse problem, i.e., the identification of factors φrd based on
noisy measurements of f : as it will be hereinafter discussed,
the direction of arrival can be extracted after the resolution of
this problem. For this purpose, the most common tensor de-
composition for three-way arrays is the polyadic decomposi-
tion: the measurements are stored in a multidimensional array
and decomposed into a sum of rank one terms [10, 8]. A de-
composable three-way tensor can be defined by a vector triplet
3:

Dlmk = albmck or equivalently D = a ⊗ b ⊗ c

Any order-3 tensor admits a decomposition into a sum of de-
composable tensors:

M =

R∑
r=1

ςr D(r) (2)

where coefficients ςr can always be chosen to be real positive,
and decomposable tensors D(r) to have unit norm, i.e. for Lp

norms, ‖D‖ = ‖a‖ ‖b‖ ‖c‖ = 1. The minimal value of R such
that this decomposition holds is called the tensor rank: if R is
not too large, the corresponding decomposition is unique and
deserves to be referred to as Canonical Polyadic (CP); other ter-
minologies include rank decomposition or Candecomp/Parafac.
Hence, decomposable tensors have a rank equal to 1, by defini-
tion [10]. Now in terms of coordinates, tensorM is represented
by a L × M × K three-way array, which consequently decom-
poses as

Mlmk =

R∑
r=1

ςrAlrBmrCkr (3)

3Once bases in every linear space are fixed, tensors are defined by their array
of coordinates. See [10] for details.

where the three factor matrices A, B and C have unit norm
columns. This is equivalent to the general R-term trilinear
model

M =

R∑
r=1

ςr ar ⊗ br ⊗ cr (4)

where each array ar ⊗ br ⊗ cr is a rank-1 array.
This paper is aimed at exploiting another type of diversity,

in addition to spatial and temporal sampling traditionally em-
ployed in array processing (cf. Section 3 for a detailed explana-
tion of the concept of diversity): the propagation speed diver-
sity 4 of volume waves through solids, namely pressure (P) and
shear (S) waves. Current array processing methods like [3, 5]
only focus on information conveyed by a single volume wave,
like the P wave, whereas the contents delivered by the other is
somehow wasted. Our approach intends to exploit this informa-
tion as a whole, whereas translation invariance used in [8] is no
longer necessary.

This paper is organized as follows. Section 2 presents the
physical model and the assumptions. Section 3.1 makes a syn-
thesis of the main narrowband 2D preexisting algorithms. Our
deterministic method, exploiting the propagation speed diver-
sity of volume waves, is presented in Section 3. Section 4 is
devoted to the description of the employed algorithms for ten-
sor decomposition and DoA estimation. Simulated data and
real seismic data are treated in Sections 5 and 6 respectively,
where results are compared with traditional methods detailed in
Section 3.1 and with a statistical performance study.

2. Physical modeling and assumptions

Matrix algebra notations and main assumptions are hereby
introduced:

v vector v
vi element of v

vT u scalar product between real vectors v and u
v ⊗ u outer (tensor) product of v and u

A matrix A
ai i-th column of A
Ai j element of A
AT Transpose of A
A∗ Complex conjugate of A
AH Conjugate transpose of A
A† Moore-Penrose pseudoinverse of A

A � B Kronecker product between A and B
A � B Katri-Rao (column-wise Kronecker) product
A � B Hadamard (element-wise) product
‖ · ‖F Frobenius norm
T three-way tensor T

Ti jk element of T

4Since the focus is on narrow-band processing, the distinction between
group and phase propagation velocities is irrelevant.
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A1 Far-field approximation: the distance of the source from
the receiving array is much greater than the array aperture.
This is equivalent to assume a planar wavefront at the sen-
sor level. Moreover, sensors and sources are considered
point-like, as their size is negligible with respect to the
source-to-sensor distance. Because of the rotational inde-
terminacy around the axis defined by an Uniformly spaced
Linear Array (ULA), we do not restrict the generality of
this configuration by assuming that sensors and sources
are coplanar (we can thus work in a 2-D coordinate sys-
tems).

A2 Narrow-band in base-band: Signals of interest are the
product of a varying amplitude (complex envelope) and
a high-frequency signal (cf. Appendix A). We assume
that the spectral supports of both parts do not overlap (this
is sometimes referred to as the Bedrosian condition). 5

Under this condition, one can work in base-band with the
complex envelope of the low-pass signal. For this type of
signal, a time delay of the original signal is equivalent to a
phase shift of the complex envelope.

A3 Homogeneous and isotropic medium at the antenna level:
Ray-paths can be approximated by straight lines.

A4 Dissipation at the antenna scale is excluded, as the array
dimension is negligible with respect to dissipation charac-
teristic length.

A5 The impulse responses of particle motion is the only
source of variability between impinging P and S waves.

In the context of beamforming applied to seismic events orig-
inating at depth, one has to deal with a double arrival of elastic
volume waves: P waves and S waves. They have different prop-
agation velocities and a variable frequency content: the former
tend to have a higher frequency content than the latter. The P
wave arrives first and its particle motion is parallel to the prop-
agation direction, whereas the S wave (the second arrival ob-
served on seismic records) is transversal (its particle motion is
perpendicular to the propagation direction). Both are linearly
polarized. Linear polarization refers to the fact that more co-
herent seismic energy is located in one principal direction of
particle motion [12]. P waves and S waves have theoretical ve-
locities v1 and v2, respectively, given by Ref. [13]:v1 =

(
λ+2µ
ρ

) 1
2

v2 =
(
µ
ρ

) 1
2

5The Bedrosian theorem [11] is hereby stated: The Hilbert transform of the
product of two complex valued functions
f , g : R→ L2(R) with non-overlapping Fourier spectra
(F( f ) ≈ 0 for | f | > a and G( f ) ≈ 0 for | f | < a where a is a positive constant)
is given by the product of the low-frequency signal f and the Hilbert transform
of the high-frequency signal g:

H( f )(x)g(x)) = f (x)H(g(x)), x ∈ R

where λ and µ are Lamé’s constants and ρ is the density of
the medium, assumed to be positive constant, thus making v1
greater than v2. In particular, the velocity of the S wave ranges
from zero up to 70% of the velocity of the P wave. For fluids µ
is zero, v2 = 0 and therefore S waves do not propagate.

