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HIGHER CODIMENSION ISOPERIMETRIC PROBLEMS

RAFE MAZZEO, FRANK PACARD, AND TATIANA ZOLOTAREVA

ABSTRACT. We consider a variational problem for submanifolds Q C M
with nonempty boundary 0Q = K. We propose the definition that the
boundary K of any critical point () have constant mean curvature, which
seems to be a new perspective when dim @) < dim M. We then construct
small nearly-spherical solutions of this higher codimension CMC prob-
lem; these concentrate near the critical points of a certain curvature
function.

1. INTRODUCTION

Constant mean curvature (CMC) hypersurfaces are critical points of the
area functional subject to a volume constraint. Examples include sufficiently
smooth solutions to the isoperimetric problem. If K is an embedded sub-
manifold in a Riemannian manifold (M™*! g), then its mean curvature
vector Hp is the trace of its shape operator. When K is a hypersurface,
then we say that K has CMC if this vector has constant length, and this is
the only sensible definition in this case. However, when codim K > 1, it is
less obvious how to formulate the CMC condition, since there is more than
one way one might regard the mean curvature vector as being constant.
One definition that has perhaps received the most attention is to require
that Hg be parallel. This is quite restrictive, and for that reason, not very
satisfactory.

We propose here a different, and directly variational, definition. Building
on ideas of Almgren [1], and extending one standard characterization of
CMC hypersurfaces, we define constant mean curvature submanifolds to be
boundaries of submanifolds which are critical for a certain energy functional.
Roughly speaking, we say that K has constant mean curvature if K = 9Q
where @ is minimal, K has CMC in ), and Hx has no component orthogonal
to Q.

The goal of this paper is to show that generic metrics on any compact
manifold admit ‘small’ CMC submanifolds in this sense. The result proved
here is a generalization of a well-known theorem by Ye [9], which constructs
families of CMC hypersurfaces which are small perturbations of geodesic
spheres centered at nondegenerate critical points of the scalar curvature
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function R. The more recent paper [6] obtains such families of CMC hyper-
surfaces under general condition on the scalar curvature and in particular
when it is constant; in that case, these hypersurfaces are centered near crit-
ical points of a different curvature invariant. These various results illustrate
the sense in which the metric must be generic: some scalar function of the
curvature must have nondegenerate critical points.

Let us now introduce the relevant curvature function. For any (k + 1)-
dimensional subspace 1I,, C T,,M, define the partial scalar curvature

k+1
Ren(IL) == — S (R(E;, E;)Ei, E).

ij=1
where Ey, ..., Ex4 is any orthonormal basis for II,,. Note that Ry,41(7,M)
is the standard scalar curvature at p, while Ro(II,) is twice the sectional
curvature of the 2-plane II,. The Grassman bundle G}1(TM) is the fibre
bundle over M with fibre at p € M the Grassmanian of all (k4 1)-planes in
T,M. We regard Ry as a smooth function on Gjq(M).

Denote by S¥(I1,) and BFt1(II,) the images of the sphere and ball of

radius € in II), under the exponential map exp,, p € M. We can now state
our main result.

Theorem 1.1. If II, is a nondegenerate critical point of Ryy1, then for
all € sufficiently small, there exists a CMC submanifold K. (11,) which is a
normal graph over Sf(ﬁﬁ) by some section with C*> norm bounded by Ce?,
and dist (I1;,11,) < ce.

Our construction of CMC submanifolds generalizes the method intro-
duced in [6], and can also be carried out in certain cases when the partial
scalar curvature has degenerate critical points, for example when (M, g) is
Einstein has or constant partial scalar curvature.

Theorem 1.2. There exists g > 0 and a smooth function
U Gre1(TM) x (0,60) — R,

defined in (9) below, such that if € € (0,e0) and 11, is a critical point of
U(-,e), then there exists an embedded k-dimensional submanifold K.(IL,)
with constant mean curvature equal to k/e. This submanifold is a normal
graph over a geodesic sphere Sf(Hp) with respect to a vector field, the C>

norm of which is bounded by ce?.

The function V¥ is essentially just the associated energy functional re-
stricted to a particular finite dimensional set of approximately CMC sub-
manifolds.

The outline of this paper is as follows. We first give a more careful de-
scription of our proposed definition of constant mean curvature and its rela-
tionship to the associated energy functional. We introduce the linearization
and second variation of this energy, then compute these operators in detail



HIGHER CODIMENSION ISOPERIMETRIC PROBLEMS 3

for the round sphere S¥ ¢ R™*!. The construction of ‘small’ solutions of
the CMC problem concentrating around critical points of the function W
proceeds in stages. We construct a family of approximate solutions, then
solve the problem up to a finite dimensional defect. This defect depends
on certain parameters in the approximate solution, and in the last step we
employ a variational argument to choose the parameters appropriately to
solve the exact problem. Certain long technical calculations are relegated
to the appendices.

2. PRELIMINARIES

In this section we begin by setting notation and recalling some standard
formulese. This is followed by the introduction of a variational notion of
constant mean curvature for closed submanifolds of arbitrary codimension.
We compute the first and second variations of the associated energy func-
tional, and then explain what these look like for round spheres (of arbitrary
codimension) in R™*1,

2.1. The mean curvature vector. Let (M™%, g) be a compact smooth
Riemannian manifold, and consider smooth, closed k-dimensional subman-
ifolds K € M and (k + 1)-dimensional submanifolds ¢ with nonempty
boundary K, 1 < k < m. We write V= for the connection on any em-
bedded submanifold X, and reserve V for the full Levi-Civita connection on
M.

The second fundamental form of 3 is the symmetric bilinear form on 7%
taking values in the normal bundle N3 defined by

WX, Y):=VxY - VXY =71ys Vx Y;

here 7y is the fibrewise orthogonal projection TxM — NX. The trace of
h is a section of NX, and is called the mean curvature vector field
dim 2
Hy:=tr%h = Y h(E; Ey),
=1
where {E;} is any orthonormal basis for T,X. By definition, ¥ is minimal
provided Hy, = 0.