As for the physical model of wave propagation, the following
properties are assumed:

P1 Pressure (P) and Shear (S) waves propagate at v1 and v2
velocities, respectively, under the approximation of non
dispersive medium.

and in order to allow the multilinearity and separability of the
final model:

P2 P and S signals are filtered in a narrow-band around f1 and
f2, respectively, such that v1

f1
= v2

f2
= λ is constant.

P3 Base-band P and S signals propagating from the same
source event and received in two different narrow bands
around f1 and f2 are proportional: w2(t) = α( f1, f2) w1(t);
see Appendix A for more details.

Furthermore, we can summarize the following notations,
which will be subsequently used throughout the tensor decom-
position phase:

N1 The first sensor composing the array is taken as the origin
point for translation in space.

N2 In order to avoid scale indeterminacies in tensor decompo-
sition, the P wave w1(t) is fixed up to a scale factor as the
product of a complex envelope w(t) modulated by a high
frequency contribution m(t)

w1(t) ≈ w(t)m(t)

(see Appendix A for more details).

Additional hypotheses or notations are progressively intro-
duced when needed by 2-D traditional algorithms (MUSIC [3]
and ESPRIT [5]):

H1 Identical sensor responses (calibration).

H2 Incident signals are uncorrelated to noise.

H3 The number of sources of interest, R, is smaller than the
number of sensors L: R < L.

H4 Noise spatial coherency is known. Therefore, one can
always consider (thanks to spatial prewhitening) that
the noise covariance matrix is proportional to identity:
E{nnH} = σ2

nI, where σn may be unknown, after whiten-
ing is applied.

H5 Noise is additive and Gaussian complex circular:
E{nnT } = 0.

H6 The number of time samples M is greater than the number
of sensors L: M > L.
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3. Tensor-based solution

The advantage of the tensor formalism lies in its ability to re-
store identifiability of parameters: the impinging signals, their
directions of arrival, and the related connection between P and
S waves. On the other hand, the multidimensional character of
tensor models requires the presence of at least 3 types of diver-
sity. We review below some diversities that may be available in
antenna array processing.

1. Time diversity: Every signal w is a function of time
t. Moreover, it may be stationary or transient. Thus,
recorded signal g1 is given by the sum of R simultaneous
sources:

g1(t) =

R∑
r=1

wr(t) ⇐⇒ g1
m =

R∑
r=1

Br(tm), (5)

where m = 1, . . . ,M, and the right equation represents a
discretization of the left one.

2. Space diversity. The basis of traditional array processing
consists in performing a spatial sampling, in addition to
the temporal diversity. According to assumptions A2, A1
and H1

g2(t, b) =

R∑
r=1

wr(t) exp
{

2π
λ

bT dr

}

⇐⇒ G2
ml =

R∑
r=1

Br(tm) =

R∑
r=1

Ar(bl) Br(tm)

(6)

where l = 1, . . . , L refers to the sensor cardinality with re-
spect to the reference, λ is the observed narrowband wave-
length, b ∈ R3 is the recording position within the acqui-
sition system and dr is the unit vector pointing to the r-th
source. 6

3. Translational diversity (refer to [5] for one rotational in-
variance and to [8] for multiple roto-translations):

g3(t, b, δ) =

R∑
r=1

wr(t) exp
{

2π
λ

bT dr

}
exp

{
2π
λ
δT dr

}

⇐⇒ G3
mlk =

R∑
r=1

Ar(bl) Br(tm) Dr(δk)

(7)
where k = 1, . . . ,K is the index of the translation with
respect to the reference array, and δ is the translational
invariant repeating the array configuration over space. ES-
PRIT may be seen as a particular case of this diversity,
when translation vector δ relates K = 2 identical sub-
arrays, whereas the tensor model itself can be applied to
K > 2 identical configurations.

6For sake of simplicity, we’ll refer to both the proper direction of arrival dr
and the angle of arrival θr with the acronym DoA.

4. Polarization diversity. Expressions (5), (6) and (7) refer
to one-component (1C) sensors, but can be generalized to
three-component (3C) sensors as well. Moreover, in the
latter case, one can take advantage of an additional diver-
sity related to polarization, as explained in [14, 9]:

g4(t) =

R∑
r=1

wr(t) p(Φr) ⇐⇒ G4
mk =

R∑
r=1

Br(tm) pk(Φr)

(8)
where p(·) is the polarization response vector of the con-
sidered sensor and Φr = [ψr, θr, αr, βr]T contains the po-
larization information of the r-th impinging wavefield with
respect to the sensor position: the azimuth ψ, the elevation
θ, the orientation angle α and the ellipticity angle β. In par-
ticular, the elevation θ refers to the angle of arrival when
assumption A1 is made. Discrete index j ∈ {1, 2, 3} refers
to one out of three components of the 3C sensor vector p.

5. Repetition diversity is a possible extension of dimension-
ality whenever we deal with multiple events describing the
same physical phenomenon. The additional assumption of
a linear relation between events from the same cluster has
to be made, so that multiple events describing the same
physical phenomenon are related to each other by a com-
plex coefficient:

g5( j, t) =

R∑
r=1

γ( j) wr(t) ⇐⇒ G5
jm =

R∑
r=1

γ( j) Br(tm) (9)

where discrete index j = 1, . . . , J is the cardinality of the
event of the cluster (1 being the first recorded occurrence
and I the last one), and γ a (generally unknown) complex
coefficient. Repetition diversity has been already used in
other contexts, in [15] for instance.

6. Propagation speed diversity may be seen as equivalent to
a frequency diversity between P and S waves, under as-
sumption A2 and properties P1, P2 and P3. The complete
model on which this paper is based will be subsequently
developed on the basis of the linear decomposition below:

g6( f , t) =

R∑
r=1

α( f ) wr(t) ⇐⇒ G6
mk =

R∑
r=1

Br(tm) Cr( fk)

(10)
where again the second equation represents the discretiza-
tion of the first one, fk denote working frequencies for P
and S waves (k = 1 for the P wave and k = 2 for the S
wave), as defined in P2, chosen by the user as a function
of propagation velocities v1 and v2, and α(·) a complex un-
known coefficient.

The focus of this paper consists in integrating at the same
time the spatial, temporal and speed diversity, respectively em-
bodied by matrices A ∈ CL×R, B ∈ CM×R and C ∈ C2×R.

3.1. Traditional matrix-based solutions
Traditional 2-D solutions only employ the concepts of time

diversity and space diversity: base-band signals are stored in a
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data matrix Y of size L × M, where L is the number of sensors
and M the number of time samples:

Y(tm) =


y(t1)
...

y(tM)

 , m = 1, ...,M

where m refers to the time sample. In the particular instance of
assumptions A1 and A2, each scalar element is given by

yl(tm) =

R∑
r=1

Alrwr(tm) + nl(tm), l = 1, ..., L

where
Alr = exp

{
i
ω

c
(bT

l dr)
}

where b ∈ R3 is the sensor position within the acquisition sys-
tem and dr is the unit vector pointing to the r-th source.

Vector y(tm) depends on two main factors, as in (6): the L×R
steering matrix A = [a1, . . . aR], and the R×1 source waveform
vector s(tm) = [ w1(tm) · · · wR(tm) ]T . This can be written
in the following compact form:

y(tm) = As(tm) + n(tm), m = 1, ...,M

or:
Y =

[
y(t1), · · · , y(tM)

]
= AS + N

where appears the R × M source waveform matrix S =

[s(t1), · · · , s(tM)].
This formulation is the basis of MUSIC and ESPRIT algo-

rithms, which are detailed in Appendix B.

3.2. Speed diversity in tensor format

P and S waves are generated by the same physical source but
propagate at two different, v1 and v2 respectively. Thus, P and
S signals received at position b and at time t are respectively
given by qP(b, t) =

∑R
r=1 wP

r (t − τP
r (b)) + n(t, b)

qS (b, t) =
∑R

r=1 wS
r (t − τS

r (b)) + n(t, b)

where {τP
r , τ

S
r } express the respective delays for P and S signals

recorded at position b.
The signal received at a point b in space contains R sources

of interest plus an additive noise: under the assumption A1 and
A2, the time delays of P and S waves correspond to the fol-
lowing phase shifts respectively: ψP

r (b) = ω
v1

(bT dr), ψS
r (b) =

ω
v2

(bT dr).
With property P2, records produced by the r-th source con-

tain two delayed narrowband waves propagating around fre-
quencies f1, f2 at velocities v1 and v2, yielding two resulting
waves with the same wavelength λ. This model is equivalent to
the general three-variable expression

q(t, b, f ) =

R∑
r=1

αr( f ) wr(t) exp
{

i
2π
λ

(bT dr)
}

+ n(t, b)

Thus, in the absence of noise n(t, b), function q(t, b, f ) decom-
poses into a sum of R functions whose variables separate.

Discretization yields an array of finite dimensions 2×L×M (L
sensors located at b`, M time samples tm and K = 2 propagation
velocities vk), so that the data array writes:

Zlmk =

R∑
r=1

αr( fk)wr(tm) exp
{

i
2π
λ

bT
l dr

}
+ nl(tm)

where frequency fk, k = 1, 2 is fixed according to property P2(
λ = v1

f1
= v2

f2

)
. In the case of an ULA, we just have that bT

l dr =

(l − 1)∆ sin θr, where θr refers to the angle of arrival of the r-
th source dr, and ∆ is the distance between two consecutive
sensors composing the ULA.

3.3. Exact CP decomposition
A CP decomposition is said to be essentially unique if there

exist a unique set {ςr, D(r), 1 ≤ r ≤ R} such that equality holds
in (2). However, even if the CP decomposition is unique, there
exist several ways of writing (3). In fact, writing a decompos-
able tensor as the outer product of vectors is subject to scaling
indeterminacies, which actually stem from multilinearity prop-
erties of tensors [10], since

αa ⊗ βb ⊗ γc = a ⊗ b ⊗ c

if αβγ = 1. Even if the above vectors are of unit Lp norm,
there remain two scaling indeterminacies of unit modulus. As a
consequence, attention should be paid to the difference between
CP or essential uniqueness, and uniqueness of matrix factors
appearing in (3).

There exist sufficient conditions ensuring CP uniqueness, e.g.
the Kruskal condition [8]:

κA + κB + κC ≥ 2R + 2 (11)

where the notation κA refers to the Kruskal-rank7 of matrix A.
However, less stringent conditions guaranteeing almost surely
a unique solution can be found, for instance [9, 10, 16]:

R(K + L + M − 2) < lmk

In the present paper, we deal with simpler examples when
R = 1 as for glacier data (cf Section 6) and R = 2 relative to
simulated data (cf Section 5) so that essential uniqueness of a
decomposition is always guaranteed.