2.2. Constant mean curvature in high codimension. Let us now spe-
cialize to the case where Q**' C M is a smooth, compact submanifold
with boundary, with 9Q = K. The normal bundle NK decomposes as an
orthogonal direct sum

NK = NK+ & NKII
where NK! = NK N TQ has rank 1 and NK+ = Ng(NQ) = NK N NQ
has rank m — k. We shall write n for the inward pointing unit normal to K
in Q. Thus if ® € NK, then ® = [®]* + [®]ll = [®]* + $n for some scalar
function ¢.
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Definition 2.1. The closed submanifold K C M is said to have constant
mean curvature if K = 0Q where Q is minimal in M, K has constant mean
curvature in @ and the Q-normal component [H K]L e NK* vanishes.

A key motivation is that this definition is variational, where the relevant
energy is given by

(1) Eno(Q) = Vol (0Q) — ho Vol 1(Q).

Proposition 2.1. The submanifold K = 0Q has constant mean curvature
ho (in the sense of Definition 2.1) if and only if

D&yl = 0.

The meaning of the differential here is the usual one. Let = be a smooth
vector field on M and denote by & its associated flow. For ¢ small, write
Q¢ = &(t,Q) and Ky := 0Q; = &(t, K). The requirement in the Proposition
is then that for any smooth vector field =,

d

agho (Qt) o - O

The proof is standard. The classical first variation formula (see Appendix)
states that

d
—Vol(K) = —/ 9(Hg,E) dvolg,
dt =0 K
and p
— Vol(Qy) = —/ g(Hg, E) dvolg —/ g(n,=Z) dvolg .
dt t=0 Q K
It follow directly from these that
d
— & =0
dt 0 hO (Qt) Y

for all vector fields = if and only if Hx = hgn and Hg = 0, as claimed.

The definition above coincides with the standard meaning of CMC when
K is a hypersurface in M which is the boundary of a region ). In particular,
if K¥ ¢ RFt! ¢ R™H and K has CMC as a hypersurface in RF*!, then
it has CMC in the sense of Definition 2.1. In particular, any round sphere
Sk R™*! has CMC in this sense.

2.3. The Jacobi operator. Let us now study the differential of the mean
curvature operator, which is known as the Jacobi operator. For this subsec-
tion, we revert to considering an arbitrary submanifold ¥, either closed or
with boundary, and shall now recall the expression for this operator.

The Jacobi operator Jy; is the differential of the mean curvature vector
field with respect to perturbations of ¥. To describe this more carefully,
set B:(NX) = {(q,v) € TsM : |v| < ¢} and consider the exponential map
exp from an e-neighborhood of the zero section in Ty M into M. Since
exp,lfmgy = Id, If © € C?(2;Ts M) has ||®||co sufficiently small, then
Yo := {exp,(®(q)) : ¢ € X} is an embedded submanifold. We shall denote
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the family of submanifolds Y43 by X5, and their mean curvature vector
fields by H,. We also write Fy : ¥ — ¥ for the map ¢ — exp,(s®(q)). By
definition,

J5(®) = VojasHs|,_,

We shall be particularly interested in the case where ® is a section of the
normal bundle NY. When 9% # (), we also require that ® = 0 on 9X. The
operator wyy o Jy will be denoted Jg. We recall in the appendix the proof
of the standard formula

2) JY =AY +Ricd + 5
where AY is the (positive definite) connection Laplacian on sections of N¥,
dim(X)

ve e NY, AN®= z Vi VE @ -V

Y, ®, VIV =7y, 0VxY

and the other two terms are the following symmetric endomorphisms of
N3

(i) The orthogonal projection Ric = 7y, o Ricy of the partial Ricci
curvature Ricy;, defined by

(Ricy X,Y) := —tr9 (R(-, X)-,Y)

(3) dim X
=— Z (E;, X)E;,Y) forall XY eTM

note that the curvature tensor appearing on the right is the one on
all of M, and is not the curvature tensor for ;
(ii) the square of the shape operator, defined by

dim X
@) 9(X) = > (h(E:, Ey), X)h(E;, Ej), forall X € TM
ij=1

In general, Jx(®) # J&' (@) since Jx(®) has a nontrivial component JZ (®)
which is parallel to ¥; as we show later, that part is canceled in our final
formula so we do not need to make it explicit. Note, however, that Jg ()
vanishes when ¥ is minimal. Indeed, writing the mean curvature vector field

to Ys¢ in the form
Hs = Z(H&NV(S»NV(S),

where N,(s), v = dim¥ + 1,...,m + 1 is a local orthonormal frame for
stq;. we find

@17 =3 (((TojosHsl _g» No0)) + (Hs, Voo _ No(5))) No(0)

14

(Hs, Nu(0)) Vasas|,_o NV )T = (Hx,N,) [Va/asNu(S)\SZO]T,

14

and if Hy, = 0, we have Jg =0.
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2.4. The second variation of &,,. We set
COU(NQ) = {V € C**(NQ) : V| )¢ = 0}.
With this notation in mind, we have the:
Definition 2.2. The minimal submanifold Q) is nondegenerate if
Jg: Gy (NQ) — CO(NQ),
18 invertible.

Lemma 2.1. If Q) is nondegenerate, then there is a smooth mapping ® —
Qs from a neighbourhood of 0 in C*>*(NK) into the space of (k + 1)-
dimensional minimal submanifolds of M with C>® boundary, such that Qg
is the initial submanifold Q and 0Q¢ = Ko .

Proof. Fix a continuous linear extension operator
C2*(NK) 2 ® v Vg € C2Y(ToM).
Thus Vg is a vector field along ) which restricts to ® on K. Without loss
of generality, we can assume that Vg € T'Q if [®]* = 0 and Vp € NQ when
[®]l = 0. Next, let W be a C>® section of NQ which vanishes on K. If
both [|®[|g,o and |[W||2,, are sufficiently small, then expy (Ve + W) is an
embedded C>® submanifold Qy, U = Ve + W, with boundary Ko := 0Qy.
Denoting its mean curvature vector by H(®, W), then
D Hl 0y (W) = JQW.

Since @ is minimal, Dy H | ) (W) takes values in NQ, whereas H(®, W) €
NQu C Ty, M, so we cannot directly apply the implicit function theorem.

To remedy this, first let ﬁl(@, W) be the parallel transport of H(®, W) along
the geodesic s — exp,(sU(q)), from s =1 to s = 0. Parallel transport pre-
serves regularity (this reduces to the standard result on smooth dependence
on initial conditions for the solutions of a family of ODE’s), so H(®, W) is
a C% section of Ty M. Now define

H(®,W) :=7yg o H(®,W),
where mn¢g : TgM — NQ is the orthogonal projection. Since H(®, W) €
Ng,M and since ||U||¢1 is small, H(®,W) lies in the nullspace of 7 at
any g € @ if and only if it actually vanishes. Thus it is enough to look
for solutions of H(®,W) = 0. Notice that Dy H| (o) = Jgo. We can now

apply the implicit function theorem to conclude the existence of a C>® map

® — W(®) such that H(®, W (®)) = H(®, W (®)) =0 for all small ®. O
We henceforth denote by Q¢ the minimal submanifold expg, (Vo + W (®)).
Observe that when [®]* = 0, the submanifold parametrized by expg(Vy) is

O(||®||2s..) close to Qg; this is easy to check when ® := ¢n where ¢ is
small. Therefore, in this ‘tangential’ case, we conclude that

Up = Vo + O(H‘I)H%Za)-
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Next, when [®]ll = 0, we define Zg as the solution of

JQZq) =0, Z‘I’|K =P,
and it is easy to check that the submanifold parametrized by eXpQ(Z¢) is
also O(||®]|22...) close to Qp. We summarize all this in the

Lemma 2.2. When ||®||c2.a is small, we have the decomposition
Us = Vig)i + Zg)- + O([|®]Z2.0),
where Zig)1 is the solution of

JQZg10 =0, o [@]+.

K p—
Now consider the energy &, along a one-parameter family s — @ =

Qsp of minimal submanifolds with boundaries K := 0Qs = Ksp. By the
formulee of the last subsection,

d
g&m(Qs) = —/ g(Hs — hong, d/9s) dvolg,,
where H, is the mean curvature of K, and ng is the inward pointing unit
normal to K in Q. Note that this first variation of energy is localized to
the boundary; the interior terms vanish because of the minimality of the Q).
Our task is to compute
d2

@gho (QS)

)

s=0

when @ is critical for &, .

Parametrize both K and Qs by y = Fy(y) := exp,(Usa(y)) (with y € K
or y € Q, respectively). As before, choose a smooth local orthonormal frame
E, for TK, so that (Fs)«E, = E4(s) is a local (non-orthonormal) frame for

TKsp. We then include n(s), the unit inward normal to K in Q5. Moreover,
we extend n(s) to a vector n(s) € T'Qs so that it satisfies Vg(ss)ﬁ(s) =0. We
supplement this to a complete local frame for T, M (at least near points
of K,) by adding a local orthonormal frame N,(s) € NQs. Here we let the

indices «, B, ... run from 1 to k while y,v,... run from k+1tom +1 .

Notation 2.1. Set H(s) = H(Ks) — hg H(Qs), where hg = Hi. We also
write

LQ = Va/as/HS |8:0

Note that we can decompose H/(0) into H'(0)Vx + H'(0)T% | its compo-
nents perpendicular and parallel to K. Since H(s) L K, we have that
(H(s), Ea(s)) = 0, so

(#'(0), Ea) + (H(0), E,(0)) = 0.
Since H(0) = 0, we obtain [Lg]Tx = 0.

Next decompose ® = [®]* + ¢n into parts perpendicular and parallel
to @ (along K). Noting that we can choose the vector field Vg extending
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® in Lemma 2.1 so that its component tangent to @ lies in the span of n,
there is a similar decomposition Up = [Ug|t + ugni(s) for the vector field

[®]+

Ug constructed in that Lemma, locally near Kg; note that [Ug] l‘K

and ug|, = ¢.
To see that E/ (0) = Vg, @, choose a curve ¢(t) in K with ¢(0) = p,
d(0) = E, and define G(t,s) = exp, ) (s®(c(t))); we then obtain that
VojosBal,_o = VoosVojor| o G(t:8) = Voa®(c(t))],_y = VE.®

as claimed. To compute n’(0), observe that (Fs).(n(0)) is always tangent to
Qs and transverse, but not necessarily a unit normal, to K. We can adjust
it, using the Gram-Schmidt process, to get that

n(s) = (F)e(n(0) = > caBals)) /|(F)-(n(0) = Y caFa(s)

where

)

ca(s) = (Ea(s), (Fs).n(0))/|Ea(s)[*.
Arguing as before, take a curve d(t) in @ such that d(0) = p and d'(0) =n
and define G(t,s) = expg(r)(Usa(d(t))). Note that Use = s(Vig) + Zg)1) +
O(s7]| @[30 ). We get

Vayos(Fo)«n(0)| _, = VasasVo,aG(t, 8)‘

and since ¢, (0) = 0, we obtain

e = V(g + Zig)1)

' (0)]* = [v Vil + VnZ l] T
WViep + VaZigp ||

(ViiZar +0Vin]|
Finally, the component [n/(0)]l = 0. Combining these calculations gives the
Proposition 2.2. If Q) is critical for &, then

Lo® = Jp5® — hog Dg®,

where
Do® = |ViZo + 6 Viii (K

2.5. The linearization at K = S*. We conclude this section by discussing
the precise form of this linearization, and its nullspace, when

K = 5% x {0} c Q = B¥! x {0} c R™",
since this is our basic model later. It is easy to see that BF*! is critical for
&
The unit inward normal to S* in B¥*!is ng(0) = —0. If & € C>*(NS*),
then

¢ = [(I)]l - ¢ 65
where the first term on the right is perpendicular to B**!. The operator
J é\fc acts on these two components separately, via J; g and J lqlk, respectively.
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The first of these operators acts on sections of the trivial bundle of rank
m — k. Obviously, Ricgk =0, cf. (3), and (.V)(Q))L =0 as well, so

Sk

acting on (m — k)-tuples of functions. Its eigenvalues are ¢(k + ¢ —2). The
operator Dpry1 also acts on sections of the trivial bundle N Bk“‘ gr- In
fact, since Jprt1 = Apger1, this operator is simply the standard Dirichlet-
to-Neumann operator for the Laplacian (acting on R™ *-valued functions).
Its eigenfunctions are the restrictions to r = 1 of the homogeneous harmonic
polynomials P(z), = 70, © € S*. If P is homogeneous of order ¢, then
P(z) = r'P(©), so Dgis1P(0) = —¢P(0) (recall we are using the inward-
pointing normal). Combining these two operators, we see that Agr —kD pgr+1

has eigenvalues —¢(k +¢ — 1) + kl = —{(¢ — 1), hence
<J§k - kDBk+1) (@Y =0 = [®] € span {(a, + b2,)E,},

where E,,, 4 = k+2,...,m+1is an orthonormal basis for NBF+1 = Rm—k,
The remaining part is

Jh = Age + k,
since Ricgr = 0 and .6;22 = kId. Thus

T3 (60) = T4 (6)© = 0= ¢ € span {1,z 11 }.