In practice, it is more convenient to fix trivial indeterminacies
of unit modulus in Equation (3):

Mlmk =

R∑
r=1

ςrAlrBmrCkr

Therefore, as suggested in [17], we fix 2R parameters without
restricting the generality. More precisely, based on properties
described in Section 2, we assume the following:

7The Kruskal rank of a matrix A is the largest number κA such that any
subset of κA columns are lineraly independent.
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1. From property N1

exp{iψ1r} = 1 ∀r =⇒ A1r = 1 ∀r (12)

2. From property P3:

αr( f1) = 1, ∀r =⇒ C1r = 1 ∀r cf (3) (13)

Note that after fixing the scaling indeterminacies, the number
of remaining free parameters is now (K + L + M−2)R [17], and
not (K + L + M − 3)R as assumed in [8].

3.4. Presence of noise: DoA Cramér-Rao bounds
Cramér-Rao Bound (CRB) represents the lower bound on the

variance of any unbiased estimator of a deterministic parame-
ter. We hereby detail the derivation of the CRB in order to asses
the performance of the proposed method and then compare dif-
ferent methods with one another. If noise n is considered as an
i.i.d. complex circularly symmetric Gaussian variable of known
varianceσ2

n, Signal-to-Noise ratio (SNR) is defined as (cf. [18])

S NR = 10 log10
‖M‖2F

LMKσ2
n

where operator ‖ · ‖2F indicates Frobenius norm: ‖M‖F =√
trace{µHµ} and µ = vec{M}. The problem of scale ambi-

guity of the CP decomposition is solved by the assumption of
expressions (12) and (13) that the first row of matrices A and C
is normalized to [1 · · · 1]1×R. Therefore, the unknown complex
parameter vector ϑ ∈ C(K+L+M−2)R×1 has the following form:

ϑ = [āT
1 , · · · , ā

T
R , b

T
1 , · · · , b

T
R , c̄

T
1 , · · · , c̄

T
R]

where āT
r

def
= [A2r, · · · , ALr], bT

r
def
= [B1r, · · · , BLr], c̄T

r
def
=

[C2r, · · · ,CLr].
The likelihood function for a zero mean, circularly symmet-

ric complex Gaussian noise with covariance σ2
nI takes the form

L(z|ϑ) =
1

(πσ2
n)lmk exp

{
−

1
σ2

n
(z − µ(ϑ))H(z − µ(ϑ))

}
The corresponding log-likelihood function f (ϑ) = log(L(z|θ))
can be written as

f (ϑ) = −lmk log(πσ2
n) −

1
σ2

n
(z − µ(ϑ))H(z − µ(ϑ)).

Then, the complex Fisher information matrix (FIM) is given by
(cf. [18, 17])

Φ(ϑ) = E

(
∂ f (ϑ)
∂ϑ

)H (
∂ f (ϑ)
∂ϑ

) .
A straightforward derivation leads to

∂ f (ϑ)
∂ϑ

=
1
σ2

n

[
nT ∂µ

∗

∂ϑ
+ nH ∂µ

∂ϑ

]
where n = z − µ.

Since noise is circularly-symmetric (E{nnH} = σ2
nIlmk and

E{nnT } = 0), the FIM reduces to [17]:

Φ(ϑ) =
1
σ2

n

(∂µ∗
∂ϑ

)H (
∂µ∗

∂ϑ

)
+

(
∂µ

∂ϑ

)H (
∂µ

∂ϑ

)
The CRB of any unbiased estimator of complex vector param-
eter ϑ is is given by the inverse of the FIM (see Appendix C for
more details about CRB of the DoA estimation).

4. Algorithms

4.1. Computation of the CP decomposition

We hereby recall the expressions of the R-term trilinear
model for the three-way arrayM:

Mlmk =

R∑
r=1

ςr AlrBmrCkr

M =

R∑
r=1

ςr ar ⊗ br ⊗ cr

(14)

An exact direct decomposition algorithm has been proposed in
[19] for K ≥ 2: it takes as inputs the K data slabs Z[:, :, 1], Z[:, :
, 2], · · · , Z[:, :,K] and the number of factors R, and returns the
estimates of matrices A, B and C. Since the third dimension
K investigated in the present paper refers to the propagation
speed diversity, it corresponds to K = 2 (P and S waves). The
uniqueness of such a decomposition is guaranteed provided that
the R column vectors corresponding to two of the ways are lin-
early independent, and the R column vectors associated with
the third way have the property that no two are collinear (see
below). The trilinear model (14) can be rewritten as K matrices
ζk of size L × M, according to the trilinear matrix equations
[20, 19]:

ζk =

R∑
r=1

(ar ⊗ br) cr[k] =

F∑
f =1

ar cr[k] bT
r = ADk BT

where

A = [a1, a2, · · · ar],
B = [b1, b2, · · · br],

Dk = Diag{c1[k], c2[k], · · · , cr[k]}, , k = 1, . . . ,K

and coefficients ςr were pulled in factor matrix B.
The following more constraining identifiability conditions

are employed, which concurrently imply the Kruskal condition
in (11):

IC1 The columns of A are linearly independent i.e. κA ≥ R.

IC2 The columns of B are linearly independent i.e. κB ≥ R.

IC3 Every pair of columns of C is linearly independent i.e.
κC ≥ 2.
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Each condition refers to one way of the array: the first two
conditions state that there must be at least R factors present in
two ways. The third requires that no two factors are linked by a
proportional relationship along the other way.

The decomposition proposed in [19] exploits the comparison
between the following linear combinations, for every k-vector
of weights w: ζ̄(w) =

∑K
k=1 w[k]µ[k]

D̄(w) =
∑K

k=1 w[k]Dk
,

so that ζ+ = ζ̄(1K) and D+ = D̄(1K). The following result
constitutes the core of the decomposition algorithm (for more
details, see [19]):

Theorem 4.1. Let USVT be the singular value decomposition
of ζ+, and define

ηk = UζkVS−1, k = 1, ...,K

where ηk has size R × R, U has size R × L, ζk has size R × R, V
has size R × M. Then if

(i) the trilinear equation (3), and
(ii) the parametrization conventions (12) and (13)

hold, we have the following results:
(iii) if identifiability conditions IC1-IC2 hold, the columns of

Z = UT A are right eigenvectors of ηk with eigenvalues equiva-
lent to the diagonal elements of Λk = Dk D−1

+ , k = 1, ...,K;
(iv) if identifiability conditions IC1-IC3 hold, the columns of

Z = UT A are the only common eigenvectors of ηk.