We have now shown that the nullspace KC of L gr+1 splits as IC* @Kl The
first of these summands is comprised by infinitesimal translations in R™*
and infinitesimal rotations in the ap planes (now a < k + 1); the second
summand corresponds to infinitesimal translations in RF 1,

3. CONSTRUCTION OF CONSTANT MEAN CURVATURE SUBMANIFOLDS

We now turn to the main task of this paper, which is to construct small
constant mean curvature submanifolds concentrated near the critical points
of Ri41. The first step is to define a family of approximate solutions, i.e., a
family of pair (Q., K:) where Q. is minimal and has nearly CMC boundary.
We then use a variational argument to perturb this to a minimal submanifold
with exactly CMC boundary.

3.1. Approximate solutions. We adopt all the notation used earlier. Thus
we fix IT, € Gy41(T'M) and an orthonormal basis E;, 1 <i < m+1 of T,M,
where F,, 1 < a < k+ 1 span Il, and E,, p > k + 1, span H;. This

induces a Riemann normal coordinate system (x!,...,2™*!) near p, and it
is standard that
1
(5) 9ij(x) = 9(0yi, 043) = dij + 3 > (Rp)ikjextzt + O(Jzf?),
k0

where § is the Euclidean metric.
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3.1.1. Rescaling. In terms of the map F. : T,M — M, F.(y) = exp,(ey),
used earlier, define the metric

ge = € K, 59
on T),M, or equivalently, work in the rescaled coordinates y) = 27 /e In either
case,

(6) 9 = ldy|* + €%h(y, dy),
where h. is family of smooth symmetric two-tensors depending smoothly on

e € [0,g0]. The mean curvature vectors H9 and HY% with respect to g and
ge satisfy

2 HI = (Fo)« HY%, and | H% g, = e[| HI|lg-

Let B*1 = BFUYII,) C II, be the unit ball and S¥1 = SHI(II,) =
OBF*1 and denote their images under F. by B, and S.. These have parametriza-
tions

k+1
SHl 50— expy (€ ©), Bl 5y expy (e Zy“Ea).
a=1

In the lemmas (3.1) and (3.2) below we give the expansion of the mean
curvature of B, and S; in terms of €. To this end we indroduce two supple-
mentary curvature invariants which are restrictions of the Ricci curvature
of the ambient manifold M:

k+1
Rick+1(Hp)(vl,vg) = — ZRp(Ei,UI,EiaU2), v1,VU2 € Hp
=1
k+1
Ricjy1 () (v, N) = =Y Ry(Ei,v, E;,N),  vell, NeTl,.
=1

Note that
Riciy1(1,) = [Ricg.] -
Lemma 3.1. We have

m+1
2 .
w0 = Y (5 Ricka ()0 B) + OE) A,
pn=k+1
where N, k+1 < < m+1 is an orthonormal basis of NB:..

Remark 3.1. Here and below, we write O(e*) for a function with C%* norm
bounded by Ce.

Proof. Recall that
1
Hg(Be) - 3 (Fe)* HgE(BkJrl)
€
We denote N; i k+1 < p < m+1 the orthonormal basis of the normal

bundle of B! ¢ T,M with respect to the metric g. obtained by applying
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the Gram-Schmidt process to the vectors E,, k+1 < p < m + 1. Remark
that

9Ny, Ey) = 0y + O(e?)
We denote N, = e Nj; the orthonormal basis of the normal bundle to BF+1
with respect to the metric (F.)*g. We identify N, with (Fy),N,; these last
vector fields form an orthonormal basis of NB. with respect to the metric
g. The Christoffel symbols corresponding to the metric g. are:

(T9)5 () = 50 (B, (92 + 0y (02130 — Oy (00)1)

2
€
= o7 G Y (Rijop + Ripgj + Rjigp + Ripgi — Rigjp — Ripjq) + O(€%)

62

= =3 (Ripje + Rigjp) o7 + O(”)

whence
. . 4
9:(Viy . 0yp, Njp) = (D% )5, + O(7)
Taking the trace in the indices a,b = 1,...,k + 1 with respect to g. gives
the result. O

Lemma 3.2. We have
HI(SF) = <§ - gRickH(Hp)(@, 0) + (’)(52)> ns

m+1

+ Z ( Ricy (11 )(97EM)+(9(€2)> N,

p=k+1

where ng is a unit normal vector field to S¥ in BETY with respect to the
metric g.

Proof. The proof is similar to that of the previous lemma, but with several
changes.

Let u!,...,uf s O(ul,...,u¥) be a local parametrization of S¥ C II,,.
The tangent bundle T'S* is spanned by the vector fields O, = 9,00. As

before, we have

L (R, HY(SY)

e

H(st) =
By the Gauss lemma,
9 ((F2)+Oq, (F)«0O) (F(0)) = g(04,0) =0

and

g ((Fe)*Eua (Fe)*G) (Fe(@)) = gp(EM, @) =0
this yields
G(Ny, (F)«©) =0 and ge(,/\/'ﬁ,@) =0
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Finally we put ng := —(F:).©. We have
VD = 0un 0,50 + (T)(0,)/(0)' E,
a,B=1,....k 1,5,£=1,....,m+ 1.
The vector field Oya 9,50 is tangent to B¥*1(0), so

9 (V40,0 N5 ) = (T, (04)" (0)" + O(=*).

Taking trace in the indices o, 8 with respect to the metric induced on S*
from g. we get

2e2
Ge(HO(81),N,) = 2o Rick,,(I1,)(0, F,) + O()

In order to find [H9% (S*(T1,))]ll, recall the standard fact that if & C M is
an oriented hypersurface with unit inward pointing normal Ny, and if X, is

the family of hypersurfaces defined by
5 x R(g, 7) ~ exp, (:Ns(g)) € 5.,

with induced metric g, then

d
|Hy| = 5 log v/det g..

In our case, considering S¥(II,,) C B¥T1(II,) with metric g., let g.., be the
induced metrics on the Euclidean sphere of radius 1 — z. Then

e2(1 — 2)?

det g, = (1 — 2)* det ¢° (1 - 3

Ric(1,)(6,6) + 0(&") )
where g is the standard spherical metric on S¥(IT,). From this we deduce

that

g (19:(5%),-0) = g ~ £ Rici 1 (I1,)(0,0) + O(2).

this completes the proof. O

Proposition 3.1. Fiz I, € Gy11(T'M). Then for ¢ > 0 small enough,
there exists a minimal submanifold Q.(Il,) which is a small perturbation
of BEHU(IL,), whose boundary K.(I,) = 0Q.(I1,) is a normal graph over
SK(I1,) and whose mean curvature vector field satisfies

k . m+1 -
(1) HY(K:(Ip)) — Z K= 9p(d@, ©) ng + Z (9p(Cus ©) + dpy) Ny
n=k+1

for some constant vectors a = d(e,11,), ¢, = ¢u(e,11,) € I, and constants
d, =d,(e,11,) € R. Here nk is a normal vector field to K.(II,) in Q.(IL,)
and N,, form an orthonormal basis of [NKe(Hp)]J‘.
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Proof. Take a vector field ® € C**(T,M) defined along the unit sphere
Sk(I1,), such that
m+1
®(O)=-¢(0)0+ > PO)E
pu=k+1
and write

Sk = {@+q>(@), Oc s’f}.

Then there exists a submanifold Bkgl such that BBkgl = Sk and which is
minimal with respect to g.. The proof of this fact is almost the same as the
proof of the Lemma (2.1); the only difference is that we use a ”perturbed”
metric and the starting submanifold is no longer minimal. Let Vg be a linear
extension of ® in B! and take

m+1

W e (T,M), W= Y WF'E, W|g=0.

pu=k+1
We let H (e, ®, W) denote the mean curvature with respect to the metric g. of
the submanifold {U(y) = Va(y)+W (y), y € B*¥1}. Note that H(0,0,0) = 0
and

D3H|(070,0) — JBk+1 — ABk-H .

We can then apply the implicit function theorem to H (,®,W) = 7o
H(e,®, W), where 7 is the orthogonal projection onto the vertical subspace
of T, M, which is spanned by E,, k+1 > r < m+1. Then for € and ||®||¢2.a
small enough, there exists a mapping (e, ®) — W (e, ®) such that
H(e,®,W(e,®)) =0 and H(e,® W(e, ®)) = 0.
Moreover,
Uep = Vo + W(e, ®) = Vs + Zo + We + O(|€°)) + O @) + O(|| @)

where Vi (y) = —é(y/||lyll) y, the vector field Zg is the harmonic extansion
of ® in BFt! and W, satisfies

2 2
Apr+1 Wg‘:%Ricfc‘H(Hp)(y,Eﬂ), W.=0 on S*

Remark 3.2. A simple calculation shows that

62 1 m+1
We(y) = — — 1=yP) Y Ric (L) (y, E,) Ep.
3 k:+ ara®

For the second step, we calculate the mean curvature of Sg with respect
to the metric g.. First note that the vector fields

m+1
Ta=(1-¢)00— 0,00+ > 0.,PE,
n=k+1
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locally frame T'S%, while

1 1
@(b:@_FﬂVSkQS’ and (Eﬂ)cp :Eﬂ—ﬂv‘gk@u

are a local basis for the normal bundle of Sclf) with respect to the Euclidean

metric. Applying the Gram-Schmidt process with respect to the metric g.

to these local frames yields the unit normal to Sg in Bfgl, which we denote

ng, and the orthonormal frame (Ng)f, for the normal bundle of Bfgl along
Sff) with respect to g.. These calculations show that

(7%, —00/Oalg.,n)y, =1+ O(e?)

ge

(Nw)e, (EM)%/‘(EM)q)’geucl>gE =1+0(e?),

and n§ = —0O and (NV,)§ = N;. We can then write

H9%(SY) — kng
= (g (B (S§).n5) — k) mi + S (H% (S5). Ve, ) (Vo).

p=k+1

Notation 3.1. We let Ly, (®) denote any second order linear differential
operator acting on ®. The coefficients of Ly, (®) may depend on 11, €
Gir+1(TM) and € € (0,1), but for all j € N there exists a constant Cj > 0
independent of I, and € such that

L1, (@) llcie(sry < Cj (@ lcst.a(ngry-

Similarly, for ¢ € N, Q%p(@) denotes some nmonlinear operator in ®, de-
pending also on 11, and €, such that Q%p(()) = 0 and which has the following

properties. The coefficients of the Taylor expansion of Q%p(‘b) in powers
of the components of ® and its derivatives satisfy that for any j > 0, there
exists a constant C; > 0, independent of 11, € G111 (TM) and € € (0,1),

1Qf1, (P1) — Qfy (P2)[lesa(s1) <

-1
¢ (I@1lleranivssy + [ @allesraqvsyy ) 101 = Pallesne ey

provided || @i vty < 1,0 =1,2.
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Using that the Christoffel symbols of the metric g. are of order O(g?), we
obtain
g (HO“(S5),n5) — kb = —Ricr41(11,)(0,0) + Jh o
+O(%) + &% Ly, (@) + QF (),
g (HO(S5), (a);,) = ~Rict1 (TL,)(0, By) + (Jg = Do ) @
+O(e%) + &% L, (@) + Qf, (P).

As before, we let Il and K+ be the null-spaces of the operators
I = Age+k and Ly = Age — Dpes
and write Pl and P+ for the orthogonal complements of K/l and Kt in
L%(S*). Define
(®) Cot, i= TyM x (T,M & R)™* x Pl x (PLyn—
There exists an operator
ge,Hp : (CO@(Sk))mik — €5vnp

such that

Ger, (fo, f1o-- oy f—k)
= (@l 0y £),Gu(e 0y £), e 0y, ), 60, 11y, £), @ (2. 10, )
is the solution to
Th & = gp(@.0) + fo
Ly ® = g5(G4,0) + dpy + fu—i-

Applying a standard fixed point theorem for contraction mappings, we find
that there exist constants ¢ € R and g € (0, 1) such that for every ¢ € (0, ¢)
and II, € Gy11(T'M) there is a unique

(e, 1), Gule. Ty), du(2,11,), 62, 11,), @y, ) € €,
(the indices are suppressed for simplicity) which belongs to a closed ball of
radius ce? in €. 11, and such that

m+1
H(Sg) = —kn§ + gp(@.0) 0 + Y (9p(E1,0) +dy) Na);.
pu=k+1
Putting
ng = (Fo)ing and Ny = (Fo). (Vg
and taking K. (II,) := FS(Sg(e,Hp)) and Q. (II,) := FE(BQE}E,HP)) finishes the
proof.