Notice that in the above description, K = 2 (k = 1 for the P
wave and k = 2 for the S wave).

4.2. Extraction of DoA from matrix factors
Once the decomposition has been obtained, the parameters

of the trilinear problem can be extracted as follows.

1. Direction of arrival of the r-th source θr is calculated from

Alr = exp
{

i
2π
λ

(bT
l dr)

}
= exp

{
i
2π
λ

∆(l − 1) sin(θr)
}

Therefore,

θ̂lr = arcsin
[
2π
λ

log(Alr)
1

∆(l − 1)

]
.

In order to estimate direction of arrival θ, matrix A
can be considered as a Vandermonde matrix in the ab-
sence of noise if the antenna is ULA, with kernel ur =

exp
{
i 2π
λ

∆ sin(θr)
}
. Direction of arrival is then estimated

through a Least Squares (LS) solution or the more robust
Total Least Squares (TLS) solution.

2. Signal wr(tm) of the r-th source is extracted up to a scaling
factor directly from matrix B:

ŵr(tm) ∝ Bmr, m = 1, ...,M

3. Complex multiplicative coefficient αr( fk) is extracted di-
rectly from the factor C:

α̂r( fk) = Ckr

5. Numerical simulations

Signals were simulated according to sampling conditions,
which are typically those selected for Argentière experiments
(cf. [21, 22]) and emulate the normal seismic activity of a
glacier. Estimation efficiency was evaluated in comparison
with two other narrowband algorithms, ESPRIT [5] and MU-
SIC [3, 23], and with deterministic CRB as a benchmark [17].
The performance criterion is the total mean square error (to-
tal MSE) of the DoA: 1

N
∑N

n=1
∑R

r=1(θ̂rn − θr)2, where θ̂rn is the
estimated DoA of source r at the n-th Monte-Carlo trial, N is
the number of trials. The number of simultaneous sources was
chosen to be R = 2. The SNR definition for P wave was chosen
as:

S NR = 10log10
‖ p ‖2F
LMσ2

n

where ‖ p ‖2F refers to the P wave energy. This is consistent with
previous works, where the S wave data is traditionally thrown
away even if received. We have:

1. v1 = 3600ms−1, v2 = 1610ms−1.

2. v1
v2

=
f1
f2

= 2.236.

3. f1 = 193Hz, f2 = 86Hz.

4. Time duration of simulated records: 201ms.

5. Configuration of the array: ULA with inter-sensor distance
∆ = 10m.

A simple source was simulated as approximately narrow-
band: a signal carried by a sinusoid modulated by a Kaiser
window complex envelope ar(tm) exp{iφr(tm)}

wrk(tm) = ar(tm) exp{iφr(tm)} exp{iωktm}

Since narrowband ωk is known for P and S waves, simulated
signal wrk(tm) is brought to the baseband through demodulation:

wr(tm) = ar(tm) exp{iφr(tm)}

Monte Carlo simulations show a superior performance of CP
deterministic decomposition with respect to MUSIC and ES-
PRIT algorithm, especially for a low number of sensors com-
posing the array. When the array is composed by a large num-
ber of sensors, performances of MUSIC and CP decomposi-
tion become comparable. In particular, Figures 1 and 2 illus-
trates computer simulations for a variable number of sensors
(L ∈ {3, 10, 50}) composing the array and for different config-
urations of sources impinging from a broadside (perpendicular
to the array) or endfire (laterally to the array) perspective. Fig-
ure 3 represents the evolution of RMSE with respect to angular
separation of the two simultaneous sources, for a given SNR
(S NR ∈ {10, 20dB}): the tendency is an evident predominance
in the performance of the CP decomposition algorithm, espe-
cially for closely spaced sources.

The performance gap between MUSIC RMSE and its CRB
reference is due to the short length of useful signal effectively
present in data records: this causes the statistical estimate of
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signal covariance matrix to deteriorate progressively. A com-
parable difference can be noticed between the performance of
the proposed tensorial method and its CRB. This loss can be
explained by the 2-step nature of the estimation process, which
consists on a CP decomposition followed by a TLS performed
on the estimated steering matrix (cf. Paragraph 4.2).

6. Results on real data

6.1. Windowing of P and S recorded signals

Since recorded P and S waves are consecutive and distinct in
time, they need to be selected and cropped, so as to form two
M × L slices within the data sensor, where M is the number
of data samples, and L the number of sensors. Whenever P
and S waves are not aligned, the broadband general formulation
provides for an additive model of a deterministic component
and a stochastic component:y(P)(t − t(P)

l ) = wP(t − t(P)
l ) + nl(t − t(P)

l )
y(S )(t − t(S )

l + ξPS ) = wS (t − t(S )
l + ξPS ) + nl(t − t(S )

l + ξPS )

where l = 1, ..., L, and ξPS is the alignment error between P and
S slices.

The narrowband approximation (A2) at a given ostensible
wavelength λ = v1

f1
= v2

f2
and property P3 givesy(P)(t − t(P)

l ) ' αP w(t) exp{−iψl} + nl(t − t(P)
l )

y(S )(t − t(S )
l + ξPS ) ' αS w(t + ξPS ) exp{−iψl} + nl(t − t(S )

l + ξPS )

where ψl = 2π
λ

∆(l − 1)sinθ.
Alignment is pursued through cross-correlation between P

and S narrowband complex envelopes after the detection pro-
cess, which is theoretically justified provided signals are jointly
stationary and decorrelated to noise nl(t):

RPS
l (τ, ξPS ) = RPS

l (τ + ξPS ) =

= E{y(P)(t − t(P)
l )y(S )(t − t(S )

l + τ + ξPS )} =

= αP αS exp{−i2ψl}Rww
l (τ + ξPS )

If the alignment is fulfilled on the reference sensor (l = 1),

RPS
1 (τ + ξPS ) = αP αS Rww

1 (τ + ξPS )

which attains its maximum for τmax = −ξPS . Once τmax was
determined, the best alignment can be performed to the P and S
waves.

6.2. A dataset of 26 events from the same cluster at Argentière
glacier

Argentière glacier is a 10km long glacier located in the
French side of Mont Blanc massif, covering a 19km2 surface.
It is characterized by high seismic activity, as stated in [24, 25].
Temperate Alpine glaciers are characterized by ice remaining
at melting point, deforming by three main mechanisms: plastic
deformation of ice, plastic deformation of underlying bedrock,

and basal sliding friction of the former upon the latter. The un-
derneath flow of water plays an important role in the third phe-
nomenon, because it modifies pressure and temperature param-
eters. Furthermore, brittle behavior of ice is the reason of the
sudden openings of crevasses and falls of seracs on the surface
of a glacier, with indirect effects on glacial hydrology by means
of water transfer from the surface to greater depth zones. An
array composed of 9 velocimeters pointing in the direction per-
pendicular to glacier motion at 1kHz sampling frequency was
placed on the glacier surface at 2400m above sea level. The
sensors within the array were spaced out at 10m intervals. The
general case involves R far field sources impinging on the ar-
ray, at a large unknown distance [21], in the presence of noise,
thus allowing us to use the plane wave approximation A1 of the
wavefields impinging on the array. Signals resulting of seis-
mic events within the glacier are assumed zero-mean, non sta-
tionary and broadband stochastic processes over the observa-
tion time, and are assumed to be uncorrelated to environmen-
tal noise. The DoA technique evaluated via simulated signals
was applied to the 26 deep events recorded by the array during
November 2012. These events were associated with the same
cluster of deep events [21], on the basis of their waveform sim-
ilarities through cross-correlation. We use values for P and S
wave velocities through ice, as in [26, 21]: v1 = 3600 m s−1

and v2 = 1610 m s−1, according to Property P1. An example of
one deep event recorded by the 9 sensors with P and S waves is
provided in Figure 6.

The frequency optimization was achieved throughout the
dataset from the same cluster of events (see Figure 4 for re-
sults), after preprocessing of recorded signals (see Appendix D
for details). Median dominant frequency f̄1 of P wave is then
calculated. Thus, all the P waves from the cluster are filtered
around f̄1 = 203Hz and all the S waves are filtered around
f̄2 = v2

v1
f̄1 = 100Hz before tensor decomposition. This result

is coherent with spectral analysis of P and S waves. DoA es-
timation is performed over the dataset with different methods:
MUSIC and ESPRIT over P waves, and joint tensor decompo-
sition with speed diversity. Results are shown in Figure 5: the
dispersion of the DOA estimates through the joint CP decom-
position of P and S waves is smaller than that of MUSIC and
ESPRIT for P waves separately.

7. Conclusion and perspectives

Throughout this paper, we developed a tensor decomposition
model for seismic data exploiting propagation speed diversity
of P and S waves. A physical model was traced, followed by
simulations and statistical comparisons with ESPRIT and MU-
SIC, and theoretical CRBs. Our approach was also tested on
real data of seismic activity of an alpine glacier, and different
techniques were compared in terms of localization efficacy. The
strength of our method lies in the integration of the double in-
formation conveyed by P and S waves of distant events imping-
ing in succession on the array: to the traditional dimensions of
array processing (recording samples for time and sensor loca-
tions for space), we added the dual content transmitted by the
P and S waves, temporally distinct by virtue of the diversity of
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propagation speed. The effect of adding a way to the data array
is evident in terms of estimation performances (lower CRBs)
and localization precision of a cluster of real events originating
from the same source, especially for short data durations and
for arrays composed by a small number of sensors.

An alternative to the exact tensor decomposition is repre-
sented by tensor approximation minimizing R-rank approxima-
tion error Υ, as in [17]:

Υ(A, B,C;Λ) =

∣∣∣∣∣∣∣∣∣∣z − R∑
r=1

ςr ar ⊗ br ⊗ cr

∣∣∣∣∣∣∣∣∣∣2 = Υ(x;Λ) (15)

with z = vec{Z} and x = vec{[AT , BT ,CT ]}. An iterative min-
imization problem (e.g. conjugate gradient descent method) in
order to find ( Â, B̂, Ĉ) could be initialized with the exact de-
composition in [19], and is stated as:

(Â, B̂, Ĉ) = arg min
A,B,C

(Υ(A, B,C;Λ)) = arg min
x

(Υ(x;Λ))

An alternative to the two-stage derivation of DoA estimates
(tensor CP decomposition followed by an estimation of θ from
matrix A(θ)) lies in a direct parametrization of the objective
function in (15) with DoAs with x = vec{[AT (θ), BT ,CT ]}:

(θ̂, B̂, Ĉ) = arg min
θ,B,C

(Υ(A(θ), B,C;Λ)) = arg min
x

(Υ(x(θ);Λ))

This would allow performances to get closer to the CR bounds.
Further research is expected upon deterministic models of rep-
etition and polarization diversities, in the context of array pro-
cessing. Calibration error concerning the configuration of sen-
sors in the array may possibly be included into the model, with
consequences upon the statistical performances of the proposed
method.
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Figure 1: MSE vs SNR
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Appendix A. Justification of P3