Remark 3.3. Notice that
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Ricy11(I1,)(©,0) € Pl and Ricj,(11,)(6, E,) € K+

Moreover, it was remarked in [6] that
k+1 k41

Ricka(I)(0,0) = 3 Ricps1(y)aa (02 + 3 Ricyia(IL,)a 0 O°
a=1 a#b=1

= 1 R (L) + Ricy1(11,)(0, ©)

where RZCk+1(Hp)(@ ©) belongs to the eigenspace of Agr associated to the
eigenvalue 2(k + 1). Usmg this, one can easily verify that

1

¢€Hp k—|-2

Ricxs p><@,@>> 0+0(),

O

3.2. The variational argument. We now employ a variational argument
to prove that one can choose I, € G (M) in such a way that the submanifold
K (I1,,) obtained in the previous Proposition has constant mean curvature.

To state our result, we introduce the following restrictions of the Riemann
tensor of M:

Ry (Iy) (v1, v2,v3,v4) = gp(Rp(v1, v2)vs, va), v1,v2,v3,v4 € I,
Rig 1 (TLy) (v1, w2, v3, N) = gp(Rp(v1,v2)v3, N), vi,ve,v3 €I, N € Hﬁ,

Finally, introduce the function r on Gy (TM):

36(k+5 (8 [Ricki1( p)”2 18 Ai+1Rk+1(Hp) -3 ”RkJrl(Hp)H2

+5RE 4 (IL) + 8 |[Rick, (1) + 12| i, (1))

+ oty (SE RE 4 (11y) — 2 [Rick 1 (1))

— sty IRic, (I0) |2

where A7 T(T1,) = Zfill V%iT(p), for any tensor T on M.

r(IIp)

Now consider the energy &. restricted to this finite dimensional space of
submanifolds,

£.(11,) = Vol (K.(I1)) — = Vol 11(Qx(TT,)),

which is a function on Gpi1(TM). Tracing through the construction of
K.(II,) one obtains the relationship of this function to the curvature func-
tions defined above.
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Lemma 3.3. There is an expansion

k+1)E(TT, 2
% - <1 T 2k+3) R (Ip) + 5k 1 3) r(1L,) + 0(55)>

Proof. The proof is a technical calculation, contained in the Appendix. O

84

The main result of this section is the following proposition

Proposition 3.2. If I, is a critical point of E-, then K.(1I,)) has constant
mean curvature.

Remark 3.4. Theorems (1.1) and (1.2) are Corollaries of Proposition (3.2).
Indeed, if we define

(9) (e, IL,) =262 (k +3) (1—(k+1)%>.
then for any j > 0, there exists a constant C; which is independent of € such
that

1W(-,€) = Riyr + v () llei Gy, (rary) < Cje™s

Proof of the Proposition. Let II, be a critical point of £&. We show that
the parameters d@, ¢ and d must then necessarily vanish. We do this by
considering the various types of perturbations of II,.

First consider the perturbations in Gj11(M) which correspond to par-
allel translations of II,. In other words, we suppose that the family of
planes Hexpp(tg) in Gp11(M) are parallel translates of II, along the geodesic

epr(té.)'
Th ifold K_.(1I =
e submanifold K( expp(tﬁ))

field W, 11, ¢+ which depends smoothly on ¢. This defines a vector field on
K. (Hp) by

is a normal graph over K, (II) by a vector

Z67Hp7§ = at\I]57Hp7§7t‘t:O :

The first variation of the volume formula yields
0 =D 55|Hp (5)

(10) = ng(Hp) <g(H(K€(Hp))’ Zevnpvg) o gg(n’ ZE,pr)) deZKE(HP)
k

__/ g(H(Q€(HP))’Z~57Hp7§) deZQE(HP)’
€ JQ.(11p)

and then the construction of Q.(II,) and K.(II,) gives that

[ (@ )gtn. Z.n,0
m—+1

+ Y (0(G©) + d) 9(Ze e Ny) ) dvolic. ) = 0.
p=k+1
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Let = be the vector field obtained by parallel transport of £ along geodesics
issuing from p, and suppose that ¢ is a constant independent of € and £&. Then

1Zem1,.¢ = Ellg < ce?JIE]l.

By construction of K.(II,), we have
In+ (F.).6lly < ce?, and [Ny — (F).Eyl, < c&®

Now take ¢ € I, C T'M,,, so that
9, Zei,e) = 9 (—(Fo)x© + (n+ (F).0) , E+ (Zey, e — E))

and

Q(Nst,Hp,E) =g ((FE)*EM + (Nu - (Fa)*EM7 E+ (Z&Hp,i - E))) :

Using the expansion of g near p, we conclude that
|91, Ze ) + 9p(€,©)] < €€l and  |g(Ny, Zem, 6)| < ee?[€]l,

hence

| a@euee)
KE(HP

)
S ‘ / gp(aa @)gp(ga @) + / gp(a, 9) g(Z&Hpvf’ TL)
E(Hp) KE(HP)

m+1

+ 5 (060 0) + d) o(Zene N
p=k+1J K (Ilp)

m+1
<cel( [ m@en+ S [ lg.e)+dl)
K (Ip)

K (1Ip) p=k+1

Now let £ = a@, so that

m+1

el | [ m@els 3 [ 1.0+l
Ke(Ip) Z

p=k+1

In Euclidean space there is an equality
Vol (S*)||v]|> = (k:+1)/ (v,0)2, for all ve Rk
Sk
By the expansion of the induced metric, we obtain for ¢ small enough

5 Volk(55) ¥ ol < (k + 1) / 19,0, O)]2.
K (I1)
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Also, because Vol (K.(II,)) = O(e*), we deduce

m+1

(1) lall < ee(lal+ > (Il +1da) ).
n=k+1

Now move p in the direction of a vector £ € Hlf to get

19(Ze 1,60 N = 9p(& Ep)| < ce?[€ll, and  [g(n, Zem, )| < c€?[I€]-

Thus we can write

m—k
> (9p(Cus ©) + dy) 9p(&, Ep)
p=1JK:(1lp)
m+1 .
<5 (00(60©) + ) gl Zee N
p=k+1J K (1lp)
m+1 .
- E ] (0(6e0) 4 d) gl B
p=k+1J K (Ilp)
+ [ (@ 0(Zun, )
Ke(p)
m+1
<clel [ (in@el+ Y 19,(n0) +d)
Ke(11) fretl

Taking & = d, E, gives

[ @) +d? < ela)(fim, ln@ o)
Kc(1p)
(12) m+1

+ Z / ‘gp(gme)"‘du’)
K(11p)

pn=k+1

Next consider a perturbation of II, by a one-parameter family of rotations
of II, in T, M generated by an (m + 1) x (m + 1) skew matrix A. Then

d d

D& |y, (A) = T =

E((I+tA+O(t*)I,,)
t=0

_ ECA(EL(TL)),

where, in geodesic normal coordinates
Ai(z) =z + tAz + O(t?).

The coordinates of the vector field associated to this flow are

d

Z57Hp7§ (1:) N

== A(x) = Ax.

t=0

Considering only matrixes A € o(m) such that A :II, — Hj, we obtain

{Q(ZE,HP,&H)‘ < 052“’4@“7 and {g(Ze,Hp,&Nu) - gp(A@7Eu){ < CEQHA@”'
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This gives, then,

m+1
/ (9p(Cus ©) + dy) 9p(AO, E,)
p=k+1 K (IIp)
m+1 .

<| S [ (@(600)+ ) o(Zm, e )
p=k+1J K_(I1,)
m—+1 .

- Z / (gp(c;u @) + du) gp(A@7 Eu)

p=k+1J K:(Ip)

[ 0@ 0)g(Zn, )
Ke(Ip)

m+1

< 062/ 140 1g,(@ ©) + Y (48] [g,(Cu, ©) + dy|
K(Il,) Pt

Let C, be the (m — k) x (k+ 1) matrix with column v equal to the vector
¢, € R¥1 and all other columns equal to 0. Then if

0o —-CI
(e )

we get
(13)
906, 0)7 + gp(@, O)dy < C2( [ 11 ) 199, O)] 1y(@. ©)]
K (Ip)
m+1 . .
+ 5 100196 0) + )
p=k+1J Ke(Ilp)

Adding (12) and (13) now gives
| e <e( [ ()4l 0)) lo@o)
K (p) Ke(Ip)

m—+1

+ 7 (Il +19p(E, O)) (G ©) + )
pu=k+1

In Euclidean space, if v € R¥*! and a € R are arbitrary, then
1
O))* = (a® + ——|[v||* ) Volx(S*).
[l w07 = (24 g i) Volu(s¥

Using, once again, the decomposition of the induced metric on K.(II,), we
see that when ¢ is small enough,

(14) Vol (8) (02 o) < [ o gyl O,

EHp

2(k + 1)
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which give

1611 + |du|?

m—Fk
1 o o &
<cs(al+lah ([ la@el+ Y [ la(@.0)+d.)
») = Sy

Since Vol (K. (I1,)) = O(e*), we get

5

m—k

(15) e+ 1du| < ce? (@l + Y (llull + Id,0)
pn=1

Adding (11) and (15) gives

m—Fk m—Fk
@l + D (el +ldul) | < e [ lall+ > léull +1dal) |
ﬂ=1 ﬂ=1

which implies finally that ||@|| =0, ||¢,|| =0 and |d,| =0, k+1 < p.

We conclude that if II, is a critical point of the functional £, then the
manifold K.(II,) is a constant mean curvature submanifold of M. O

4. APPENDIX 1

Mean curvature of submanifolds: Let X ¢ M™*! be an embedded

submanifold. Let 2!, ..., 2zF be local coordinates on ¥ and
Ea — Uz,
the corresponding coordinate vector fields. Suppose that Fxi1,..., Eyn41 18
a local frame for NY. This gives local coordinates transverse to X by
m+1
p € X — exp,( Z x) Ej)
j=k+1

We make the convention that Greek indices run from 1 tok, while Latin
indices run from k 4+ 1 to m + 1. The induced metric on ¥ has coefficients
Jap, While
hiy =Thg = 9(VE,Es, E;)
are the coefficients of the shape operator. We also record the Christoffel
symbols
IV = 9(VE, Ei, E))
The following result is standard, cf. [5] for a proof.
m+1

Lemma 4.1. If X = Y. 2/ E;, then
j=k+1
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Gap = ga[i - 2§(Baﬁ,X) + g(R(EouX)EﬁvX) + g(anXa VEBX) + O(‘I|3)

= Jap — 2hig o' + (Q(R(Ea, Ei)Eg, Ej) + g By B, 5 + T, Fiﬁ) ' 2l + O(|xf?)
gaj = —Th;a' +O(|z]?)
9i; =06+ 3 9(R(E;, E)Ej, Ep) a* ¥ + O(|z]?)

Let ® be a smooth section of NY and consider the normal graph ¢ =
{exp,(®(p)) : p € ¥}. Now let us use the previous lemma to expand the

metric and volume form on Y¢. To state this result properly, introduce V¥,
the induced connection on N,

VNCI) = TNY O V‘I)
Using the definitions of §2, we find that

Lemma 4.2.

Vol (Xe) = Volk(E)—/Zg(H(E),q))dvolg

+ %/2(yvN@g—g((Riczﬂag)@,@)) dvols,
1
+ 5/(g(lal(z),cb))? dvoly, + ...
P

Proof. First of all we expand the induced metric on ¥¢. Using the result of
the previous Lemma, we find

(@D)aﬁ = gaﬁ - 29(ha57 CI)) + g(R(Eom CI)) Eﬁa (I)) + g(anCI)7 VE,g(I)) + ...

— gaﬁ - 29(ha[37 Q)) + g(R(EOu Q)) Eﬁa (I))

+ 377 g(hary, ) g(hyp, ®) + g(VE, @, VE,®) + ...
Now use the well known expansions
det(I+A)=1+TrA+ % ((TrA)? — Tr(A?)) + ...
together with /1 +z =1+ %SE — %xz + ... to conclude that
Vdetgo = (1 - g(H(),®) + 3 (V@[] — g((Rics + (9)3) @, ®)
T (g(H(),®))?) +.) Vdetg

This completes the proof. O

From this we obtain the first and second variations of the volume func-
tional,

(16) Dq;.VOlk(Ecp)’q)\I/ = — /Z g(H(E.:I)), \I/) dVOlch,
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and
D2 Vol (Za)|e=o (¥, ¥) = /2(|VN\II|2 — 9((Ricy + H3) ¥, 1)) dvoly
+ /Z(g(H(E),\IJ))Z dvols.