The resulting signal propagating from a given source r and
impinging on a given sensor of the array is composed of two
contributions before addition to background and instrumenta-
tion noise: the P phenomenon, generally followed by the S phe-
nomenon. An additional assumption A5 identifies the impulse
responses of particle motion as the only source of variability
between received P and S waves:

w1(t) ≈ hP(t) ∗ w(t)m(t)
w2(t) ≈ hS (t) ∗ w(t)m(t)

where hP(t) is the impulse response of the given medium to
the P wave and hS (t) to the S wave. In particular, notice
that the source signal can be decomposed into a product of a
low-frequency part (the complex envelope w(t)) and a high-
frequency contribution m(t):

wi(t) ≈ hi(t) ∗ w(t)m(t)

This corresponds to the base-band complex signal

wi
b(t) ≈ hi

b(t) ∗ w(t)M+ exp {− j 2π∆ fi t}

where exp {− j 2π∆ fi t} is a frequency shift due to different de-
modulation for P and S waves from working frequency f1 and
f2 respectively, and M+ is the complex amplitude of m(t). In
the frequency domain, we have then

W i
b( f ) = F {wi

b(t)}( f ) = Hi
b( f )M+

(
W( f ) ∗ δ∆ fi ( f )

)
For a generally low-pass transfer function, Hi( f ) can be consid-
ered as a constant Hi

b,

W i
b( f ) = Hi

bM+W( f − ∆ fi )

Since band-pass filtering around frequency fi and a joint base-
band translation are equivalent to a base-band translation from
frequency fi followed by a low-pass filtering with window
Π( f ), we have

W i
b f ( f ) ≈ Π( f ) Hi

b M+W( f − ∆ fi )

Then we have in time domain, for ideal low-pass filtering
Π( f ) ≈ Π in the support of interest

wi
b f (t) ≈

(
Π Hi

b M+

)
w(t)

provided that W( f − ∆ f1 ) ≈ W( f − ∆ f2 ) ≈ W( f ).
Finally, resulting P wave and S wave complex envelopes, af-

ter base-band translation and filtering, are related by a propor-
tionality relationship

w2
b f (t) ≈

H2
b

H1
b

w1
b f (t)

Appendix B. Details of MUSIC and ESPRIT algorithms

Appendix B.1. MUSIC
The analysis of the L× L signal covariance matrix RYY is the

foundation of the MUSIC algorithm [3]:

RYY = E{YYH} = AE{SSH}AH + E{NNH}

Under the assumptions H2, H3 and H4,

RYY = ARS S AH + σ2
nI

Since rank{ARS S AH} = R, the eigenvalues λ1 ≥ · · · ≥ λR > λL

of RYY are λi > σ
2
n for i = 1, . . . ,R

λi = σ2
n for i = R + 1, . . . , L

If the noise spatial covariance is not proportional to identity, but
equal to σ2

nG where G is known up to the scaling factor σ2
n, the

same reasoning applies where λi are generalized eigenvalues
of the matrix pencil (RYY ,G). Let ES denote the L × R ma-
trix whose columns are the R first (generalized) eigenvectors of
RYY , and EN the L× (L−R) matrix containing the (L−R) noise
eigenvectors: ES = [e1| · · · |eR] and EN = [eR+1| · · · |eL]. Thus,
the squared Euclidean distance from a vector x to the signal
subspace Span{ES } = Span{A} is d2 = xH EN ET

N x. The MU-
SIC algorithm aims at finding the values of angle of arrival θ for
which the distance a(θ)H EN ET

N a(θ) between the array manifold
Aθ and the signal subspace is minimized. For this purpose, an
exhaustive search is performed on a grid {θi, 1 ≤ i ≤ Θ} of arbi-
trary precision. This is equivalent to maximizing the so-called
MUSIC ”spectrum”:

PMU(θ) =
a(θ)H a(θ)

a(θ)H EN ET
n a(θ)

whose numerator is a normalization factor. Measurements in
the presence of signal S are used to estimate RYY :

R̂YY =
1
M

M∑
m=1

y(tm)yH(tm) =
1
M

YYH

If noise is absent, parameter estimates are given by the in-
tersections of the array manifold Aθ and the signal subspace
Span{ES }. In the presence of noise, there are no intersections
with probability one [5]: parameters estimates are thus given
by the R largest peaks of the MUSIC spectrum.

Under assumptions H3, H4 and H5, the generic CRB for
angles of arrival θ = [θ1, · · · , θR] and noise covariance σ2

nI is
given by [23], if noise is circular Gaussian:

CRB(θ) =
σ2

n

2

 M∑
m=1

<
[
SH(tm)DH[I − A(AH A)−1 AH]DS(tm)

]
−1

,

(B.1)
where

S(tm) =


w1(tm) 0

. . .

0 wR(tm)

 ∈ CR×R
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D = [d(θ1), · · · , d(θR)] ∈ CL×R

whose r-th element is expressed as the derivative of steering
vectors with respect to directional elements

d(θr) =
da(θr)

dθr
∈ CL×1

Appendix B.2. ESPRIT
The ESPRIT algorithm reduces the computational complex-

ity, by exploiting the structure of the sensor array when avail-
able [5]: the array is composed by two identical known sub-
arrays (here denoted with letters x and y) displaced from each
other by a (possibly unknown) displacement vector δ. Around
frequency f0, the observation model isx(tm) = As(tm) + nx(tm), m = 1, . . . ,M

y(tm) = ΦAs(tm) + ny(tm), m = 1, . . . ,M

where, in the ULA configuration, Φ =

Diag{e j2π f0δsinθ1/c, · · · , e j2π f0δsinθR/c} ∈ CR×R is a unitary operator
that relates the measurements from subarray X ∈ C(L−1)×M to
those from subarray Y ∈ C(L−1)×M . The joint output vector is
then defined as

z(tm) =

[
x(tm)
y(tm)

]
= Ās(tm) + nz(tm)

Ā =

[
A
ΦA

]
, nz(tm) =

[
nx(tm)
ny(tm)

] (B.2)

The signal subspace Span{ES } is obtained by the first R
eigenvectors of the covariance of the measurements RZZ =

ĀRS S ĀT + σ2I. From equation (B.2) ES can be further de-
composed in the couple

ES =

[
EX

EY

]
The solution to the problem ΨEX = EY is given by a Least
Squares (LS) solution

Ψ̂ = E†X EY

or by Total Least Squares (TLS) solution:

[EX + QX]Ψ̂ = [EY + QY ]

where residual matrices QX and QY have minimum Frobenius
norm and the eigenvalues of Ψ are equal to the diagonal ele-
ments of Φ.