On the other hand, differentiating (16) once more gives
D2Vol(2¢)|o—o (¥, ¥) = —/ 9(DoH (Z¢)|o=o¥, V) dvoly,
%
+ /(g(H(z),\Iz))2 dvolg.
b

Comparing the two formulae implies that the orthogonal projection of the
Jacobi operator to N equals

Jév = D@H(Eq;.)‘cp:o = Aév + Rng +57J% )

5. APPENDIX 2

Let K.(II,) be the constant mean curvature submanifold constructed in
Proposition (3.1) and denote by F': T,M — M the exponential mapping.
Recall that

Ka(Hp) - F(S§,¢>)a

where Skcb is a submanifold of 7), M parametrized by {6 (1-¢)0+cdt, Oc Sk}.
It follows from the proof of that proposition that

2
00) = 5 (g R Ih) ~ s Riclll)©.0)) +0(E)
ot = 0(?)

There is also the minimal submanifold Q.(II,) = F (Bf El),
where Bf;l ={ey+eUs(y), y € B*'} and

Us(y) = ¢ (y/llyll) + W (y) + Op)(e*),

k+1
Wy

zu |y| )yz E;L-
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We shall calculate the volume forms of Sf o and Bfgl with respect to
F*g. To prepare for this, recall that near z =0

. 1
(F79)ij = 6ij + 5

1
3 gp(Rp(x’ Ei)x’ Ej) + 6 gp(vll?Rp(x’ Ei)x’ Ej)

1
+ % gp(VJCVJ;Rp(x, Ei)ac, Ej)

m+1
2
+ E Egp(Rp(xaEi)x7E€)9p(Rp($=Ej)xaEZ)+Op(‘x’5)
/=1

where R, is the curvature tensor of M at the point p, cf. [7].

5.1. Volume of the CMC sphere. We first calculate the metric on SECD.
In terms of the coordinate vector fields O, = 1,...,k which are tangent
to S¥, we can write the tangent vector fields to Sf@ as

m+1
Ta=c(1=¢(0)Os — €0, 0O+ > €0, Ey, a=1,...,k
p=k+1

The metric coefficients then equal
4

g
955 =1 =) g5 5+ 0ap Ipo + 3 (1—9)*g,(Ry(0,0,)0,05)
55 86
+€ gp(V@Rp(@, @a)@, @5) + %gp(V@V@Rp(@, @a)@, @5)

k41 96
+ 121 E gp(RP(G’ 9(1)6’ El) gP(R;D(®7 95)67 El)

m+41l 9.6
+ > = 9p(Ry(0,04,)0, E,) g,(Ry(0,05)0,E,) + O(e)
pn=k+1

Using

Vdet(I +A) =1+ %trA + %(trA)2 - itr(AQ) + O(|AP),

we get
ok /det g
\/det g°

:1—k¢+@

1
¢* + 3 Vg

2 3
—%(1 — (k + 2)¢) Ricpy1 (I1,) (0, ©) — i—2 Vo Ric1(11,)(©,0)

et , et .
— 15 Vo Ricks1(I)(©,0) + — (Rick1(11,)(O, ))*

et k41 )
— R,(©,E;)0, E;

180 z'JZ:lgp( P( ) ])

et k41 m+1 ) 5
+=> X gp(Rp(@aEi)@aEu) + Oy (e”).

45 .= p=k+1
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5.2. Volume of the minimal ball. The tangent vectors to Bfgl are

m+1
Ti(y) =c(1—u(y)) E; + €0y, u(y)y +¢ Z Oy, WH(y) E,, + O, (eh),
p=k+1

where u(y) = ¢(y/|y|). The corresponding metric coefficients are

m—+1
e 297 =(1—u)?d; + (1—u) (Byuy; + dyuy:) + |y|>0y,udy,u+ % 187”WM Dy, WH
p=k+
2 4 g2 m+l
Hg =0 gy By B + 5 5 (W (BB By )
ﬂ:

+WH gp(Rp(y, Ei) Ey, Ej) + 0y, WEg,(Ry(y, Ep)y, Ej) + 0y, WH gp(Rp(y, Ei)y, Eu)>

g3 et
5 9 (VyRy(y, Ei)y, Ej) + 20 9 (VyVyRp(y, Ei)y, Ej)

924 k+1
+E l; gp(RP(y7 El)y’ El) gp(R;n(?Ja Ez)y7 El)

92e4 m+1 5
"’E zk: 19p(Rp(yaEi)y»Eu) 9p(Ry(y, Ei)vau) +0O(e”)
p=k+

Putting y = 70, r € (0,1) we calculate the volume element of Q.(IL,):

k(k+1 mil
e~k fdetg@ =1—(k+1)p + % o + ij 1 E\VSkWﬂP
p=k+
2 2
5 P Rici1(I1,)(6,0) + 12 (k + 3)¢ Ricy1(I1,) (©, ©)

2 ) k+1 m+1
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5.3. Expansion of the energy functional. Collecting the results above
gives that
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We now recall some identities. First,
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and second, if a;jpq € R4, 7,p,q =1,...,k +1, then
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We now calculate each term:
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or after simplification,
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(Frhed,) e 1
ek Vol(Sk) 2 k+3
gt 1
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72 (k+3)(k +5)
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(811Rickar ()] = 18 AL Ris1(ITy) — 3 | Re (1T, |
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et 1 k+6 12
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6. PROBLEMS

The results above produce a collection of k-dimensional spheres. It is
reasonable to suspect that there are other compact k-dimensional embedded
constant mean curvature submanifolds in R™ ? Find some other examples!

Is it possible to build noncompact k-dimensional (nonzero) constant mean
curvature submanifolds which are not contained in a (k + 1)-dimensional
subspace 7 For zero mean curvature submanifolds, the half plane, a half
helicoid (observe that there are two ways to cut the helicoid in half along a
straight line) which has boundary a straight line, and a fundamental piece
of a Riemann surface, whose boundary are 2 parallel straight lines, are
nontrivial examples. Are there any analogues in this setting?

It should follow by unique continuation that if K = 0Q = 0Q’ is a constant
mean curvature submanifold, with Hx # 0, then Q@ = @’. When Q is a
hypersurface, so K has codimension 2, this is true by the Hopf boundary
maximum principle.
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