Appendix C. Cramér-Rao Bound of the DoA estimation

The parameter vector of the general model of R sources im-
pinging on the array from angles of arrival θ = [θ1, · · · , θR] is
expressed by

ϑ = [θ1, · · · , θR, b̄T
1 , · · · , b̄

T
R , c̄

T
1 , · · · , c̄

T
R , b̄

H
1 , · · · , c̄

H
R ]

= [θ, ξ, ξ∗]

with ξ = [b̄T
1 , · · · , b̄

T
R , c̄

T
1 , · · · , c̄

T
R]. In particular, if the noise is

circularly complex, the parameter vector and the FIM simplify
to [17]:

ϑ = [θ, ξ]

and

Φ =
1
σ2

n

 2<{G11} G12 G∗12
GH

12 G22 0
GT

12 0 G∗22


where Gi j =

(
∂µ
∂ϑi

)H (
∂µ
∂ϑi

)
, (i, j) ∈ {1, 2} × {1, 2}, ϑ1 = θ and

ϑ1 = ξ. Using the chain rule and complex derivative formula
(cf. [17]),

∂µ

∂θr
=

(
∂µ

∂aT
r

) (
∂aT

r

∂θr

)
=

= i
2π
λ

cosθr(IL ⊗ br ⊗ cr)(ar � vL) ≡ φθr

where vL = [0, 1, · · · , L − 1]. Thus,

∂µ

∂θ
= [φθ1 , · · · ,φθR ] ∈ Clmk×R

As for nuisance cross-terms of the FIM,

∂µ

∂b̄T
r

= (ar ⊗ IMK)(IM ⊗ cr)JM ≡ φb̄r
∈ Clmk×(M−1)

∂µ

∂c̄T
r

= ar ⊗ br ⊗ IK ≡ φc̄r ∈ Clmk×K

with selection matrix JM = [0(M−1),1I(M−1)]. Thus,

∂µ

∂ξ
= [φb̄1

, · · · ,φb̄R
,φc̄1 , · · · ,φc̄R ] ∈ Clmk×R(K+M−1)

Once the FIM is calculated, it can be inverted, so that the first
leading R × R block in matrix Φ−1 corresponds to the CRB of
unbiased DoA estimators.

Appendix D. Preprocessing of seismic data

A time series x(t) can be considered a pass-band signal if its
spectral support is limited and it does not include the origin:

[− f0 −W,− f0 + W] ∪ [ f0 −W, f0 + W],with∞ > f0 > W > 0

Every pass-band signal can be associated with an analytic
signal x̂(t) whose support does not contain positive frequencies:

X̂( f ) =
√

(2)U+( f )X( f )←→ x̂(t) =
1
2

[x(t) + iH{x(t)}]

where U+(·) indicates the Heaviside step function, and H{x(t)}
refers to the Hilbert transform of real signal x(t).

Since a real record is characterized by even spectral symme-
try, it can be represented by its analytical signal without loss of
information.

The complex envelope of X( f ) around frequency f0 is ob-
tained from the base-band analytical signal by a mere transla-
tion in frequency:
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X̃( f ) = X̂( f + f0)←→ x̃(t) = x̂(t)e−i2π f0t

For a given carrier at frequency f0, a complex envelope
around f0 is in bijection with a complex number representing
the modulus and the phase of the carrier.

Thus, recorded data have to be filtered in order to satisfy the
narrowband assumption A2.

Moreover, an approximation has to be made with respect to
the spectral content of signals, in case the ratio of the dominant
frequencies does not reflect the ratio of the velocities of P and S
waves, according to property P2. In order to maintain a constant
wavelength λ, which is a necessary condition for separability
of the multilinear model, a compromise needs to be reached in
extracting the dominant frequencies, as a consequence of the
ideal condition λ = v1

f1
= v2

f2
in property P2. Within the set

of four parameters determining wavelength, {v1, v2, f1, f2} one
only needs 3 degrees of freedom to determine optimal working
conditions. P and S wave propagation velocities v1 and v2 are
given by geophysical active analysis of known reflecting waves
from the surface to the glacier bed [21], [27]. The only param-
eter subject to optimization is then P or S wave frequency f1 or
f2. If f1 is chosen as the free parameter and optimized, then f2
directly derives from property P2

f2 =
C2

C1
f1 =

C2

λ
(D.1)

Optimization is fulfilled by minimizing the Frobenius norm of
tensor decomposition error:

f̂1 = arg min
f1

∣∣∣∣∣∣∣∣∣∣z( f1) −
R∑

r=1

λr ar( f1) ⊗ br ⊗ cr( f1)
∣∣∣∣∣∣∣∣∣∣2

F

where z( f1) is the data array after narrowband filtering around
f1 and f1 ∈ (0Hz, fS /2 = 500Hz). Then, from Equation (D.1),
we have f̂2 = v2

v1
f̂1.
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[26] M. Vallon, Contribution à l’étude de la Mer de Glace - Alpes françaises,
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